

INFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH

Vladimír Baumruk

Seminář BCM094 "Úvod do problémů současné biofyziky"

vibrační spektroskopie infračervená spektroskopie (IČ) Ramanova spektroskopie (RS)

vibrační optická aktivita (VOA)

- vibrační cirkulární dichroismus (VCD)
- Ramanova optická aktivita (ROA)

Vibrační spektroskopie - princip

CO₂ - lineární molekula (O=C=O) se středem symetrie

 $n = 3 \implies 3n - 5 = 4 \implies 2$ valenční vibrace \Rightarrow nesymetrická \Rightarrow aktivní v lČ \Rightarrow symetrická \Rightarrow aktivní v RS

 \Rightarrow 2 deformační vibrace (degenerované) \Rightarrow aktivní v IČ

(průměrně velký protein má přibližně 20 000 vibračních stupňů volnosti !!!)

Vibrační spektroskopie - princip

 $\left|\frac{\partial \vec{\alpha}}{\partial O_i}\right| \neq 0 \Rightarrow$ vibrace aktivní v Ramanově spektru (změna polarizovatelnosti)

Vibrační spektroskopie - spektra

Infračervené absorpční a Ramanovo spektrum kyseliny benzoové

Jednoduché molekuly - symetrie a vibrace (příklad CCl₄)

Detailní pohled na v₁ pás v Ramanově spektru CCl₄

Izotopické štěpení díky existenci dvou stabilních izotopů ³⁵Cl a ³⁷Cl (jednotlivé komponenty odpovídají různému zastoupení těchto dvou izotopů v molekule CCl₄)

- strukturní informaci lze získat v relativně krátkém čase (proto nachází využití například v proteomice)
- neomezuje se pouze na statický obrázek (citlivost ke změnám, možnost dynamických studií)
- velikost studovaných molekul a povaha okolního prostředí nepředstavují žádné omezení (a nebo jen výjimečně)
- je to mimořádně vhodná metoda pro zkoumání vztahu mezi strukturou a funkcí biomolekul

- RS a IČ jsou nedestruktivní metody (možnost testování biologické aktivity po skončení měření).
- Aplikovatelné na vzorky libovolné morfologie (roztoky vodné i nevodné, suspenze, precipitáty, gely, vrstvy, vlákna, prášky, monokrystaly, …). Pro biomolekuly lze tak ověřit nakolik se shoduje či naopak odlišuje jejich struktura v krystalu a v roztoku.
- Nenáročné na objem vzorku (cca 10 μl pro konvenční RS, 20 μl pro IČ).
- Rychlá časová škála absorpce i rozptylu (~ 10⁻¹⁵ s) využití vibrační spektroskopie pro časově rozlišené studie procesů, které nejsou přístupné pomocí fluorescence či NMR.
- Existence rozsáhlé databáze IČ a Ramanových spekter (včetně přiřazení pásů jednotlivým vibracím a známých strukturně-spektrálních korelací).

- Voda představuje ideální rozpouštědlo pro Ramanovu spektroskopii (na rozdíl od IČ).
- Intenzívní pásy v Ramanových spektrech pocházejí od vibrací, při kterých dochází k velké změně polarizovatelnosti (např. aromatické molekuly).
- Relativně snadné měření i v oblasti nízkých vlnočtů (pod 400 cm⁻¹, daleká IČ oblast)
- Selektivní rezonanční zesílení (tzv. rezonanční Ramanův jev).
- Povrchem zesílený Ramanův rozptyl (SERS)

- Spektrální rozlišení je sice vyšší než v elektronových spektrech, ale nižší ve srovnání s NMR. Nedostatečné rozlišení může být částečně kompenzováno chemickou (izotopická záměna) nebo biologickou (bodová mutace) modifikací.
- > Jsou potřeba relativně vysoké koncentrace vzorku (\approx 10-100 µg/µl) byť v malých objemech.
- Jak H₂O tak i D₂O nejsou ideálním rozpouštědlem pro IČ spektroskopii (na rozdíl od Ramanova rozptylu).
- Ramanův jev (nepružný rozptyl světla) je ze své podstaty slabý jev (ve srovnání s absorpcí nebo emisí světla). Je tedy nutná značná čistota vzorků a péče při manipulaci s nimi (velmi vadí fluorescence příměsí).

 Pásy ve vibračním spektru představují detailní a jedinečný "otisk prstu" dané molekuly.

◆ Složité molekuly ⇒ vibrační módy a jim příslušející spektrální pásy nemohou být přímo přiřazeny souřadnicím výchylek atomů ani z nich jednoduše vypočítány.

- \Rightarrow vibrační spektrum nelze použít pro výpočet struktury.
- ⇒ Vibrační spektrum daného strukturního motivu nemůže sloužit jako "otisk prstu" této struktury dokud s ní není korelováno pomocí nezávislé metody.
- ⇒ Jako základ pro stanovení takové korelace zpravidla slouží struktury určené pomocí difrakčních nebo NMR metod.
- ⇒ Každý pás ve spektru odpovídá vibraci specifické skupiny atomů (tzv. normální vibrační mód) s dobře definovanými geometrickými charakteristikami (délka vazby, vazebné úhly, atd.) ⇒ správně přiřazený pás může sloužit jako jednoznačný indikátor (strukturní marker) tohoto strukturního rysu.

Ve vibračních spektrech nukleových kyselin rozlišujeme dva základní typy strukturních markerů:

- nukleosidové konformační markery jako indikátory konformace cukru a torze glykosylu citlivé k torzním úhlům δ (C2´-endo nebo C3´-endo konformace cukru) a χ (anti nebo syn orientace báze)
- páteřní konformační markery jako indikátory fosfodiesterové torze citlivé k torzním úhlům a a ξ popisujícím rotaci kolem esterových vazeb 5´O-P a 3´O-P)

Ve vibračních spektrech proteinů rozlišujeme řadu strukturních markerů, které jsou citlivými indikátory bezprostředního okolí postranních řetězců, jejich interakce s ním a konformace (Trp, Tyr, Cys). Pásy amidu I, II a III jsou citlivými indikátory sekundární struktury.

Kanonické struktury DNA

Kanonické struktury DNA

Poloha osy helixu (+) v rovině páru bazí pro B-DNA, A-DNA a Z-DNA.

Konformace nukleosidů v kanonických DNA strukturách. Nahoře: C2' endo pucker s anti torzí glykosylu vyskytující se u všech reziduí v B-DNA a u pyrimidinových reziduích v Z-DNA. Diagram také ilustruje páteřní (α , β , γ , δ , ε , ζ) a glykosylové torzní úhly (χ). Dole: C3' endo/*syn* vyskytující se v purinových reziduích v Z-DNA. V A-DNA všechna rezidua zaujímají C3' endo sugar pucker s *anti* glykosylovou torzí.

Spektra kanonických struktur DNA

Ramanova spektra **krystalů** A-, B-, a **Z-DNA**. Označeny jsou nukleosidové a páteřní konformační markery.

Určení struktury RNA·DNA hybridu v roztoku

Ramanova spektra

- A. poly(rA).poly(dT), pH 7.5 v 0.1 M NaCl (A · B hybridní struktura)
- B. poly(dA-dT).poly(dA-dT), pH 7.5 v 0.1 M NaCl (B-form)
- C. poly(dA-dT).poly(dA-dT) fiber při 75% RH (A-form)
- D. poly(rA).poly(dT) fiber při 75% RH (A-form)

- ENULA

Soubor Ramanových spekter série vzorků poly(rA) a poly(rU) s postupně se měnícím poměrem A:U od čistého poly(rU) (červené) k čistému poly(rA) (fialové). Spektra byla normalizována a signál rozpouštědla byl odečten.

Interakce poly(rA) s poly(rU)

Výsledky faktorové analýzy aplikované na první derivaci souboru Ramanových spekter směsi poly(rA) s poly(rU) s měnícím se poměrem A:U.

Interakce poly(rA) s poly(rU)

Byly identifikovány 4 složky: jednovláknová poly(rU), jednovláknová poly(rA) poly(rA).poly(rU) duplex a poly(rU):poly(rA)*poly(rU) triplex.

Byla izolována spektra čistých komponent

IČ spektrum proteinu v H_2O (tučně) a D_2O (slabě). Tloušťka kyvety byla cca 6 μ m (H_2O) respektive 20 μ m (D_2O).

Ramanovo spektrum (R_2R_3) fragmentu proteinu c-Myb

(minimální sekvence pro specifickou vazbu k cílové sekvenci DNA)

Fragment c-Myb(R_2R_3) obsahuje 6 tryptofanů (3 v R_2 i R_3), 2 tyrosiny (1 v R_2 i R_3), a 1 cystein (v R_2). Jejich pásy v Ramanově spektru dominují.

Ramanova a rezonanční Ramanova spektroskopie

Vibrační spektroskopie a struktura peptidů a proteinů

Schematické znázornění vibračních módů **amid I**, **amid II** a **amid III** v molekule *N*-methylacetamidu, modelu peptidové skupiny v *trans* konformaci. Jejich frekvence odrážejí strukturu polypeptidového řetězce (NH₂-C_aHR₁-CO-NH-C_aHR₂-CO-) nezávisle na typu postranního řetězce (R₁, R₂, ...).

Wibrační spektroskopie a struktura proteinů

Distribuce sekundárních struktur v referenčním souboru 19 proteinů (v % zastoupení jednotlivých konformací).

sekundární struktura	Kabsch a Sander					
	helix	β-struktura	obrátka	ohyb	ostatní	
minimum	0	0	6,9	1,9	11,1	
maximum	77,1	47,7	20,9	20,5	33,0	
střední hodnota	26,7	23,1	12,8	13,7	23,7	
směrodatná odchylka	20,4	14,5	3,8	4,8	5,9	

Tvarová variabilita **FT-IČ** (vlevo), **diferenčních FT-IČ** (uprostřed) a **VCD** (vpravo) spekter referenčního souboru 19 proteinů v H_2O v oblasti amidu I a II. FT-IČ spektra jsou normalizována na A_{max} = 1 amidu I. Diferenční spektra byla získána odečtením průměrného FT-IČ spektra referenčního souboru od jednotlivých spekter.

Stabilita proteinů (folding ↔ unfolding)

Fig. 13. Temperature-dependent IR spectra of the α -amylase inhibitor tendamistat, a small β -sheet protein. With a midpoint temperature of 82 °C, the wild-type protein unfolds and adopts an irregular structure. This leads to a broad amide I band centred at 1650 cm⁻¹ (left). Mutation of the three Pro residues to Ala does not significantly alter the amide I band at room temperature (right). However, heating the Profee protein results in a downshift of the amide I maximum indicating aggregation of the sample. Moreover, the transition is already observed at 67 °C (C. Zscherp, H. Aygün, J. W. Engels & W. Mäntele, unpublished observations).

Vibrační spektroskopie a počítačové modelování proteinů

Vazba progesteronu s orosomukoidem

Vlevo: kyselý α₁-glykoprotein (orosomukoid) v nativním stavu.
 Vpravo: vazba progesteronu vede k transformaci α-helikálního segmentu ve smyčce nad β-barelem na antiparalelní β-strukturu (označeno šipkou).

Side-Chain Conformations and Local Environments

Cysteine S-H stretching vibration (2500 - 2600 cm⁻¹)

Dependence of the Raman S-H frequency and bandwidth on hydrogen bonding

Hydrogen-bonding state of S-H group	S-H frequency (cm ¹)	Band width (cm ⁻¹)	Examples
No hydrogen bond	2581-2589	1217	Thiols in CCl ₄ (dilute)
S acceptor	2590-2595	12-17	Thiols in CHCl ₃
Weak S-H donor	2575-2580	20-25	Thiol neat liquids; thiols in thioethers
Moderate S-H donor	2560-2575	25-30	Thiols in acetone; crystal structures
Strong S-H donor	2525-2560	35-60	Thiols in dimethylacet- amide; crystal structures
S-H donor and S acceptor	2565-2575	30-40	Thiols in H ₂ O

Raman spectrum (670-2800 cm⁻¹) of the P22 trimeric tailspike protein at 10°C. The inset at upper right, which shows an amplification of the spectral interval 2480-2620 cm⁻¹, exhibits the composite S-H stretching profile (bands at 2530, 2550, 2565 and 2585 cm⁻¹) of the eight cysteine residues per unit. The data are not corrected for solvent contribution. From Raso et al. *J. Mol. Biol.* 307 (2001) 899.

Side-Chain Conformations and Local Environments

Cysteine

S-H Raman signatures (2480-2630 cm⁻¹) of tailspike cysteine residues

Spectral contributions and hydrogen-bond strengths of cysteine sulfhydryl groups of the native P22 tailspike protein

Residue	Raman S-H bandª	Hydrogen-bond strength ^b Moderate	
Cys169	2565		
Čys267	2550 (90%)	Strong	
5	2585 (10%)	Very weak	
Cys287	2550 (63 %)	Strong	
5	2585 (37%)	Very weak	
Cys290	2585	Very weak	
Čys458	2550	Strong	
Cys496	2585	Very weak	
Čys613	2530	Very strong	
Cys635	2576	Weak	

^a Raman band center (in cm⁻¹ units). Numbers in parentheses are the percentages of total intensity contributed by the specified cysteine sulfhydryl at the indicated cm⁻¹ value. ^b Based upon the results reported by Li & Thomas.¹¹

- A. The Raman S-H profiles observed for the wild-type tailspike and for each of eight Cys → Ser mutants, as labeled.
- B. Raman difference spectra computed as mutant minus wild-type, for each of the eight Cys → Ser mutants. In each trace, the S-H Raman signature of the mutated Cys site is revealed as a negative band.

Vibrační optická aktivita - princip

- diferenční metoda měříme rozdílnou odezvu chirální molekuly vůči pravo- a levotočivě kruhově polarizovanému záření,
- spojuje stereochemickou citlivost konvenční optické aktivity s vyšším rozlišením a tudíž i bohatším strukturním obsahem a konformační citlivostí vibrační spektroskopie,
- v případě konformačně flexibilních molekul můžeme pomocí VOA rozlišit konformace, jež jsou stabilní z hlediska časové škály vibračních pohybů (na rozdíl od NMR, kde díky pomalejší časové škále (v porovnání s konformační konverzí) může dojít k vyrušení strukturních rysů, je vibrační spektrum váženým průměrem spekter jednotlivých konformerů).
 - vibrační cirkulární dichroismus (VCD)
 Ramanova optická aktivita (ROA)

stanovení absolutní konfigurace bez krystalizace

ROA – určení absolutní konfigurace

Chirálně deuterovaný neopentan (R)-[²H₁, ²H₂, ²H₃]-neopentan Experiment (106 electrons) 4.0(1011 electrons) Experiment at 25 °C 3.6 at 25 °C 0.0 D ΗD 1.8 -4.0 D_3C CH_3 0.0 (106 electrons) 4.0Experiment at 0 °C Experiment (1011 electrons) 3.6 at 0 °C 0.0 -4.0 1.8 (10⁻²¹ Å² cm sr ⁻¹) Calculated 2.7 mixture 0.0 Calculated (10⁻¹⁶ Å² cm sr ⁻¹) 2.0 0.0 mixture -2.7 Calculated rotamers .0 29 26 21 20 <u>15 14 13</u> 16 (10⁻²¹ Å² cm sr ⁻¹) 0.0 33 19 Calculated 22. -R1 R4 -R7 18 17 (10⁻¹⁶ Å² cm sr ⁻¹) R2 R5 R8 2.8 rotamers 0.0 R3 R6 R9 -33 .4 R4 12 11 R2 R5 R7 25 28-27 R3 R6 R8 R9 0.0 1,200 1,100 1,000 900 800 1,300 1,200 1,100 1,000 1,300 900 800 vlnočet (cm⁻¹) vlnočet (cm⁻¹)

Ramanova a ROA spektra (R)-[²H₁,²H₂,²H₃]-neopentanu. Dvě horní křivky ukazují změřená spektra. Spodní křivky ukazují jednotlivá vypočítaná spektra devíti rotamerů R1 to R9 a zprůměrované spektrum směsi všech rotamerů.

Haesler et al., *Nature* **446**, 526 (2007).

stanovení absolutní konfigurace bez krystalizace

přímé měření enantiomerního přebytku bez nutnosti separace enantiomerů

Měření enantiomerní čistoty

Soubor ROA spekter 19 vzorků *trans*-pinanu o různé enantionerní čistotě.

stanovení absolutní konfigurace bez krystalizace

- přímé měření enantiomerního přebytku bez nutnosti separace enantiomerů
- určení konformace biologických molekul v roztoku (proteinů, nukleových kyselin, cukrů, virů ...)

Simulace Ramanových a ROA spekter

ROA a Ramanova spektra (15)-(-)-a-pinenu: (a) zjednodušený (tzv. polární) a (b) konvenční model výpočtu ROA intenzit, (c) experimentální ROA spektrum, (d) simulované a (e) experimentální Ramanovo spektrum.

ROA spektra poly-L-prolinu v TFE

ROA spektra poly-L-prolinu ve vodě

ROA spektra hinge peptidu, paralelního dimeru oktapeptidu Thr-Cys-Pro-Pro-Cys-Pro-Ala-Pro ve vodě

ROA proteinů

* valenční vibrace skeletu (vC_{α} -C, vC_{α} -C_{β}, vC_{α} -N)

- ~ 870 1150 cm⁻¹
- rozšířená oblast amidu III (νC_α-N, + δN-H a δC_α-H)
 ~ 1230 – 1340 cm⁻¹

(vC=O)

~ 1630 – 1700 cm⁻¹

28,7% α-helix 10,9% 3₁₀-helix 6,2% β-list

ROA proteinů – PCA (Principal Component Analysis)

- > the simplest amino acid
- ideal benchmark system for studying:

- conformational behavior
- interaction with solvent

L-Alanine - potential energy surface

1D scan

2D scan

B3LYP/COSMO/6-31++G**

Dependencies of molecular energy (E, left) and dihedral angles (right) on the angles φ , ψ , and χ . The remaining coordinates in the onedimensional scans were allowed to fully relax.

 NH_3^+

COO-

CH₃

Raman and ROA spectra can be reliably interpreted if the movement of flexible molecular parts is considered

Kapitán et al., J. Phys. Chem. 110 (2006) 4689

There is a significant difference between Ala-Pro x Pro-Ala Gly-Pro x Pro-Gly

ROA (Raman) can directly reflect flexibility of the molecule

Model dipeptides

Hinge peptide and its analogs

HINGE peptide is a fragment 225-232/225'-232' from the core of human immunoglobulin IgG1. It acts in this parent molecule as a swivel point crosslinking two rather heavy peptide chains. Being a parallel dimer of the octapeptide **H-Thr-Cys-Pro-Pro-Cys-Pro-Ala-Pro-OH** (C_2 symmetry). The sequence is rich in proline residues and is expected to be quite rigid also due to a presence of two disulphide bridges. The peptide offers several advantages for use as a universal carrier of various active sequences (immunologically neutral, possesses six independent terminal groups: -NH and -OH on Thr residues and C-terminal carboxyl).

¹Padlan E.A, *Mol. Immunol.* **31** (1994) 169.

