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1. Fundamentals of Electron Theory

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)

Inserting (4.40) yields

(4.43)

and

(4.43a)

From this, the "'-functions in region I can be expressed in terms of a constant
D. Figure 4.8 illustrates this behavior for various values of n which should
be compared to Fig. 4.4(a).

4.4. Electron in a Periodic Field of a Crystal
(the Solid State)

In the preceding sections we became acquainted with some special cases,
namely, the completely free electron and the electron which is confined to a
potential well. The goal of this section is to study the behavior of an electron
in a crystal. We will see eventually that the extreme cases which we treated
previously can be derived from this general case.

Our first task is to find a potential distribution which is suitable for a solid.
From X-ray diffraction investigations it is known that the atoms ib a crystal
are arranged periodically. Thus, for the treatment of our problem a periodic
repetition of the potential well of Fig. 4.2, i.e., a periodic arrangement of
potential wells and potential barriers, is probably close to reality and is
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Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig
Penneymodel).

also best suited for a calculation. Such a periodic potential is shown in Fig.
4.9 for the one-dimensional case.4

The potential distribution shows potential wells of length a which we call
region I. These wells are separated by potential barriers of height Vo and
width b (region 11),where Vo is assumed to be larger than the energy E of the
electron.

This model is certainly a coarse simplification of the actual potential distri
bution in a crystal. It does not take into consideration that the inner electrons
are more strongly bound to the core, i.e., that the potential function of a point
charge varies as l/r. It also does not consider that the individual potentials
from each lattice site overlap. A potential distribution which takes these
features into consideration is shown in Fig. 4.10. It is immediately evident,
however, that the latter model is less suitable for a simple calculation than the
one which is shown in Fig. 4.9. Thus, we utilize the model shown in Fig. 4.9.

We now write the Schrodinger equation for regions I and 11:

(I)
d21/J 2m

dx2 + T;'i"EI/J = 0,

d21/J 2m

(11) dx2 + T;'i"(E - Vo)1/J = o.

For abbreviation we write, as before,

and

• R. De L. Kronig and W. G. Penney, Proc. Ray. Soc. London, 130,499 (1931).

..
(4.44)

(4.45)

(4.46)

(4.4 7)
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v

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential).

We insert (4.49) into (4.44) and (4.45) and take into account the abbreviations
(4.46) and (4.47):

(4.49)

(4.48)

x

tjJ(x) = u(x)· eikx

Surface potential

(y2 is chosen in a way to avoid it from becoming imaginary, see Section 4.3.)
Equations (4.44)and (4.45) need to be solved simultaneously, a task which can
be achieved only with considerable mathematical effort. Bloch 5 showed that
the solution of this type of equation has the following form:

(Bloch function), where u(x) is a periodic function which possesses the period
icity of the lattice in the x-direction. Therefore, u(x) is no longer a constant
(amplitude A) as in (4.2), but changes periodically with increasing x (modu
lated amplitude). Of course, u(x) is different for various directions in the
crystal lattice.

The reader who is basically interested in the results, and their implications
for the electronic structure of crystals, may skip the mathematical treatment
given below and refer directly to (4.67).

Differentiating the Bloch function (4.48) twice with respect to x provides

d2tjJ ( d2u du. 2 ) ikxdx2 = dx2 + dx 2zk - k u e .

d2u . du 2 2

(1) dx2 + 2zk dx - (k - CL )u = 0,
(4.50)

(4.51)

Equations (4.50) and (4.51) have the form of an equation of a damped vibra-

SF. Bloch, Z. Phys. 52, 555 (1928); 59, 208 (1930).



4. Solution of the Schrodinger Equation for Four Specific Problems

tion. The solution6 to (4.50) and (4.51) is

(I) u = e-ikx(AeiU + Be-iU),

(11) u = e-ikx(Ce-Yx + DeYX).
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(4.55)

(4.56)

We have four constants A, B, C, and D which we need to dispose of by
means of four boundary conditions: The functions t/J and dt/JIdx pass over
continuously from region 1 into region 11at the point x = O. Equation 1 =
Equation 11for x = 0 yields

A + B = C + D.

(duldx) for 1 = (duldx) for 11at x = 0 provides

A(itX - ik) + B( -itX - ik) = C( -y - ik) + D(y - ik).

(4.57)

(4.58)

Further, t/J and therefore u is continuous at the distance (a + b). This
means that equation 1at x = 0 must be equal to equation 11at x = a + b, or,
more simply, equation 1 at x = a is equal to equation 11at x = -b (see Fig.
4.9).This yields

Ae(ia-ik)a + Be(-ia-ik)a = Ce(iHy)b + De(ik-y)b.

Finally, (duldx) is periodic in a + b

(4.59)

Ai(tX - k)eia(a-k) - Bi(tX + k)e-ia(aH)

= - C(y + ik)e(iHY)b + D(y - ik)e(ik-Y)b. (4.60)

The constants A, B, C, and D can be determined by means of these four
equations which, when inserted in (4.55) and (4.56), provide values for u. This
also means that solutions for the function t/J can be given by using (4.48).
However, as in the preceding sections, the knowledge of the t/J function is not
of primary interest. We are searching instead for a condition which tells us
where solutions to the Schr6dinger equation (4.44) and t4.45) exist. We recall
that these limiting conditions were leading to the energy levels in Section 4.2.
We proceed here in the same manner. We use the four equations (4.57)-(4.60)
and eliminate the four constants A-D. (This can be done by simple algebraic
manipulation or by forming the determinant out of the coefficients A-D and
equating this determinant to zero.) The lengthy calculation provides, using

6 Differential equation of a damped vibration for spatial periodicity (see Appendix I)

d2u du
- + D- + Cu = o.
dx2 dx (4.52)

Solution: (4.53)

where

(4.54)



With the abbreviation

7 See Appendix 2.

(4.63)

(4.67)

(4.65)

(4.66)

(4.62)
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Sin txa
p -- + cos txa= cos ka.

txa

we finally get from (4.65)
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Euler's equations,?

y2 _ tx2 .
-sinh(yb)' sin(txa)+ cosh(yb) cos(txa)= cos k(a + b). (4.61)
txy

Since Yob has to remain finite (seeabove) and b -.0 it follows that yb becomes
very small. For a small yb we obtain (see tables of the hyperbolic functions)

cosh(yb) :::::1 and sinh(yb) :::::yb. (4.64)

Finally, one can neglect tx2compared to y2 and b compared to a (see (4.46),
(4.47), and Fig. 4.9) so that (4.61) reads as follows:

tx~2Yob sin txa+ cos txa= cos ka.

For simplification of the discussion of this equation we make the following
stipulation. The potential barriers in Fig. 4.9 will be of the kind such that b is
very small and Vo is very large. It is further assumed that the product Yob, i.e.,
the area of this potential barrier, remains finite. In other words, if Vo grows,
b diminishes accordingly. The product Yob is called the potential barrier
strength.

If Vo is very large, then E in (4.47) can be considered to be small compared
to Vo and can therefore be neglected so that

y = j;Fo.
Multiplication of (4.62) with b yields

yb = j; J{Vob)b.

This is the desired relation which proviOes the allowed solutions to the
'Schrodinger equations (4.44) and (4.45). We notice that the boundary condi
tions lead to an equation with trigonometric functions. Therefore, only cer
tain values of txare possible. This in turn means that because of (4.46), only
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Figure 4.11. Function P(sin aa/aa) + cos aa versus aa. P was arbitrarily set to be
(3/2)1t.

certain values for the energy E are defined. This is quite similar to the case
in Section 4.2. One can assess the situation best if one plots the function
P(sin a.a/a.a) + cos a.a versus a.a which is done in Fig. 4.11 with P = (3/2)a.. It
is of particular significance that the right-hand side of (4.67) allows only
certain values of this function because cos ka is only defined between + 1 and
-1 (except for imaginary k-values). This is shown in Fig. 4.11, in which the
allowed values of the function P(sin a.a/a.a) + cos a.a are marked by heavy
lines on the a.a-axis.

We arrive herewith at the following very important result: Because a.a is a
function of the energy, the above-mentioned limitation means that an elec

tron, which moves in a periodically varying potential field, ~an only occupy
certain allowed energy zones. Energies outside of these allowed zones or
"bands" are prohibited. One sees from Fig. 4.11 that with increasing values of
a.a (i.e., with increasing energy), the disallowed (or forbidden) bands become
narrower. The size of the allowed and forbidden energy bands varies with the
variation of P. Below, four special cases will be discussed.

(a) If the "potential barrier strength" Vob (see Fig. 4.9) is large, then, accord
ing to (4.66), P is also large and the curve in Fig. 4.11 proceeds more
steeply. The allowed bands are narrow.

(b) If tl)e potential barrier strength and therefore P is small, the allowed
bands become wider (see Fig. 4.12).

(c) If the potential barrier strength becomes smaller and smaller and finally
disappears completely, P goes toward zero, and one obtains from (4.67)

cos a.a = cos ka

or a. = k. From this it follows, with (4.46), that

h2PE=-
2m .

(4.68)
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Figure 4.12. Function P(sin aa/aa) + cos aa with P = n/lO.

This is the well-known equation (4.6) or (4.8) for free electrons which we
derived in Section 4.l.

(d) If the potential barrier strength is very large, P approaches infinity. How
ever, because the left-hand side of (4.67) has to stay within the limits ± 1,
i.e., it has to remain finite, it follows that

SIll rxa -+ 0,
rxa

for n = 1, 2, 3, ....

i.e., sin rxa -+ O.This is only possible if rxa = nn or

n2n2
rx2= __

a2

Combining (4.46) with (4.69) yields

n2h2
E = __ 'n2

2ma2 '

(4.69)

which is the result of Section 4.2, equation (4.18).
We summarize (Fig. 4.13): If the electrons are strongly bound, i.e., if the

potential barrier is very large, one obtains sharp energy levels. (Electron in

[

(a) (b)

'l'///ff/$//%

(e)

Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and (c)
electrons in a solid.
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Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi
continuous energy region with decreasing atomic distance, a, for a metal (after calcula
tions of Slater). The quantum numbers are explained in Appendix 3.

the potential field of one ion.) If the electron is not bound, one obtains a
continuous energy region (free electrons). If the electron moves in a periodic
potential field one receives energy bands (solid).

The widening of the energy levels into energy bands and the transition into
a quasi-continuous energy region is shown in Fig. 4.14. This widening occurs
because the atoms increasingly interact as their mutual distance decreases.
The arrows a, b, and c refer to the three sketches of Fig. 4.13.

Problems

1. Describe the energy for:
(a) a free electron;
(b) a strongly bound electron; and
(c) an electron in a periodic potential.
Why do we get these different band schemes?

2. Computer problem. Plot !/I !/I * for an electron in a potential well. Vary n from 1 to
-100. What conclusions can be drawn from these graphs? (Hint: If for large
values for n you see strange periodic structures, then you need to choose more
data points!)

3. State the two Schr6dinger equations for electrons in a periodic potential field
(Kronig-Penney model). Use for their solutions, instead of the Bloch function, the
trial solution

!/I(x) = Aeih:.

Discuss the result. (Hint: For free electrons Vo = 0.)

*4. When treating the Kronig-Penney model, we arrived at four equations for the
constants A, B, C, and D. Confirm (4.61).


