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Sunmary

A nethed of measuring specific vesistivity and Hall effcet of Hat
samples of arbitrary shape is presented. The iethod is based upon a
theorem which holds for a flat sample of avbitrary shape if the contacts
are sufliciently small andTocated at the eircumflerence of the sample.
Turthermore, the sample must be singly connected, i.e., it should nat’
have isolated holes.

Résumé

On présente une méthode pour mesurer Ia résistance spécifique et
Peftet Hall d’un éehantillon plat de forme quelconque. Lu méthode est
fondée sur un théoréme qui est appliquable si 'éehantillon cst plan-
parallile, si les contacts sont sulfisamment petits ¢t se trouvent & la
périphérie de I'échantillon. Enfin Iéchantillon doit étre simplement
connexe, c-i-d. sans trous isolés,

Zusanmenfassung

Es wird eine Methode zur Messung des spezilischen Widerstandes nnd
des Hallefiektes ciner planparallelen Probe willkiivlicher Form an-
pegehen. Die Methode griindet sich auf eine These, die anwendbar
ist wenn die Kontakte geniigend klein sind und siclh am Rande der
Probe befinden. SchlieBlich soll die Probe einfach zusammenbiingend
sein, d.h. sie daef keine Licher haben.

1. Introduction .
In many cases the specific resistivity and the Hall effect of a conducting
material are measured by cutting a sample in the form of a bar. Current
contacts A and B and voltage contacts C, D, & and I' are attached to the
bar as shown in fig. 1. The specific resistivity is then derived from the
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Fig. 1. The classical shape of a sample for measuring the specific resistivity and the Hall effeet,
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potential drop between the points C and D or E and ¥ and from the dimen-
sions of the sample. On the other hand, the Hall voltage can be measured
hetween the points C and E or D and F. The current contacts must be far
away from the points C, D, E and Fin order to ensure that the lines of flow are
sufficiently parallel and are not changed on application of a magnetic field.

For the measurement of the specific resistivity and Hall effect of semi-
conductors a more complicated shape of the sample has often to be used,
A well-known example is the bridge-shaped sample shown in fig. 2. The

ke

Fig. 2, The bridge-shaped sample, furnished with large nrcas for making low-ohmie contacts,

large areas at the ends have the task to provide low-ohmie contacts, Further-
more, when making these contacts a heat treatment is often necessary
which in this case can be done without heating that part of the sample
which is under measurement,

It will be shown that the specifie resistivity and the Hall effect of a flar
sample of arbitrary shape can be measured without knowing the current
pattern if the following conditions are fulfilled: '

(a) The contacts are at the circumference of the sample,
~(b) The contacts are sufficiently small.
(¢) The sample is homogeneous in thickness.
(d) The surface of the sample is singly connected, i.e., the sample does not
have isolated holes,

2. A theorem which holds for a flat sample of arbitrary shape

We consider a flat sample of a conducting material of arbitrary shape
with successive contacts A, B, ¢ and D fixed on arbitrary places along the
circumference such that the ahove-mentioned conditions (a) to (d) are ful-
filled (see fig. 3), We define the resistance Ryz.cp as the potential difference

D
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Fig. 3. A sample of arbitrary shape with four small contacts at arbitrary places long the

circumference which, according to this paper, can be used to i istivi
D measure the apecific resistivit
and the Hall effect, ' P ey
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Vp—Vbetween the contacts D and G per unit current through the contacts
A and B. The current enters the sample through the contact A and leaves it
through the contact B. Similarly we define the resistance Rycpy. It will be
shown that the following relation holds:

exp (~ wRyy oo dfo) -+ exp (— wRycpa dfo) = 1 ” | (1)

where g is the specific resistance of the material and d is the thickness of the
sample.

To prove eq. (1) we shall first show that it holds for a particular shape
of the sample. The second step is to prove that if it holds for a particular
shape it will hold for any shape. For our particular shape we choose a semi-
infinite planc with contacts P, Q, R and S along its boundary, spaced at
distances @, b and ¢ respectively (see fig. 4). A current j enters the sample

o J 3569

Tig. 4. A sample in the form of a semi-infinite plane with four contacts along its boundary
for which eq. 1) is proved first,

at the contact P and leaves it at the contact Q. From elementary theory it
follows that
] -+ b) (b
Ve Vo= 2% 1n (@tb)(+c)
Hence
o (a4 b) (b+¢)
Ronoe = = In o " PN 9
PORS = 0 B+ b+ o) @)

In the same way, we have
¢ pethbto

std e

®)

Ronsp =

Morcover,
ba+ b+ o)+ ca= (a+ b) b+ o). (4)
Trom the eqs (2), (3) and (4) eq. (1) follows immediately,
Using the same arguments it ¢an also be shown that

RPQ,RS = Rns,PQs {5)
RQ‘R,SI' = RSP.QR H (6)
RPR.QS = RQS.PR! (7)
RI‘Q.SR + Rcm,sp + RPR,QS = 0. (8)
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The last four relations, however, are of a much more general nature than ( 1)
and follow also from the reciprocity theorem of passive multipoles,

We shall now proceed with the second step and show that eq. m holds
quite generally, To that end we make use of the well-known technigue of
conformal mapping of two-dimensional fields *). We assume that the semi-
infinite sample considered above coincides with the upper part of the com-
plex z-plane, where z = x + iy.

We introduce a function w = f(z) = u(x,y) 4 iv(x,y), where u and o
are both real functions of x and y, The function f(z) is chosen in such a way
that u represents the potential field in the sample, The functions u and v
satisfy the Caunchy-Riemann relations:

ou_ o 9)
0x  dy

ow__ o, (10)
Ay 0x

If we now travel from an arbitrary point T in the upper half-plane 1o
another point T, in the upper half-plane (see fig. 5), the net current which _

I
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Fig. 5. The same sample as in fig. 4, eoineiding with the upper part of the complex z-plane,

traverses our path from right to left is given by

i
.}.'ra._,*rjL = ] E, ds,
¢ T

where E, is the normal component of the field strength. This expression is
readily verified to be equal to

p T, ; T, ’

. ou on d o iow vy t

g, = — | | ——dx 1+ 2 a :__j (____1 R | :( _ )
Jrym er_/( oy + % 3’) P ; dx o - [J") 0 Uy, — U,
Hence if we travel along the real axis from —oo to + o< the value of v
remains constant until we pass the point P, When passing the point P

*} L. V. Bewley, Two-dimensional fields in electrical engineering, Tho MacMillan Com-
pany, New York, 1948,
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along a small half-circle.in the upper half-plane the value of v will increase
by gj/d. Similarly when passing the point Q the value of v will decrease by
ejfd. We consider now a sample of arbitrary shape, lying in a different
complex plane which we shall call the t-plane (see fig. 6), where t = r 4 is.

C

t-plane

#3471

Fig, 6. A sample of arbitrary shape, lying in the complex t-plane,

By a well-known theorem, it is always possible to find an analytic
function () such that the upper half-plane in the z-plane is mapped onto
the sample in the t-planc. There are some restrictions as to the shape of
the sample in the t-plane which are, however, not of physical interest. In
particular, let A, B, C and D in the t-plane be the images of the points P, Q,
R and S respectively in the z-planc. Furthermore, let k() = 1 +im he
identical with f(z) = f(z(1)) = k(t). Hence by definition m remains con-
stant when travelling in counter-clockwise direction along the boundary of
the sample in the z-plane; it only increases by gj/d when passing the point
A and it decreases by the same amount when passing the point B.

From the theory of conformal mapping it follows that if m in the t-plane
is interpreted in the same way as v in the z-plane, then ! will represent the
potential field in the ¢-plane. Conse quently if a current j enters the sample
at the contact A and leaves it at the contact B and if we choose Jeld =
Je/d, where ' and d' are the specific resistivity and the thickness of the
sample in the i-plane, then the voltage difference Vp—V, will be equal to
the voltage difference Vg — Vy. Hence (djo) R,pep is invariant under con-
formal transformation. The same is true for (d/p) Rpgps- From this it
follows that eq. (1) is of general validity.

3. Practical applications
From the above section it follows that for measuring the speeific resistivi-

ty of a flat sample it suffices to make four small contacts along its circum-




6 Lo J. van der PAUW

ference and to measure the two resistances Rypen and Ry, (see fig. 3)
and the thickness of the sample. Equation (1) determines uniquely the
value of 0 as a fanction of Rycps Roepa and d. In order to facilitate the
solution of ¢ from eq. (1) we write it in the form

(11)

g st T o
=g 2 Roc.oal

where fis a function of the ratio Ripen/Rpeps only and satisfies the -
relation

Bavew = Roamn _ oo joxp (a2, (12)
RAB,CD + Rnc,DA 2 )
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Fig. 7. The function f used for determining the specifie resistivity of the sample, plotted as
8 function of Rap,cp/Rocpa .

In fig. 7 a plot is given of f as a function of Ry5.co/Rucpne If Rypcp and
Rygpy are almost equal, f can be approximated by the formula

fal (}ﬂzﬁ@_&f L (R_A?_:EP:E%W_A)* ) _ oy g
RAB,CD + I{BC,DA 2 RAB.CD _I_ RBC,T}A

The Hall mobility can be determined by measuring the change of the
resistance Ry, ,. when a magnetic field is applied perpendicular to the
sample. The Hall mobility is then given by

d AR
Mg = E '—];'P‘_A_c’ (13)
where B is the magnetic induction and ARy 4 the change of the resistance -
Rpp s due to the magnetic field,

Equation (13) is based upon the following argument: If we apply a

magnetic field perpendicular to the sample the equations
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divj=0, (14)
curl j = 0, (15)

where j represents the current density, remain valid. Furthermore if the
contacts are sufficiently small and at the circumference of the sample the
outer lines of flow, which must follow the circumference of the sample, fully
determine our boundary conditions, Hence the lines of flow do not chango
when a magnetic field is appﬁgg]_. However, the effect of the magnetic field
on the electric potential is such that between two arbitrary points an
z_}r]ditionatl potential difference AV is built up which is equal to

3]
{1

where j is the current which passes between the two points. Equation (13)
follows immediately from (16).

In order to cstimate the({order of magnitude]of the error introduced if
the contacls are of finite size and not at the circumference of the sampm
ﬂfﬁived an approximation formula for a few special cases. In all cases we
assumed that the sample had the form of a circular dise with contacts
spaced at angles of 90°, Furthermore we assumed that the area over which
the contact is made is an equipotential area. We shall denote by Agjp
and Auy/uy the relative errors introduced in the measurement of the
specific resistivity and the Hall mobility, respectively.

In fig. 8a is presented the case in which one of the contacts is of finite
length d; it is assumed to lie along the circumference of the sample. The

L 934003

g

I¥ig. 8. Some special cases for which the exror in the measurement of g and uyr due to the
finite length or the finite distance to the circumference of one contact has been caleulated,

other contacts are infinitely small and located at the circumference,
"The diameter of the sample will be denoted by D. In this case for a small
~alue of d/D and of uB the following relations may be shown to hold:



Ao —d 14
- G_ f=s iﬁ--ﬁ-g—ln 2 E ( )
Apy (15)

~ T T T 2
e 7D

In fig. 8b is shown the case in which the eontact is made in the direction
perpendicular to the cireumference, In this case the error introduced will he
as in the foregoing case, but with d twice as large:

de _ (16)
4
Apg _ (17)
M

Finally we consider the case in which one contact lies at a distance d from
the circumference (see fig, 8¢). In this case we obtain

Ap d? (18)
o 2D'm2’
Au 2d )
_;"if = (19)
H

It can be shown that if more contacts have al the same time some of Lhe
above-mentioned defects the errors introduced are to a first approximation
additive, o

The inﬂue:uce:of the contacts can be eliminated still further by using a
“clover-shaped” sample, as shown in fig. 9. This sample has many advan-

) C
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Fig. 9. The “clover-shaped” sample where the influence of the contacts has heen reduced
considerably.

tages compared with the bridge-shaped sample. Tt gives a relatively lorgpe
Hall eficet at the same amount of heat dissipation, which is of im rorlance
when measuring materials of low electric_mobility, Tt has a grm
mechanical strength and smaller samples can be measurcd which is of

importance, for example, when measuring silicon erystals made by the
floating-zone technique.

Eindhoven, September 1957
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Note added in proof

In sec. 2 we derived a relation between the resistances Rys.ens Rucpa
and pfd if all contacts arve at the circumference of the sample and infinitely
small. If the contacts are all of finite size there will be in general six in-
dependent finite resistances, for example the resistances Bypans Racacs
Rap.aps Brenes Byppp and Repo- We assume that the contacts are areas
of constant potential. It can be shown that, if the contacts are located at
the cireumference of the sample, also in this case there must he a relation
hetween these six resistances and pfd which determines p/d uniquely as a
function of these six resistances, If there is only one contact of finite size,
A say, it ean be shown that

ad k ad "7 '
9-“1-’("""" R.MI.{‘.I}J |- exp ( """ - -HB(:,I')A) —exp|—— ('RAH,CD -+ Rnc,na)} =
- 0 2 ¢

2nd
- exp ( P R!LB,DA) =10,

The author is indebted to Dr C, J. Bouwkamp of this laboratory for
pointing out to him that, if more than one contact is of finite size, the rela-
tion between the independent resistances and the specific resistivity of the
sample involves elliptic or hyper-elliptic funetions rather than elementary
funetions.

Professor Bouwkamyp has also drawn the author’s attention to a recent
paper by Lampard *), who deals with the calculation of internal cross capa-
citances of cylinders under certain conditions of symmetry. Lampard’s
result can be generalized as follows. Let fig. 6 of this paper represent the
cross-section of a cylindrical capacitor, cut into four parts insulated from
one another at the points A, B, Cand D, Let € ancp denote theinternal cross
capacitance of parts AB and CD, in electrostatic c.g.s. units per unit length
of eylinder. Similarly, let €y, denote the intemal cross capacitance of
BC and CD. Then we have

exp(—4 7* Cypep) 1 exp(—4 72 Cepa) = 1,

which is identical with eq. (1) of this paper except for the different physical
i nterpretation.

In Lampard’s case of symmetry, the two capacitances Cupen and
Coepa are mutually equal, and hence are both equal to (In 2)/4x2
independen tly of the size or shape of the cross-section, which is Lampard’s
theorem,

"} D. G. Lampard, Proc. Tnstn elect. Engrs, Part C, Vol. 104, No. 6, Sept. 1957, p. 271,



