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which is known as the “dielectric loss.” This relation holds exactly for light
absorption in a material and is used later to relate optical transitions and
light absorption. In the case of semiconductors where free carriers exist, the
real part of the complex dielectric constant x is related to the imaginary
part of the complex conductivity by

Ji
K1 = K] —

(4.27)

weg

where k; is the real part of the dielectric constant due to the crystal lattices
and we may expect £; to become zero at a specific frequency (plasma fre-
quency). This relation is often used to discuss the classical theory of plasma
oscillation (see Sects.5.4.1 and 5.5).

4.2 Direct Transition and Absorption Coefficient

In this Section we will consider the band-to-band direct transition of an elec-
tron from the valence band to the conduction band induced by the incident
light. To do this we consider the electron motion induced by the incident
light in a perfect crystal. The Hamiltonian of the electron is given by

H= ﬁ(p +eA)? +V(r), (4.28)

where A is the vector potential of the electromagnetic filed and V (r) is the
periodic potential of the crystal. The vector potential is expressed by the
plane wave:

1 s :
o 5Aoe [el(kp~'r'—wt) +e—l(lcpv'l'—wt)] : (429)

where k;, and e are the wave vector of the electromagnetic field and its unit
vector (polarization vector), respectively. In the above equation the vector
potential is expressed as a real number by adding its complex conjugate.
Using the relation A - p = p - A and ‘neglecting the small term A2, the
Hamiltonian is rewritten as

2
H:p—+V(T)+£A-pEHo+H1- (4.30)
2m m

Assuming H; = (e/m)A - p as the perturbation, the transition probability
per unit time wey for the electron from the initial state |vk) to the final state
|ck') is calculated to be

o = 20| (ck'|-£ A k) P8 [E.(K) — Eu(K) = ]

me? 2 / : 2
= WAO |(ck'| exp(iky, - T)e - p|vk)|

X3 [Ec(K') — £, (k) — ] . (4.31)
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The matrix element of the term which includes the momentum operator p is
called the matrix element of the transition and gives the selection rule and
the strength of the transition. Let us consider the Bloch function to express
the electron state:

lik) = ™ u;p(r), (4.32)
where j = v and c represents the valence band and conduction band states,
respectively. Then the matrix element of the transition is given by

Zing) / K Ty (r)eFe Te - peik Ty (1) ddr
AVZ

1.

v

1 . /

=7 / gl Sk ITyr(r)e - (P + hk)u g (r)dir. (4.33)
1%

From the property of the Bloch function, u(r) = u(r + R;), where R; is the
translation vector, and the matrix element is rewritten as

1
€ Py = VZexp{i(kp—l—k—k’)-Rl}
!

X/ eilkoTk=k)Tyx (n)e . (p + hik)uyg (r)d®r, (4.34)
£2

where (2 is the volume of the unit cell. Summation with respect to IR; becomes
0 except for

ky+k—k =Gn(=mG), (4.35)
P

where G,,, is the reciprocal lattice vector (G is the smallest reciprocal lattice
vector and m is an integer). The wave vector of light (electromagnetic waves)
with a wavelength of 1 um is |k,| = 6.28 x 10* cm™ and the magnitude of
the reciprocal lattice vector for a crystal with a lattice constant of 5A is
|G| = 1.06 x 108 cm™?, and thus the inequality k, < G is fulfilled in general.
Therefore, the largest contribution to the integral in (4.34) is due to the term
for G, = 0 (m = 0). This condition may be understood to be equivalent to
the conservation of momentum. From these considerations (4.35) leads to the
important relation

K =k (4.36)

for the optical transition. That is, electron transitions are allowed between
states with the same wave vector k in k space. In other words, when a pho-
ton of energy greater than the band gap is incident on a semiconductor, an
electron with wave vector k in the valence band is excited into a state with
the same wave vector in the conduction band. From this fact the transition
is referred to as a direct transition.

Since the integral with respect to ik in (4.35) vanishes because of the
orthogonality of the Bloch functions, we obtain
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1 *
e P =5 /ﬂ wty (r)e - Py (r)E 0k ks (4.37)

Using the above results, the photon energy absorbed in the material per unit
time and unit volume is given by hwwey, which is equivalent to the power
dissipation of the electromagnetic waves per unit time and unit volume given
by (4.26):

hudilsy =rmwhiaeoly (4.38)
0

Do =

From the relation between the electric field and the vector potential, E =
—9A/0t, we may put Ey = wAp; thus the imaginary part of the dielectric
constant is given by the equation

2h

Ko = — 5 gWev
€0w2 A%

2
e
T N oiles Devl? 8 [Ec(K") — Ev(k) — Tw] gk - (4.39)
k.k’

It is evident that the absorption coefficient is obtained by inserting r2 into
(4.21).

4.3 Joint Density of States

In the previous section we derived the dielectric function for the direct tran-
sition, which is given by (4.39). When we assume that the matrix element
e - Pcy varies very slowly as k or is independent of k (this is a good approx-
imation), the term |e - Pev|? in (4.39) may be moved out of the summation.
The imaginary part of the dielectric constant can then be rewritten as

me2
Ko(w) = Ww s P zk:a[acv(k) — hw), (4.40)
Eor(k) = Ec(k) — Eu(k) - (4.41)

The summation with respect to k in (4.40) may be understood as the sum-
mation of the pair states of [vk) and |ck) due to the delta function and called
the joint density of states. Replacing the summation 5 by an integral in
k space, the joint density of states Jev(hw) is written as

Jeu(0) = 3 81Eeu(le) = hs] = 7 2;3
k

/ Bk blEwr(K) — ],  (4.42)

where the spin degeneracy factor 9 is taken into account. Integration of the
above equation is carried out by the following general method.

Consider two constant energy surfaces in k space, & = hw and hw+d(hw).
The density of states in d(hw) is then obtained as follows.
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Fig. 4.2. Derivation of the general form of the joint density of states. Consider
two constant energy surfaces & and € + 0€ displaced by 6. The small element of
volume in k space is then defined by the product of the bottom area d5 and the
distance dk, perpendicular to the constant energy surface

4 ds
o (1) - (1) = 7555 /h - dongee il (4.43)

Therefore, the joint density of states Jey(Aw) is rewritten as

s / By (4.44)
(27‘—)3 hw=Ecv |vk:5cv (k)i

where we have to note that the integral is carried out over the constant energy
surface, hw = Eq (k), because of the delta function. This general form of the
density of states is derived as follows. Referring to Fig. 4.2, let us consider
constant energy surfaces displaced by a small amount of energy 0€ in k space,
£ and € +6€. The small element of the volume §V (k) in k space is defined by
the volume contained in the bottom area 65 and its height dk; between the
two constant energy surfaces. The states allowed in a volume element d3k in

k space per unit volume is given by
2
——d’k = §
(2m)3 (2m)?

The distance between the constant energy surfaces is given by (0k1 /0€ loe=
(D€ )0k, )~16E, where OE Ok, is the gradient of £ in the direction normal
to the energy surfaces and we find

OE & \? 9E \? 9\ 2
5k—;—|vk5|—\/zék—m> +<8—/€;> +<8k:z> ; (4.46)

S £5
o A |

From the definition of the volume element §V (k) = 65 - 6k, the density of
states in energy space between € and £ 4 € is given by

Sl i) =

Vik). (4.45)

or

ok (4.47)

2 ds
pENE = (553 /S ER - (4.48)



4.3 Joint Density of States 89

It is evident from the above derivation that the joint density of states is
obtained by replacing £(k) by .. (k) in the above equation and thus that
the derivation of (4.44) is straightforward.

The joint density of states J., (fuww) given by (4.44) diverges when V&, (k)
= 0 is satisfied. This leads to a maximum probability for the optical transi-
tion. We may expect such behavior at various points in the Brillouin zone.
Such a point in the Brillouin zone is called a critical point or singularity
of the joint density of states. The behavior may be expected to occur under
the following two conditions:

Vie(k) = Vi&y(k) =0, (4.49)
ViEe(k) = V& (k) #0. (4.50)

These equations reflect the conditions that the slopes of the two bands are
parallel. The former condition means that the slopes are horizontal and will
be satisfied at points of Brillouin zone with high symmetry. For example, this
condition is satisfied at the I" point. The second condition is satisfied at vari-
ous points of Brillouin zone. The critical points behave differently depending
on the type of critical point. The properties of the critical points were first
investigated by van Hove [4.5] and thus are called van Hove singularities.

In order to discuss the singularities in more detail we expand &, (k) at
the point Vg (k) = 0 (k = ko, & = £g) in a Taylor series and keep terms
up to the second order:

3
Sc‘,:g(;-i—z

=1

52
2—M(ki — kio)?, (4.51)
where the first-order term of k disappears due to the singularity condition
Vi€ = 0. The constant p; has the dimension of mass and is given by the
following equation with the effective mass m; of the conduction band and
my, of the valence band.

1 1 1

—=—+— . (4.52)
Ki  Me; My,

Table 4.1. Joint density of states Jcy(fiw) for 3-dimensional critical points

types of critical points Jov (hw)

types | 1 p2  p3 | hw <& hw > &g

Mo [+ + + |o C1(hw — Ec)'7?

M, siovsh S Ce — Ci(éc — hw)l/2 Cs

M = (il = + [ C Cs — C1(hw — Eg)*/?
M3 S = 1liCi(Es =hua)l/? 0

Ar ([ 8uypaus\/?
0 = g (T 5)
2m)3\ &
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The mass p; is called the reduced mass of the electron and hole. Using this
result, the joint density of states J., at the critical point is then calculated
in the following way. Defining the new variable

7 Rk =kig)

Sii= : (4.53)
2]
equation (4.51) is rewritten as
3
El8) =Ea+ )Y oust, (4.54)
i=1

where a; = +£1 is the sign of u;, and o; = +1 for p; > 0 and «; = —1 for
wi < 0. Using the definition of the variable we may calculate the joint density
of states given by (4.44) (for the My critical point: c; > 0 for all ;) as

Tolw) = 2 (Blupzss )2 / ds
. (2m)° ity Eev=tw |V 5Ecv(8)]

_ 2 (8papaps] 1/2/ ds (4.55)
(27T)3 hﬁ Esv=hw 2s ! :

where s = (s2+s3+52)1/2. It is straightforward to obtain the density of states
for the My critical point. In this case we have &, — Eg = 87 + 53 + 53 = 52
and then we obtain [dS = 4rs? for fiw > Eg, which leads to the following
result for the joint density of states J.,(w):

0 shw < Eg

Jev(hw) = (4.56)

dr (8 b
(27[_)3 < Nlh:f?/il%) vhw—&; ;ﬁwzgg.

It is evident from (4.51) or (4.54) that the singularities or critical points
are classified in four categories depending on the combination of the signs of

Table 4.2. Joint density of states Joy(fiw) for 1-dimensional and 2-dimensional
critical points

types of critical points Jev (hw)
dimension types hw < &c hw > Ea
1D Mo 0 A(hw — Eg) ™12
1D M; Al ) 2 0
2D Mo 0 B
2D M, (Bi/m)(B2 —In|€q — hw|) | (B1/m)(B2 —In|€q — hwl)
2D Mo By 0

A:3-<M>U2 Bl:i.(MY/Q

47 K2 i dr B :

By =In|2Bs — (g — hw) + 24/B% — (¢ — hw) Bs|
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Fig. 4.3. Joint density of states Jev(hw) for (a) 3D, (b) 2D and (c) 1D bands

the reduced masses, or in other words we define the critical point M; (j = 0,
1, 2 and 3) by j, the number of negative ;. The critical point My has 3
positive reduced masses (j = 0: zero negative reduced mass): pu1 > 0, pg >0
and pg > 0. The critical points My, My and M3 are for 1, 2, and 3 negative
reduced masses, any of py, g and uz. The joint density of states Jey(w) for
the critical points M;, My and M3 have been calculated and the results are
summarized in Table 4.1 (see for example [4.6,4.7]).

Inserting (4.56) into (4.39) the imaginary part of the dielectric constant
for the My critical point is given by

2 1/2
ad§ b€ o [ 8papapi3 ST T

I‘LQ(L«)) = Wle 8 pcv| <——h6—) hw — g(; y (457)
where hw > Eg. The absorption coefficient is obtained by inserting this equa-
tion for ko(w) into (4.21): :

Bl 2 1/2
a(w) = 27re|0mfcc;;|ow <8/~L1:62N3> Vhw—Eg for hw > Eg.(4.58)

It is evident from (4.51) that £, becomes a maximum at ko for the My
critical point (all of y; are positive) and that &, becomes a minimum at
ko for the Ms critical point (all of p; are negative). On the other hand,
the M; (M) critical point exhibits a saddle point at ko, where Esv shows a
maximum (minimum) at ko in one direction and a minimum (maximum) in
other directions. When we consider a pair of conduction and valence bands,
the lowest energy critical point is My and the highest energy critical point is
Mj. For example a simple treatment of the tight-binding method gives the
following energy bands in the case of the simple cubic lattice:

Eev(k) = (Eg + 37) —v(cos kza + coskya + cos k,a), (4.59)

which gives rise to the joint density of states shown in Fig.4.3a. The joint
densities of states Je, for 2-dimensional (2D) and 1-dimensional (1D) bands
are summarized in Table 4.2 and in Fig. 4.3b—c. It is very important to point
out that in Fig.4.3b—c the joint densities of states J., at the saddle point
for the 2D critical point and at the 1D critical points diverge. The behavior
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of the 1D critical point has already been shown in Chap.2 to describe the
density of states in a high magnetic field, where an electron is quantized in
the perpendicular direction to the magnetic field and the electron can move
along the magnetic field, and thus the electron behaves like a 1D carrier.

4.4 Indirect Transition

In Sects. 4.1 and 4.2 we considered the process where an electron in the va-
lence band absorbs one photon and makes a transition to the conduction band
vertically in k space, i.e. a direct transition. This process plays the most im-
portant role in direct gap semiconductors such as GaAs, InSb and so on. On
the other hand, we have shown in Chaps.1 and 2 that the conduction band
minima in Ge and Si are located at the L point and A point, respectively,
whereas the top of the valence band at the I" point. Therefore, the funda-
mental absorption edge (lowest optical transition) is not direct, and thus
direct transitions of electrons from the top of the valence band to the lowest
conduction band minima is not allowed. Experimental results in Ge and Si
reveal a weak transition for the photon energy corresponding to the indirect
band gap between the top of the valence band at k = 0 and the conduction
minima at k # 0. This process is interpreted as the indirect transition in
which an electron in the valence band absorbs a photon and then absorbs or
emits a phonon to make the transition to the conduction band minima. This
process is caused by a higher-order interaction or second-order perturbation
in quantum mechanics, as described below in detail. The higher-order per-
turbation produces a weaker transition probability compared with the direct
transition, and thus the weak absorption is explained. In addition we have to
note that the transition is validated through a virtual state for the transition
from the initial to the final states, and for this reason the transition is called
an indirect transition.

Let us define the Hamiltonian H, for electrons, H) for lattice vibrations,
H, for the electron—phonon interaction and He, for the electron-radiation
(photon) interaction. Then the total Hamiltonian is written as

H=H,+H +Hyq+ H,,. (4.60)

We will discuss the Hamiltonian of the lattice vibrations and the electron—
phonon interaction in Chap. 6 and will not go into detail here. The Hamilto-
nian of electrons and phonons is written as Hy = H,+ H) and the eigenstates
are expressed as
‘ |ck,ng) (for an electron in the conduction band) (461)
{ |vk,ng) (for an electron in the valence band) i .

where k is the wave vector of the electron and ng is the phonon quantum
number of mode o and wave vector g. Expressing the perturbation Hamilto-
nian as
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H' = He + He, (4.62)

and keeping the perturbation up to the second order, the transition proba-
bility from an initial state |i) to a final state |f) through a virtual state |m)
is then given by

2T
'U)if = ?

/ e\ |2
(piariy+ Y LR Ve, gy, (463)
m 2 m

where it is evident that the relation (f|H'|i) = (f|He:|i)+ (f|Ha|é) = 0 holds
because of the following reasons. The matrix element (f|Hex|?) is the same
as the element for the direct transition stated in the previous section and
the transition is allowed between the same k vectors in k space. In the case
of an indirect transition, however, the wave vectors k are different between
the initial state |i) at the top of the valence band and the final state |f) at
the bottom of the conduction band, and thus we find that (f|He|i) = 0. On
the other hand, the matrix element (f|Hc|7) ensures momentum conserva-
tion (wave vector conservation), d(k; = g — ky), but energy is not conserved
because of the small value of the phonon energy compared with the band
gap. Therefore, we find that (f|Heli) = 0. From these considerations only
the second term in (4.63) will contribute to the indirect transition and so
finally we get

2
'I.Uif = _ﬁ

When we insert (4.62) into (4.64), such terms as (f|He|m) (m|Hali),
(f|Her|m)(m|He:|i) and so on appear. However, these terms will not con-
tribute to the indirect transition for the reason stated above. Finally, we find
that the two processes shown in Fig. 4.4 will remain. The first process is: (1)
an electron at the top of the valence band A interacts with radiation to absorb
a photon and makes a transition to a virtual state D in the conduction band,
followed by a transition by phonon absorption or emission to the final state
C. The second process is: (2) an electron makes a transition from the top of
the valence band A to a virtual state in the valence band B by absorbing or
emitting a phonon and then absorbs a photon to end up at the final state
C. The second process can be understood in a different way: an electron in
the valence band B absorbs a photon, leaving a virtual state of a hole there
and making a transition to the final state C, and an electron at the top of
the valence band A is then transferred to this virtual state by absorbing or
emitting a phonon. These processes are expressed by the following equation:

_ 2r |(Cky,ng + 1|Ha|Dki, ng) (Dks, ng | Her| Aki, ng)
ok P

’U.)«L'f

(Cky,ng % 1|Hee| Bk, ng & 1) (Bks, ng £ 1|Ha|Aki, ng) #

g B fi

X(S(gz = gf) 3
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Fig. 4.4. Processes for the indirect transition. (1) An electron at the top of the
valence band A interacts with radiation to absorb a photon and makes a transition
to a virtual state D in the conduction band, followed by a transition by phonon
absorption or emission to the final state C. (2) An electron makes a transition from
the top of the valence band A to a virtual state in the valence band B by absorbing
or emitting a phonon and then absorbs a photon to end up at the final state C

where the upper sign (+) of & represents phonon emission and the lower sign
(=) of + corresponds to phonon absorption. When we neglect the phonon
energy term fiwq because of its smallness compared to the photon energy or
the band gap, we find following relations:

E; — Sf — 8V(ko,,) + hw F hwg‘ == 5c(kf),

E — = 8\,(’67;) + hw — SD(ki) = gc(kf) = ED(ki) > E0— Ec1,

81' = 5]3 = &,(ki) + hwf; =g 5B(kf) = gv(k:i) = SB(kf) = Svo = 5‘,1 ;

Assuming that the matrix element is independent of the wave vector k,
we may approximate
2m 25 2
wif = - Do Mew " Ol Ep=Er) (4.65)

m,o,
for the transition probability and
2
ey e m, o, 2
’92("‘)) T 60m2w2 Z lMcv

m,o,+

x Y8 [Ee(K) — E(ke) — huo hwg] (4.66)
k.k’

for the imaginary part of the dielectric constant. The first summation is
carried out for the virtual state (|m)), the phonon mode, and its emission
(+) and absorption (—). The probability of phonon emission and absorption
is proportional to ng+1 and ng, respectively, and the average excited phonon
number is given by Bose-Einstein statistics as
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=3 1
L exp(hwg/kpT) —1° (ear)
Using these results (4.65) may be written as
27 TS T |
Wif = Emza:i ['Acv | (nq T § = 5)
x> 8 [Ec(k) = Evlk) — hw & hwg] - (4.68)

kK
The second summation with respect to k and k' represents the density of
states for the indirect transition, which is calculated as follows.
Jnd = 375 [Ec(K') — &y (k) — Tw & Tuwg]
kK

K [ k2 k2 k2
>0 Sco—8v0+—< Zgpl o
K.k’ 2 \ Mz Mhy Mhz

/2 12 /2
+kz+ky+kz>_hw:tﬁwgi\, (4.69)
Mex Mey Mez

where the conduction band near the bottom is approximated by Ec(k') =
5 /2me + Eco with the electron effective mass me and the valence band
near the top by & (k) = —h?k?/2my, + Eyo with the hole effective mass mp.
The summation 3, is replaced by 2/ (2m)® [ d®k and transformations such
as © = hky/\/2Mhg, & = hk'z/y/2me, etc. are used. Then the density of
states is given by

Jind _ (_zg_ﬁ / dzdydzde/dy'd?’

) <w2 +y? 422+ o +y?+ 2? g —hw hwf;) Ji4(4:70)

where we have assumed that the spin of the electron is not changed in the
transition (no spin-flip transition) and that the spin degeneracy is used for
one of the bands. In addition we have used K and £g given by

K= 12 )

26mh:cmhymhzme:1:meymez
&,

ng CO_EVO'

In order to carry out the integral of Ji2¢ we use polar coordinates (z,y,2) =
(r,0,¢) with r2=sand '’ = ([ sin #dOd¢ = 4r), which leads to

: 2K dsds’
ind 2 / / . @
I @n)e /(47r) 1 Vss'§(s + 8" + Eq — hw £ hwg).
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The integral of the above equation is easily carried out by using the ¢ function,
and we obtain

g 47!'2 fuu:Fﬁw:—SG
ind:. 2
Jind — (270621{/0 \/E\/hw¢hwg—6c;—s ds
2K =
= . ~(hw F wd — £g)*. 4.711
(271')4 8( aE q G) ( )
Finally, we obtain the dielectric function for the indirect transition given by
me? K

Ka(w) = 3 Mzt (fw F g — Ec)°

com?w?  (4m)3 e
2 (hw — hw§ — Eg)?

me K iy
T em2w?  (4m)3 7;1 [IACV 1 — exp(—hwg/ksT)

N

+| AT

(hw + hw§ — £c)? ] : (472)

: exp(hwg/ksT) — 1

where the first and second terms on the right-hand side are associated with
the transition followed by phonon emission and by phonon absorption, re-
spectively.

The virtual state of the indirect transition is determined by the phonon
mode and its deformation potential and also by the selection rule for the
electron—radiation field interaction. As the simplest case we take into account
a virtual state and a phonon mode and calculate the temperature dependence
of the absorption coefficient. The denominator of the second term becomes
large for the case kpT' < hwg and the transition followed by phonon absorp-
tion disappears at low temperatures. On the other hand, the denominator of
the first term becomes 1 at low temperatures. Therefore, the indirect transi-
tion will be governed by phonon emission at low temperatures. The feature
is shown in Fig. 4.5, where /k3 is plotted as a function of hw — &g for differ-
ent temperatures, by taking into account the fact that the square root of the
imaginary part of the dielectric function and thus of the absorption coefficient
is proportional to fw F hwg — €g (VR < Vo « (hw F hwg — &q) (a: ab-
sorption coefficient). At lower temperatures the process of phonon absorption
decreases and the absorption coefficient becomes very weak. We find that the
phonon energy involved in the process is given by the half-width of the lower
straight line and that the band gap £ lies in the middle of the line. The
experimental results for Si are shown in Fig. 4.6, where the square root of the
absorption coefficient \/a is plotted as a function of photon energy and find
the feature of the indirect transition shown in Fig. 4.5 [4.8]. The turning point
of the curve shifts to lower photon energy at higher temperatures, which is
explained in terms of the temperature dependence of the band gap (the band
gap decreases with increasing lattice temperature). The experimental results
for Ge are shown in Fig.4.7 [4.9], where turning points are observed in the
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Fig. 4.5. Absorption coefficient at
the indirect transition edge, where the
square root of the absorption coeffi-
cient /@ o< \/k is plotted as a function
of photon energy minus the band gap
hw — Eg for different temperatures
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Fig. 4.6. Square root of the absorption
coefficient y/c plotted as a function of
photon energy hw for Si, where the
transitions due to phonon absorption
and emission are well resolved (from

[4.8])

Fig. 4.7. The square root of the absorp-
tion coefficient v/ of Ge at the indirect
transition edge is plotted as a function
of photon energy hw (from [4.9])

spectrum for T' = 249K at about 0.65eV and 0.71eV. These turning points
correspond to the transition due to the absorption and emission of one LO
phonon, and the transition due to phonon emission disappears at low temper-
atures. A weak absorption is observed at T' = 4.2 K below the photon energy
around 0.77eV due to LA phonon emission process, which is believed to be
due to a forbidden transition followed by TA phonon emission. It is most
important to point out here that the square root of the absorption coefficient

is not a straight line but exhibits a

as discussed in Sect. 4.5.

4.5 Exciton

4.5.1 Direct Exciton

hump. This is caused by exciton effects

In Sect.4.2 we discussed optical absorption spectra due to direct transitions,
where an electron in the valence band (wave vector k) is excited by photon







