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Abstract: This work studies charge transport in halide perovskites made of
methylammonium lead tribromide MAPbBr3. By finding and using bipolar pulsa-
tion parameters, we describe the transport properties of both holes and electrons.
The shapes of the measured current waveforms with the L-TCT method are sim-
ulated by the Monte Carlo simulations. Theoretical models of charge density
distribution are based on a drift-diffusion equation with consideration of the infi-
nite and finite lifetime of a charge carrier caused by a shallow and deep trap. The
obtained values of drift mobility, electric field profile, transit time, and surface
recombination rate are obtained by Monte Carlo simulation. We have success-
fully shown the effect of pulsing with unipolar and bipolar biases. By finding the
pulsation parameters at which the sample does not polarize, we calculated the
hole mobility around 13 cm2V−1s−1. We arrived at the ambiguity of determining
the effect of the expanding deep trap region and the effect of space charge forma-
tion. Thus, we found multiple possible models to describe the measured current
waveforms. This work confirms the high sensitivity of perovskites to the method
and history of measurement.
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1. Introduction

1.1 Motivation
For the last two decades, halide perovskites have been identified as one of the
most promising materials in photovoltaic and light emitting devices such as low-
cost solid-state lighting with tunable colours and narrow emission line widths at
high photoluminescence quantum yields [9], [10], [22], [23]. This led to break-
throughs in materials science. In photovoltaic theoretical efficiency limit is 29%
[24]. Even though it’s almost the same efficient as silicon [25], the production cost
of perovskites is the engine that drives current research forward. So perovskites
combine both high light efficiency and low costs simultaneously. The efficiency
of the organometallic halide perovskite solar cells increased significantly from
3.8% in 2009 to over 25% in 2020 [26]. Among the wide compositional range of
halide perovskites, methylammonium lead tribromide perovskite CH3NH3PbBr3
(MAPbBr3) received the most attention for its potential applications in tandem
solar cells, radiation detectors, and light-emitting diodes [27] and [28].

Despite all the promising results so far, perovskites hide many unexplained
problems which play a critical role in the performance. The most significant
influences include oxygen degradation in the air without the use of any type of
encapsulation, moisture-induced degradation, and temperature-induced degrada-
tion [29]. All these mechanisms disrupt the internal structure of the material,
reducing overall efficiency and functionality. However, the parameters of defects
and their interplay with free-charge carriers remain unclear and that’s why we
are dealing with these perovskites.

In this work, we explore the dynamics of free holes and electrons in methylam-
monium lead tribromide single crystals using time-of-flight laser induced transient
current spectroscopy (ToF L-TCT). Combining with Monte Carlo simulation we
created models of the behaviour of a moving charge including mobility, the elec-
tric field inside the detector, and possible traps. The movement of weakly bound
methylammonium ions was suppressed by bipolar bias pulsation coupled with the
pulsation of light. The main aim of this work is to show the meaning of bipolar
pulsation instead of unipolar pulsation and to develop a theoretical description
of the measured current dependencies and so behaviour of free charge.

1.2 Laser-induced Transient Current Technique
There are so many methods to investigate the physical properties of radiation
detectors. For our purpose to evaluate detector behaviour such as carrier mobility,
electric field profile inside the detector, etc. we chose Time-of-Flight (ToF) type
measurement called Laser-induced Transient Current Technique (L-TCT). Let’s
introduce the method in detail.

The TCT current spectroscopy is in general based on analyzing a transient
current generated by charge carriers drifting through the sample under an applied
bias. Charge carriers can be created by many possibilities as high speed particles,
light or radioactive radiation. For our measurements, we chose laser light as the
source and therefore the naming L-TCT (Laser-induced TCT). Principle diagram
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is shown in figure 1.1. Due to the above-band-gap energy of light, light close to
the surface forms electron-hole pairs. Transient current is induced by drifting
electron-hole pairs created by light pulse. All drifting mechanism is possible
due to the electric field inside the detector created by applied bias on contacts.
Depending on the polarity of the applied bias, either the electron or the hole is
picked up by the contact and the other type of charge starts to drift through the
detector. Thanks to the Shockley-Ramo theorem, drifting carriers induce electric
current, which is measured by an oscilloscope. The shape of collected current
curves depends on factors such as applied bias, size of the detector, intensity of
light pulses and so on.

But also other drifting charge carriers, such as ions, can affect measured cur-
rent dependencies! Transient current is detectable until the drifting electrons and
holes are collected by the contacts or are trapped inside the detector.

Oscilloscope

C
ur

re
ntAmplifier

Time
Figure 1.1: Principle diagram of L-TCT.

1.3 Perovskites
The first perovskite structure material was the calcium titanium oxide mineral
CaTiO3, discovered by Gustav Rose in 1839, and named after the Russian no-
bleman and mineralogist Count Lev Alekseyevich von Perovski [1]. Few years
later, in 1926, Victor Goldschmidt firstly used perovskites as a general term for
the crystal structure group [2].

Perovskites involve a huge family of materials, usually described by general
chemical formula ABX3 [13]. 3D structured perovskite can be described by cu-
bic contractual formula of A+1B+2 (X−1)3 shown in figure 1.2, where each A (an
organic group or an inorganic cation) has twelve neighboring X (halide atoms),
and each B (a metal cation) connects with six adjacent X through ionic bounds
[14]. When a suitable organic molecule is choosen as the A cation (e.g. methy-
lammonium MA+: CH3NH+

3 or formamidinium FA+: CH (NH2)+
2 ), the resulting

material is an inorganic-organic hybrid metal halide perovskite (MHP). On the
other hand, if the A cation is an inorganic atom, such as cesium (Cs+), the
resulting compound is and inorganic MHP [14].

This work explores transport properties of only methylammonium lead tri-
bromide perovskites.
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Figure 1.2: Schematic representation of simple 3D structured
perovskite cell. Cubic contractual formula of A+1B+2 (X−1)3.
Retrieved from https://www.solarchoice.net.au/blog/news/
perovskites-the-next-solar-pv-revolution-240714/.
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2. Kinematics of Charge Carriers
in Detector
We will consider a one-dimensional approximation, so all spatial coordinates will
be derived in one axis only. But first, let’s start with general expressions.

2.1 Drift Mobility
Particles in the material generally move randomly. If they are surrounded by
other particles, collisions occur. It is assumed that after each scattering event
the carrier’s motion is randomized, so it has zero average velocity. Applying
voltage, after the collision, the particle accelerates in the electric field until the
next collision. The resulting average drift mobility can be expressed

µ = q

m∗ ⟨τ⟩ , (2.1)

where q is the elementary charge, m∗ is the carrier effective mass and ⟨τ⟩ is the
average scattering time. A particle’s effective mass is the mass that it seems to
have when responding to forces. At room temperature, the mobility is limited
mainly by collisions with crystal lattice vibrations (scattering on phonons).

2.2 Continuity Equation

2.2.1 General Form
When describing charge transport in semiconductors in the classical approxima-
tion we will use the continuity equation. The general continuity equation for
holes can be written as

∂p

∂t
= −1

q
∇ · jh + (Gh − Rh) , (2.2)

where p is concentration of holes, jh is the hole current density, e is the elementary
charge and Gh, Rh represents the hole generation and recombination. The hole
current density jh can be derived from the drift-diffusion equation with constant
temperature

jh = qpµhE − qDh∇p, (2.3)
where µh is the hole mobility, E is the electric field intensity and Dh is the hole
diffusion coefficient described by the Einstein relation

Dh = µh
kBT

e
, (2.4)

where kT is the Boltzmann constant and T is the absolute temperature.
For electrons situation is analogical. So we obtain the electron continuity

equation
∂n

∂t
= 1

q
∇ · je + (Ge − Re) (2.5)
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with the electron drift-diffusion equation

je = qnµeE + qDe∇n, (2.6)

where the subscript e indicates electrons and n means concentration of electrons.
The first part of drift-diffusion equations 2.3 and 2.6 indicates the drift motion
of particles and the second part describes diffusion current. For the total current
density j formed by electrons je and holes jh, we can write

j = je + jh. (2.7)

We assume constant temperature during the whole measurement process.

2.2.2 1D Form
Let’s rewrite the general form of hole continuity equation 2.2 into a one-dimensional
form

∂p

∂t
= −µh

∂p

∂x
E − µhp

∂E

∂x
+ Dh

∂2p

∂x2 + (Gh − Rh) , (2.8)

where we used form for current hole density equation 2.3. By analogy for electrons
we get

∂n

∂t
= µe

∂n

∂x
E + µen

∂E

∂x
+ De

∂2n

∂x2 + (Ge − Re) . (2.9)

Next, we must consider the relationship between the electric voltage and the
electric field. Voltage is defined as

U = −
∫︂ rB

rA

E · dl, (2.10)

where the electric field increases from point rA to some point rB and l is an
integration path.

2.3 Drift velocity
Let’s rewrite the drift part in the drift-diffusion equations (2.2) and (2.6) in
general form

je = enµeE = enve, (2.11)
where we introduced

ve = µeE (2.12)
the drift velocity of electrons. For holes, the situation is analogous.

2.4 Shockley-Ramo Theorem
If we have two infinite parallel electrodes at a distance L with a single electron
between them, then according to [30] a hole moving with velocity v on the plates
induces an instantaneous current

i (t) = ev (t)
L

, (2.13)
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where e is the elementary charge. From the basic additivity of electrostatic charge
based on Maxwell’s equations, we get from the equation (2.13) the value of the
instantaneous induced charge current Q between the electrodes

I (t) = Q (t) v (t)
L

, (2.14)

where we assume a charge moving with the same velocity v. Equation (2.14)
is a special case of the Shockley-Ramo theorem which we choose because of the
application to our model of the detector, which we define in the next section.

2.5 1D Detector Model Assumptions
For a simpler explanation of the observed phenomena, we will consider a rect-
angular detector with two planar contacts at distance L. The detector model is
shown in figure 2.1. Next, we assume the size of the electrodes is much larger
than the distance L. This assumption allows us to simplify spatial dimensions in
the equations above to only one spatial dimension perpendicular to the contacts.

From the symmetry of the rectangular detector, we can say that the homo-
geneous electric field will be located between the centers of the electrodes. The
laser spot with area S is small enough that the inhomogeneity of the electric field
near the edges can be neglected. This can only be said if the electrodes are of the
same size placed concentrically, which we further assume. Otherwise, the electric
field will be at an angle to the electrodes, causing further inaccuracies. That is
why we will illuminate the center of the contacts. In the experimental part of
this paper, we will confirm this phenomenon by experiment.

Figure 2.1: Left: General detector scheme with two metal electrodes painted
with gray color. Right: One-dimension model of the detector with concentric
contacts (gray color). Particles can move only along x-axis. The vertical axis of
the detector is only used to facilitate the visualization of many photo-generated
pairs. Electrons are represented by white circles and holes by black circles. The
light from the left entering the anode is shown by the purple curved arrow.

A bias U is applied to the electrodes by an external generator. Photons are
absorbed after hitting the detector. We use photons with energy greater than the
band gap of our perovskite samples so photons are absorbed close to the surface.
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The schematic is shown in figure 2.1. After the photon is absorbed, the electron-
hole pair (also e-h pair) is created which splits due to the applied voltage and the
individual free-charged carriers drift to the respective electrodes.

For generation e-h pairs we use a laser diode. We do not consider absorption
on metal contacts and due to the low light beam intensities, the reflectivity of
the contacts is also neglected. Free charge carriers moving through the detector
starts to induce an electric current given by the equation (2.14) we are measuring.
The characteristics of the measured current signal depend on the energy of the
incident photons, the absorption coefficient and the magnitude of the generated
charge, material dislocations, and more.

2.6 Optoelectronics Assumptions
From an optoelectronic point of view, we will assume that the drift mobility µ
is space and time-independent. We will choose the such intensity of illumination
that the photo-generated charge is small it does not affect the electric field created
from the external voltage source - so the plasma effect is negligible. Next, we also
assume that the applied electric field E is also time constant during the charge
carrier transit. That is why we choose a laser pulse delay larger than 100µs.
Below 100µs seconds, the RLC phenomena occur in the circuit. Throughout this
paper, we do not consider the mutual recombination of photogenerated electrons
and holes. The total current is equal to the sum of the currents the electrons and
from the holes, based on the charge additivity from Maxwell’s equations. We do
not consider the temperature change of the detector during the measurement.
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3. Charge Distribution and
Current Response
Now we turn to the actual theoretical description of the dependencies of the
induced current. We try to model different situations of photon absorption using
the charge density of the photogenerated charge, where by applying the Shockley-
Ramo theorem we obtain the desired induced current curves. We also take into
account different the finite lifetimes of the charge or different profiles of the electric
field in the detector. In the last subsection, we describe the effect of recombination
on the induced current during radiation absorption near the detector surface. Key
are the assumptions we made in the previous chapter.

We use a laser diode with a wavelength of 450 nm throughout the measure-
ment. Energy is larger than the MAPbBr3 band gap so in the theoretical calcu-
lations, we expect that all photons are absorbed near the surface and that each
photon generates an electron and a hole. According to the polarity, one particle
is picked up by the electrode and the other type of particle starts to migrate
through the detector to the other electrode. Drifting charge induces the current
we measure. In this section, we will theoretically calculate the different types of
the detector and how they affect the current responses.

3.1 Photon Flux
The photon flux is an important quantity in terms of determining the number of
photo-generated charges contributing to photo-conductivity. According to [31],
the photon flux is defined as

Φ = H
λ

hc
, (3.1)

where h is a Planck’s constant, c is the speed of light, λ is the wavelength of
the incident electromagnetic radiation and H is the area power density with unit[︂

W
m2

]︂
. The unit of the photon flux is

[︂
number of photons

m2s

]︂
.

3.2 Basic Drift
Let us first consider the simplest case, which is a constant charge density drifting
across the detector in a constant electric field with no space charge nor generation-
recombination processes. We start from the equation (2.8) that simplifies into
the form

∂p (x, t)
∂t

= −µh
∂p (x, t)

∂x
E = −v0

∂p (x, t)
∂x

, (3.2)

where the solution can written down with the initial charge distribution p0 (x) as

p (x, t) = p0 (x − v0t) . (3.3)

This expression tells us, that the initial charge cloud moves with the constant
velocity v0. Using our detector in the figure 2.1 in t = 0 photo-generated hole
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cloud is sharply localized under the anode x = 0 and

p0 (x) = N0δ (x) , (3.4)

where N0 is the initial number of free holes in the valence band (after surface
recombination) and δ is the Dirac delta function. After including the time we get

p (x, t) = N0δ (x − v0t) χ[0,L] (x) . (3.5)

Hole cloud center drifts from the anode (x = 0) to the cathode (x = L) with the
constant velocity v0. Let’s define transit time by

τtr = L

v0
= L

µhE
= L2

µhU
, (3.6)

with applied voltage U = EL. In other senses, we will mean by the term tran-
sit time the time when the center of the general hole bulk passed through the
detector.

Total charge from the concentration equation (3.5) is set

Q (t) = e
∫︂

p (x, t) dx (3.7)

with (3.5) we get
Q (t) = Q0χ[0, τtr] (t) , (3.8)

where Q0 = eN0 is the charge after the surface recombination (see section 3.7).
The box car function represents charge drift from the anode until the bulk reaches
the cathode. Applied the Shockley-Ramo theorem (2.14) on the previous equation
we get time dependence of the induced current

I (t) = Q0

τtr

χ[0, τtr] (t) = I0χ[0, τtr] (t) . (3.9)

This equation tells us that the current waveform of the rectangle with the
height of I = Q0

τtr
, see the figure 3.1. As can be seen, the charge cloud was

approximated by a Gaussian curve because the Dirac delta in equation (3.4) is
not physically possible in this case.
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Drift

Figure 3.1: Left Top: Scheme of the detector and the hole cloud drifting to-
wards the cathode with velocity v = µhE. Left Bottom: Hole concentration
represented by Gaussian approximation curve. Right: Normalized current WF
via Shockley-Ramo theorem.

3.3 Charge Trapping on Traps

The quality of semiconductor detectors is strongly influenced by the number of
locations (traps) where the moving charge can be caught. These traps reduce
the efficiency of charge collection in the detector. The trapped charge has a
higher probability of reverse thermal emission into the conduction (valence) band
than recombination with the opposite charge trapped by the same center [32].
Assuming a uniform distribution of capture centers throughout the detector, the
average time during which a charge is free before it is captured by a random
center can be defined as τT - trapping time. In contrast, let us define the average
time τD - detrapping time, during which the charge is trapped. Thus, according
to [33] we can defined

τT = 1
NT σcvvh

and τD = 1
NCσcvvh

exp
(︃

ET

kBT

)︃
, (3.10)

where NT density of detention centers, ET is their energy in the band structure,
NC denotes the effective density of states in the valence band, σc is the effective
capture cross-section charge carriers, vvh is the thermal velocity of the free carri-
ers, T is the absolute temperature and kB is the Boltzmann constant. The effect
of traps on the current response shown in figure 3.2 can be divided into three
basic cases.

In the first case, where the trapping time is much larger than the transit time
τT ≫ τtr, the traps do not affect the charge carriers and therefore the current
response of the charge generated at the detector surface is given by (3.9) remains
unchanged (fig. 3.2a).
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3.3.1 Deep Trap
When the trapping time is comparable to the transit time τT ≈ τtr and the
detrapping time is much longer than the transit time τD ≫ τtr and the trapping
time τD ≫ τT at the same time, trapping occurs but not the recoil release of
charge carriers during the transit time (fig. 3.2b). According to [33], the current
response can be described as follows

I (t) =
{︄

0 τtr < t
Q0
τtr

exp
(︂
− t

τT

)︂
0 ≤ t ≤ τtr

(3.11)

3.3.2 Shallow Trap
When the release time from the trap τD is also comparable to the time of
the charge passage (τT ≤ τtr, τD ≤ τtr), transit time is not unambiguously de-
terminable! For time t > τtr some holes can be collected on the detector cathode.
Analytical solution of the system of differential equations describing the shallow
trap does not exist [34] and therefore Monte Carlo simulation must be used for
current waveform analysis. For this reason, the drift mobility (2.1) must be re-
duced, which let’s call the effective drift mobility µeff . Consider the trapping time
τT when the hole is free to drift in the sample with the mobility µh and detrapping
time τD when the hole is trapped and cannot drift. So we get effective mobility

µeff = µh
τT

τT + τD

, (3.12)

where the transit time is prolonged

τ ′
tr = τtr

τT + τD

τT

. (3.13)

Let us note that the mobility-lifetime product remains unchanged in this case, as
it is apparent from equation (3.12) and (3.13).

3.3.3 One Shallow and One Deep Trap Model Notation
Let’s define two types of traps. Shallow trap - the charge is captured and ther-
mally released in times smaller than the detector transit time. These times, let us
denote τT S and τDS, respectively. The trapping and release processes that occur
during the drift can be repeated arbitrarily. Deep trap - a trap with trapping time
τT D and thermal emission time τDD longer than the charge transit time through
the detector τtr, so back-release into the valence band is unlikely and will be ne-
glected in further calculations. A schematic of the charge capture and release on
the traps is shown in figure 3.2c.
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Figure 3.2: Possible shapes of the current response of the charge generated at
the detector surface obtained by the TOF method Top: without traps; Middle:
with a deep trap; Bottom: with the possibility of capture and release with times
τT , τD much smaller than the time τtr. Redrawn from [33].
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3.4 Electric Field
A fundamental problem with radiation detectors is the strong dependence of the
Charge Collection Efficiency (CCE) (see section 3.8) on the electrical field profile
inside the detector. The measured induced current according to (2.14) depends
on the magnitude of the charge moving between the electrodes and in the case
of material inhomogeneities or defects, only part of the photo-generated charge
may be used. The generation of a secondary electric field by the accumulation of
space charge acting against the original electric field results in the creation of a
space within the detector with reduced or zero electric fields where no charge can
move. This significantly degrades the detection properties of the used detectors.

So far we have considered a constant electric field along the entire length of
the detector. Now we derive the dependence of the induced current for situations
where we assume charge accumulation - polarization of the detector.

3.4.1 Constant Space Charge
Let us assume a constant charge density ρ (x) = ρ0 along the length of the
detector. We solve the electric field profile E (x) from the Gauss law∮︂

D · dS = Qin, (3.14)

where D = εrε0E is the electric displacement field, ε0 is the vacuum permittivity,
εr is the relative permittivity of the used material and Qin is the charge enclosed
by the integration surface S. Thus, consider the Gaussian surface formed by the
cuboid in our model in figure 3.3 bounded on the side by surfaces at distances
−b and b from the center of the detector. The intensity vector is parallel to the
cube shell and therefore the intensity flux through the shell is zero.

0

0

{ b)a)

c)

Figure 3.3: Gaussian surface (cuboid) is marked in our detector model. A rect-
angular cuboid is bounded on the side by the detector boundary. And inside the
detector, the boundaries are squares at distances −b and b from the center of
the detector. The areas have content S. The whole detector contains the charge
density ρ0.

On the other hand, the intensity vector has the same magnitude at all points
of the base and is perpendicular to it (and therefore parallel to the normal vector),
so we can simplify the scalar product (3.14)∮︂

E · ndS = 2SE (b) , (3.15)
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where b is a length parameter. By substituting into the equation (3.14) and
considering the right side Qin = 2bSρ0, we get

Eρ (b) = b
ρ0

ε0εr

. (3.16)

Applied to our x coordinates model, figure 3.3b,c we finally obtain the dependence
of the electric field created by constant space charge

Eρ (x) = ρ0

ε0εr

(︃
x − L

2

)︃
= a

(︃
x − L

2

)︃
, (3.17)

where we have marked slope a = ρ0
ε0εr

.

3.4.2 Linear Electric Field
From electrostatic additivity, the resulting electric field inside the detector must
consist of the charge density electric field Eρ and the electric field generated by
the external source Eext and since we have an electric field only in the direction
of the detector length we can write non-vector

E = Eext + Eρ, (3.18)

so
E = E0 + a

(︃
x − L

2

)︃
(3.19)

where we used bias voltage E0 = U
L

. Figure 3.4 shows the basic possibilities of the
electric field as a function of the space charge density ρ0. When no space charge
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Figure 3.4: Electric field profiles

is present we get a constant electric field only created by the external source
(red line). Initial constant space charge in the detector cannot be sustained
without applied bias (U = 0) at equilibrium and is neutralized [33]. Further, the
greater the space charge the greater the tilt of the initially constant electric field
depending on the applied voltage (blue and green curves). There may also be
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a situation when the electric field of the space charge becomes greater than the
electric field of the external source - dead layer is created. The inactive layer is
a region inside the detector where the electric field is almost zero (required from
the continuity equation). The dead layer coordinate of zero electric fields from
figure 3.4 starts at

D (ρ0) = L

2 − E0

a
. (3.20)

The space charge in the dead layer is filled with the free charge so the equation
(3.18) transforms to

E (x) = max
(︃

0, E0 + a
(︃

x − L

2

)︃)︃
. (3.21)

The current WFs we derive from the general kinetic differential equation

v (t) = ẋ (t) = µhE (x (t)) . (3.22)

Reached
ẋ (t) = µh

(︃
E0 + a

(︃
x − L

2

)︃)︃
. (3.23)

By integral separation with boundary condition x (0) = 0 we get solution

x (t) =
(︃

E0 − La

2

)︃
eaµt

a
− E0

a
+ L

2 , (3.24)

where a = ρ0
ε0εr

. Velocity is obtained by time derivative

dx

dt
= v (t) = µ

(︃
E0 − La

2

)︃
eaµt. (3.25)

So finally, time dependence of the hole current waveforms is

I (t) = Q (t) v (t)
L

= Q0

L
µ
(︃

E0 − La

2

)︃
eaµt, (3.26)

where we didn’t anticipate any trapping so total drifting charge has constant
value Q (t) = Q0. Transit time is simply derived from equation (3.24) (x (t) = 0)

τtr (a) = 1
µa

ln
(︃2E0 + aL

2E0 − aL

)︃
= 1

µa
ln
(︄

1 + a
A

1 − a
A

)︄
, (3.27)

where A = 2U
L2 is the slope of the electric field for which the inactive layer starts

to form. All electric field options and their current responses are shown in figure
3.5. It is interesting to note the extreme case for a = A where the transit time is
at infinity and the current waveform is just a decreasing exponential.
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Figure 3.5: Left: Electric field depending on slope a. Right: Normalized current
waveforms.

3.5 Leading Edges
What happens when the whole delta charge cloud starts drifting at almost the
same time, we have already presented in Chapter 3.2. The initial bulk can be
modelled by the Dirac delta function δ. We now look at other more realistic lead-
ing edges of current waveforms. All the following examples consider a constant
electric field at the beginning of the detector.

3.5.1 Constant Charge
We first derive the case where the photogenerated charge enters the detector in
the same amount, so the amount of charge entering the detector is

dQ

dt
= Q0

t0
= konst., (3.28)

where t0 is the time when the last standing charge began to drift. By integration,
we get the time dependence of the amount of drifting charge on time

Q (t) = t

t0
Q0. (3.29)

The dependence is valid only for 0 ≤ t ≤ t0. Then all the charge drifts through
the detector. The situation for the constant bulk is shown in figure 3.6. The
induced current is simply linear.

3.5.2 Gaussian Charge
Another more realistic case is the gaussian-shaped bulk (delta bulk approxima-
tion). So let’s have a normalized Gaussian cloud

dQ

dt
= Q0√

π
e−t2 (3.30)

where after integration we get the dependence of the amount of drifting charge
on time

Q (t) = Q0

2 erf (t) . (3.31)

erf (t) is the error function. Both charge and current dependencies are plotted in
figure 3.7.
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Figure 3.6: Left: Time dependence of the amount of charge entering the detector
volume. Right: Current response dependencies for constant charge.
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Figure 3.7: Left: Time dependence of the amount of charge entering the detector
volume. Right: Current response dependencies for gaussian charge.

3.5.3 Triangle Charge
Let’s choose a triangular edge as the next leading edge. The triangle function is
defined as

dQ

dt
= tri (t) =

{︄
Q0 (1 − |t|) , |t| < 1;

0 otherwise. (3.32)

and its time dependence on the amount of drifting charge

Q (t) = −t |t| − 2t − 1
2 Q0. (3.33)

Both, the charge and its current dependencies are shown in figure 3.8.
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Figure 3.8: Left: Time dependence of the amount of charge entering the detector
volume. Right: Current response dependencies for triangle charge. The grey
curve is a current response for Gaussian charge from figure 3.7.

3.5.4 Log-normal Charge
And last we calculate the current response of the basic log-normal distribution

dQ

dt
= Q0

t
√

π
e− ln2 t. (3.34)

By integration we again obtain the time dependence of the amount of drifting
charge through the detector

Q (t) = erf (ln (x))
2 Q0. (3.35)

The waveforms of both charge and induced current are shown in figure 3.9.
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Figure 3.9: Left: Time dependence of the amount of charge entering the detector
volume. Right: Current response dependencies for log-normal charge. The grey
curves are the current response from figure 3.7 and 3.8.
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3.6 Diffusion
Until now, we’ve neglected the diffusion coefficient D in drift-diffusion equations.
So let’s consider non-zero hole diffusion Dh ̸= 0 and again neglect generation-
combination processes GR = 0 with a constant electric field ∂E

∂x
= 0. 1D form of

holes equation (2.8) gives us

∂p

∂t
= −µhE

∂p

∂x
+ Dh

∂2p

∂x2 . (3.36)

This equation is a special case of the Einstein-Kolmogorov equation for Brownian
motion with constant diffusion coefficient and drift velocity [35]. Applied to the
basic constant electric field drifting charge from the section 3.2 we get [36]

I (t) = Q0

τtr

Θ (t) 1√
4πDht

∫︂ L

0
exp

(︄
−(x − vht)2

4Dht

)︄
dx. (3.37)

The diffusion process is shown in figure 3.10. Photons create a hole cloud that
moves towards the opposite negative electrode with the velocity v0 = µhE. Dur-
ing movement, the cloud starts to expand both into and against the direction
of movement, but the centre remains the same and is not affected by the diffu-
sion. As shown in the theoretical model the hole cloud expands in the shape of a
gaussian (left plot). Diffusion smears the transient edge (right plot).

1

1

00

No Diffusion
Diffusion

Drift

Figure 3.10: Left: Evolution of the hole cloud concentration p (x, t). Right:
Normalized current WFs of the detector with (orange curve) or without (green
curve) the diffusion.
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3.7 Surface Recombination
After the beam hits the semiconductor detector and creates e-h pairs close to
the surface at a depth much shorter than the length of the detector, surface
recombination (SR) can occur. Consider a detector like the one in the picture
3.11 with a length of L. The surface recombination is characterized by the surface
recombination velocity s, which defines the probability pbulk of charge entering
from the surface layer to the bulk [37]. Based on the formula

pbulk

1 − pbulk
= v

s
, (3.38)

where v is the charge drift velocity. By expressing pbulk

pbulk = 1
1 + s

v

(3.39)

and substituting v = µE = µU
L

considering constant electric field we get

pbulk = 1
1 + sL

Uµ

. (3.40)

Figure 3.11: Schematic of surface recombination in a detector with bulk and
surface layer. Photogenerated charge Q00 partially recombine and rest charge Q0
enters the bulk. Holes are black positive and electrons are white negative dots.
Photons are marked with purple curved arrows.

Amount of the photo-generated charge Q00 will partially recombine to the
amount of Q0, so (3.38) can be finally rewritten as

Q0 = Q00
1

1 + sL
µU

. (3.41)

So in all the current waveforms, we have already derived, we calculated the charge
after the surface recombination Q0. The effect of surface recombination on current
waveforms can be seen in figure 3.12. When we normalize the curves without
surface recombination by the applied voltage (Fig.3.12 Bottom plots), we get
overlapping curves (Fig.3.12 Left Bottom). On the other hand, surface voltage
causes a slight current drop, so the bias normalized current WFs start to have a
slight shift (Fig.3.12 Right Bottom).
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Figure 3.12: U is the applied bias. Left Top: Current WFs for the detec-
tor without surface recombination. Right Top: Current WFs for the detector
with surface recombination. Left Bottom: Biased current WFs for the detector
without surface recombination. Right Bottom: Biased current WFs for the
detector with surface recombination.

3.8 Charge Collection Efficiency
One of the most important parameters evaluating radiation detector quality is
called Charge collection efficiency (CCE) and is defined as a fraction of the col-
lected charge to the generated charge. As a simple example of a deep trap, we
can derive [38] from the Hecht equation

CCE = τT

τtr

[︃
1 − exp

(︃
−τtr

τT

)︃]︃
, (3.42)

where τT is trapping time and τtr is transit time. Including surface recombination,
we get [39]

CCE = τT

τtr

1
1 + s

v

[︃
1 − exp

(︃
−τtr

τT

)︃]︃
, (3.43)

where s is the surface recombination velocity and v is the charge drift velocity.
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4. Experiment

4.1 Bipolar and Continuous DC Regime L-TCT

L-TCT can be divided into two modes according to the time course of the applied
bias - Continuous DC and Bipolar DC. In the first case, a continuous DC bias
is applied to the detector, which is not related to the time course of the detector
illumination. The incident electromagnetic radiation generates a photo-charge
which, during its migration to the appropriate electrode may be trapped in various
locations in the detector. The internal electric field generated by the external
source is modified by the continuously accumulating charge. We are talking about
the polarization of the detector. Polarization can also be caused by impurities or
non-ideal crystal structures.

In contrast, the bipolar DC mode consists of a time-varying DC bias that is
time-locked to the laser pulse according to the diagram in figure 4.1. The pulsing
scheme is defined by the pulse period T , the width of the first bias pulse T+,
the width of the second opposite polarity bias pulse T− and the laser pulse delay
LPD after the first bias pulse is turned on. And of course the magnitude of the
bias pulses U+ and U−. A suitable choice of these parameters can achieve a mea-
surement configuration where the above-mentioned polarization of the detector
is suppressed.

Our main aim is to describe the behaviour of photo-generated carriers (elec-
tron - hole pairs) where other disruptive elements could be ideally neglected. We
think of perovskite ions [29]. If only DC bias is applied charged ions start to drift
through the bulk to the oppositely charged electrodes and so the disruption of
the internal electric field is possible. So that is why the bipolar regime is used,
to prevent from the drift of charge (ions) at electrodes. Bipolar bias should hold
the centre of drifting ions at the same place. The schema of the bias and laser
pulses is shown in figure 4.1.

a.
u.

Time

Period

Depolarization Time

Voltage PulseLaser 
Pulse

Figure 4.1: Schema of the bias and laser pulses for the bipolar L-TCT.
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4.2 Aparatus
Our apparatus, shown in figure 4.3, consists of three types of components. Elec-
tric devices are marked with blue rectangles, optical components are shown by
pictograms and the perovskite detector with shielding is visualized by schematic
picture.

The heart component of our L-TCT setup is an arbitrary voltage function
generator Tektronix AFG31000. We generate time-dependent arbitrary voltage
waveforms according to the scheme in figure 4.1. Generated voltage pulse enters
WMA-300 Falco Systems High speed high voltage amplifier with 50x amplification
and continues straight on the perovskite detector. The second voltage output from
the arbitrary generator is connected to the pulse generator Picosecond Pulse Labs
model 10.070A which triggers the laser diode.

Detector photo-current response is so weak it has to be amplified by current
amplifier. We use a custom-made 730x amplifier. Distortion cause by amplifier is
shown in figure 4.2. The signal amplifier is directly connected to the oscilloscope
LeCroy WaveRunner 6Zi. There is also a trigger connection from the picosecond
generator to the oscilloscope for the purpose to synchronize all pulsing electronics
parts.

- 2 0 2 4 6 8 1 0 1 2 1 4 1 6
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

Bia
s (

mV
)

T i m e  ( µs )

 G e n e r a t e d
 A m p l i f i e d

x 7 2 5

Figure 4.2: 6µs 1V rectangular bias pulse from arbitrary voltage generator Tek-
tronix AFG31000 amplified by custom-made 730x amplifier both directly mea-
sured with oscilloscope. The amplifier clearly smooths the edges.

PC-controlled shutter is used to block laser pulses for measurement of the
background (dark) current which is then subtracted from shutter-opened mea-
surement. So we get clear photo-current waveforms without background distor-
tion.

And to be consistent in the collected charge for every single sample measure-
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ment we use a neutral density (ND) filter to attenuate laser diode intensity. The
filter is provided with scale.

The laser beam 1 µs pulses are focused at the centre of the detector forming
approximately 1 mm2 spot. As an above band-gap light source we use laser diode
with wavelength α = 450 nm. A laser diode is triggered by a picosecond generator
with a possible repetition rate 1 Hz − 100 kHz. Laser pulse delay after the rise of
voltage pulse can be set to avoid the formation of space charge inside the detector.

The oscilloscope, arbitrary voltage function generator and shutter are con-
trolled by a computer which allows us to automate the whole measuring process.

Pulse
Generator
Picosecond 

Pulse

LeCroy
WaveRunner 6Zi

Oscilloscope

PC

Cooper Shielding

Feromagnetic Shielding
D

et
ec

to
r

Data Acquisition
Pulse Trigger

Pulse Trigger

450 nm

Shutter

Laser
Pulses

ND
Filter

1x
50x

10nF

Signal

Voltage
Generator

Current
Amplifier

Tektronix
AFG31000

Voltage Amplifier
WMA300 Falco Systems

Figure 4.3: Schema of our L-TCT setup.

4.3 Current Waveform
The pulsing scheme shown in figure 4.1 is highly idealized. In real equipment, due
to the steep leading edge of the applied voltage pulse, relaxation to the required
values occurs only after a certain time due to RLC phenomena in the electrical
circuit. All time parameters selected T, T+, T−, LPD, are deliberately chosen
to respect the condition of a non-polarized detector and at the same time to come
as close as possible to the idealization of pulsation according to the scheme in
figure 4.1.

To clarify the choice of pulsing parameters, we measured the time course of
the current in the detector, as well as the triggering and voltage pulse, using an
oscilloscope. The trigger pulse is directly connected to the oscilloscope. Figure
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4.4 shows all the signals on one timeline. After switching on the voltage it is
necessary to wait for at least 80µs for the voltage to reach the desired value. The
incoming light pulse generating a photo-charge will affect the conductivity of the
semiconductor detector. This change is reflected by a voltage deviation from the
dark voltage. By subtracting the voltage response from the background voltage
we get the time dependence of the voltage induced by the photo-generated charge.
The current values are obtained by recalculating the voltage using the amplifier
resistance and the input resistance of the oscilloscope. The current induced by
electrons or holes takes different signs depending on the inducing charge and the
polarity of the applied voltage.

Let’s have a convention, that will display the main part of the subtracted
current response from the current RLC background to positive values. The time
dependence of the measured current after subtraction background current without
a light pulse, applying the convention just mentioned we will call the current
waveform (WF for short).
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Figure 4.4: Top: Trigger pulse, the voltage pulse of the external voltage source
and the current between detector contacts. Bottom: Detail of the upper image
in the interval from −10 µs to 20 µs. Arbitrary current units. Our waveform is
obtained by subtracting Current Response and Dark Current.
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4.4 Monte Carlo Simulation
The theoretical calculation of current responses based on the current continuity
equation is analytically solvable only for a detector containing a single trap [34].
The derived current dependence relations in the previous chapter do not include
the possibility of backward release of the trapped charge - shallow traps. There-
fore, in the interpretation of the measured data, we use a Monte Carlo numerical
simulation (abbr. MC), where this phenomenon can be included [34, 40]. The
method used works with a two-level detector model of one shallow and one deep
trap. The detailed mechanism of the method used can be found in the thesis [36]
of J. Pipek.
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4.5 Samples

4.5.1 Technical Overview
We use two methylammonium lead tribromide samples. Detectors are prepared
at a research institute for electronics and information technologies CEA-Leti and
at Université Grenoble Alpes. Both institutions are located in Grenoble, France.
Samples were already equipped with chromium contacts. We glued the samples to
the printed circuit board with a non-conductive adhesive and applied a contact
wire glued with graphite conductive paste to the corner of the contacts. All
technical details are summarized in table 4.1. The real sample is a view in the
figure 4.5.

Front View Top View 

Figure 4.5: RX30 sample (orange colour) glued to a printed circuit board (yellow
dark colour) with contacts (gold reflective colour).

Table 4.1: Summary of our samples. The contact column tells us the contact
material and the thickness of the contacts on the front and back side.

Name Material Size Contacts Made by
RX23 MAPbBr3 5 × 4.5 × 0.69 mm Cr 30/100nm CEA-Leti and

Uni GrenobleRX30 MAPbBr3 5 × 5 × 0.9 mm Cr 30/100nm

4.5.2 Spacial Homogeneity
We want to be sure that the measurement results are independent of the light
beam position on the detector so the samples are homogeneous. We divided the
detector into five equally distributed sections according to the diagram shown in
figure 4.6. We shine only on the contact because outside of it we are predicting
an inhomogeneous electric field and indescribable phenomena caused by defects
from the sample preparation itself.

After a short repetitive measurement at each of the five points on the detector,
it was found that random phenomena occur at the edge of the chromium contact
(1-4 spots), which are negatively reflected in the current waveforms. The biggest
interference was measured at point number 3. We believe that this is caused by
the graphite leakage contact, which is located in this corner. So, to correctly
interpret the measured results later, all measurements will be taken at point
number 5, i.e. in the centre of the detector. We assume that the electric field
inhomogeneities are minimal to negligible in the centre.
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Figure 4.6: Positions (1-5) on RX30 detector for homogeneity measurement.

4.6 Measurement Repeatability
We use one setup for all measurements. So the primary question should be, are
collected data comparable even though samples were alternated in apparatus? To
test this premise we took one of our samples and measured three consecutive data
with the same pulsing parameters. The first measurement was initial. Second,
we took out and immediately returned the sample to the apparatus with a reset
of the neutral density filter. And third, we re-calibrated the position of the laser
beam on the sample. We obtained the same results within the noise for all three
adjustments! Current waveforms are shown in figure 4.7. So we can achieve
repeatable measurements.

4.7 Current-Voltage Characteristic
A current-voltage characteristic or I-V curve is a relationship between the elec-
tric current through a material and the corresponding voltage across it. Due to
searching for voltage dependencies, we must take into consideration I-V charac-
teristics. Mainly identify the type of potential hysteresis, so we could include
them info experimental results and discussion. We operate from 0V to 150V.
According to measurement we often move in this voltage interval up and down
so knowing I-V dependencies is crucial for data explanation. For measuring I-V
characteristics we use in-house-made apparatus. We measured I-V characteristics
for all our samples from table 4.1. Voltage started from 0V to 150V and imme-
diately continued back to 0V where rested for 1 hour. Then was applied same
process but to negative voltages.
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Figure 4.7: Raw data for measurement repeatability.

Figure 4.8: Current-voltage characteristic.
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I-V dependencies are shown in figure 4.8. Luckily samples RX23 and RX30,
supporting pillars of this work, mainly show linear behaviour in both voltage
directions. It is obvious that sample RX23 is 1.2 times more conductive than
RX30.
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5. L-TCT Results and Discussion
This chapter summarizes and analyzes the measurements performed on the RX30
and RX23 samples presented in the previous chapter. We have used the method-
ology of transient currents induced by a laser diode of above-band-gap wavelength
450 nm according to the scheme shown in figure 4.3. After the light beam hits
the surface of the detector, an electron-hole pair is generated under illuminated
electrode. Due to applied bias electrons are immediately picked up by the anode
contact and the holes, on the other hand, begin to drift towards the cathode. The
drifting holes, according to the Shockley-Ramo theorem, induce a current, which
we measure with an oscilloscope. The shape of measured current waveforms is
mainly dependent on the pulsing parameters and the measurement history. By
changing these variables our main goal is to describe the transport properties
of MAPbBr3 perovskites and to determine its basic transport properties such as
drift mobility of charge carriers and their lifetimes.

The first step is to find the bipolar pulsing parameters (see scheme 4.1) with
which the sample does not polarize during the measurement. In previous work
[41] dealing with transport properties of the cadmium-zinc telluride, we used
unipolar pulsing. Thus, the applied voltage to the sample reached only one
polarity. This was only possible because of the absence of weakly bound ions
in the CdZnTe material (we consider an ideal sample without mobile defects
and impurities). The internal crystal structure and charge distribution remained
identical - there was no polarization of the sample. However, the situation is
different for MAPbBr3 perovskites. When a unipolar voltage is applied to the
sample, a slow drift of ions or impurities to the electrode of the appropriate
polarity occurs. Physically moving ions can disrupt the perovskite structure and
thus reduce the potential efficiency of the detector. To avoid this instability,
we use bipolar voltage according to the scheme in figure 4.4. By pulsing both
consecutive polarities in one period, we expect to return the deflected ion with the
first polarity to its original position with the second polarity of the voltage pulse.
However, though ion migration is one of the causes of degradation of perovskite
devices, many of its aspects remain poorly understood [42].

5.1 First Attempt at Bipolar Pulsation

5.1.1 RX23
In the initial measurement, we wanted to confirm the basic thesis of bipolar
pulsation. That is, whether unipolar pulsation is sufficient for measurements
in the depolarized state. From the basic knowledge about perovskites obtained
from the manufacturer, we chose the following pulsation parameters for the initial
measurements U+ = 100 V, U− = −100 V, period T = 100 ms, bias pulse width
T+ = T− = 200 µs and laser pulse delay 100 µs. The sample was under bias with
these parameters for almost 9 hours and every 6 min we saved current waveform
(cWF).

The time evolution of the hole current waveforms is shown in Fig. 5.1. The
detector does not evolve during 8.5hours of measurement. The individual curves
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go over each other and the transient time is the same. We have three possible
models. First, during first 100µs of the period T a negative space charge forms
in whole detector. Constant space charge creates linear electric field 3.26 de-
fined with parameter a 3.17. From Monte Carlo simulation we get value of the
parameter a, hole drift mobility and diffusion constant

µh = 13.5 cm2 V−1 s−1 and a = 15 kV cm−1 and D = 0.7 cm2V−1s−1.

We consider an infinite hole lifetime. Diffusion coefficient is twice as large as it
should be according to the Einstein formula (2.4). The leading edge corresponds
to the Gaussian bulk 3.30.

Second model, detector contains deep traps, so drifting hole have finite life-
time. From MC simulation trapping time and hole drift mobility is

µh = 12 cm2 V−1 s−1 and τT D = 6 µs and D = 0.7 cm2V−1s−1.

In this model these pulsing parameters are sufficient to keep the RX23 detector
in a state where no space charge is generated or space charge is generated but
the depolarization time is sufficient to discharge it. This means that at the
beginning of each period T the detector is in the same state. The depolarizing
time (Tdepol = T − T+ − T−) is long enough to depolarize the detector if needed.
The ration of non-zero bias width to depolarization time is

κ = T+ + T−

Tdepol
= T+ + T−

T − (T+ + T−)
.= 0.4%. (5.1)

Comparing model with space charge and deep traps, space charge increases
the transit time (3.27) which is offset by the increased mobility and so we got the
same transit time for both simulations!

And third model, the contacts would not be concentric, or each contact would
have a different dimension. We compared the contacts and saw no spatial differ-
ences. And that’s why we’re not developing this model further.

Furthermore, we wanted to confirm our assumption that in case of insufficient
depolarization time the detector starts to evolve. So we took the same pulsing
parameters and changed bias pulse width to T+ = 500 µs = T−. Bias was applied
to the sample for over 1 hour and 20 minutes. We saved cWF every minute. The
time evolution of the hole cWF is shown in Fig. 5.2. Dashed lines represent Monte
Carlo simulation. Transit time is getting longer, so we choose a model with an
space charge, which according to 3.27 prolongs the transit time. The electric field
in the detector obtained from the Monte Carlo simulation is shown in the inset.
The sample starts to develop from the initial state (purple colour curve) as we
found out in Fig. 5.1. Main current plato decreases and transit time increases.
Under contacts arises an electric field. This is due to the increasing space charge
under the anode and cathode as well. The sample does not tend to return to its
original state (purple curve) - the sample becomes polarized. Depolarization time
(Tdepol = T − T+ − T−) is not sufficient to depolarize the detector. A memory
effect is created.1

1A measurement that is affected by the state of the previous measurement.
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Figure 5.1: RX23 Sample. Time evolution of the hole current waveforms for
pulsing parameters T = 100 ms, LPD = 100 µs, U+ = 100 V, U- = -100 V,
T+,T- = 200 µs.
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Figure 5.2: RX23 Sample. Time evolution of the hole current waveforms for
pulsing parameters T = 100 ms, LPD = 100 µs, U+ = 100 V, U-= -100 V,
T+,T- = 500 µs. Inset: Electric field obtained from MC simulation.
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The slope of the central part of the cWFs slightly increases with time. We
have same two models. First, the trapping time should increases with time or
second, that the space charge along the length of the detector should decreases.
The rising and falling edges begin to rise with time above the cWF level. This
means that another space charge begins to build up under the anode and cathode.
We used non-linear electric field in the Monte Carlo simulation shown in inset of
figure 5.2 in form of two exponentials

E (x) = E0 + ae− x
LG + be

x−L
LM , (5.2)

where M, G are new parameters indicating the exponential slope, and a, b are
parameters of the magnitude of the electric field under anode and cathode. E0
is calculated from bias (2.10), where we know bias. If we fix trapping time to
τT D = 4.5 µs we get following parameters from MC simulation. Drift mobility
decrease with time

µh = 12.5 cm2V−1s−1 → 8 cm2V−1s−1. (5.3)

For the last three measured times, exponential electric field under anode increase
from

a = 3 kVcm−1 → 10 kVcm−1 → 20 kVcm−1. (5.4)
Electric field under cathode gained from MC simulation

b = 2 kVcm−1 → 3 kVcm−1 → 0 kVcm−1. (5.5)

The last zero value is due to small measured currents and large current error.
Within the measurement noise error, the cWF can be modeled with different

electric field profiles. We took the current yellow curve for 58 minutes from the
figure 5.2 and simulated it with a linear electric field and two different exponential
electric fields, see figure 5.3. Despite the fact that we have different electric field
profiles, we can see that all the cWFs are almost the same. They have the same
transit time. And the leading and trailing edges have the same progress. The
double magnitude of the exponential electric fields relative to the linear electric
field at the edges is compensated by a smaller electric field in the sample volume
to maintain the same bias (2.10). A spatial charge is needed here, otherwise
the cWF would look like figure 5.4. The transit time would be significantly
reduced and the overall shape of the current waveform would also be reduced.
Exponential electric field can be easily approximated by linear electric field for
which we already developed the theory in section 3.4.2.
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Figure 5.3: Monte Carlo simulation of yellow curve from figure 5.2 for different
electric field profiles. Black is linear, red and green are exponential with different
slope. This shows that different electric field shapes give the same cWF within
our measurement error. All other parameters stay constant.

0
2
4
6
8

1 0
1 2

0 2 4 6 8
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Cu
rre

nt 
(nA

)

T i m e  ( µs )

0 L

Ele
ctr

ic f
ield

 (k
V/c

m)

L e n g t h  ( N o r m a l i z e d )

c a t h o d ea n o d e

Figure 5.4: Monte Carlo simulation of yellow curve from figure 5.2 for different
electric field profiles from the inset. Comparing situation with or without electric
field under cathode. All other parameters stay constant.
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5.1.2 RX30
Even if we have samples of the same material and manufacture, they have different
measurement histories, so the relaxed state may be different. We selected the
same pulsing parameters as for the RX23 sample, so bias U+ = 100 V, U− =
−100 V, period T = 100 ms, bias pulse width T+ = 200 µs, T− = 200 µs and
laser pulse delay LPD = 150 µs (we will continue to follow the labeling in this
paper according to the scheme in figure 4.1) The sample was under bias with
these parameters for 2.75 h and every 7.5 min we saved cWF. The resulting
hole cWFs are shown in figure 5.5. cWFs resemble a rectangular profile for the

0 2 4 6 8 1 0

0

2 0

4 0

6 0

8 0

Cu
rre

nt 
(nA

)

T i m e  ( µs )

 5  m i n
 2 0  m i n
 4 0  m i n
 1  h  1 0  m i n

Figure 5.5: RX30 Sample. Time evolution of the hole current waveforms for fixed
parametres LPD = 150 µs, U+ = 100 V, U- = -100 V, T+,T- = 200 µs, T = 100
ms.

entire measurement period. The maximum value of the leading and trailing edge
currents are almost identical, thus the hole cloud drifts through the sample almost
unchanged and the (3.6) formula can be used to determine the hole drift mobility

µh = (13 ± 3) cm2V−1s−1. (5.6)

Transit time is determined by the time difference between the half of the max-
imum of the leading and the trailing edges. The average value of the current
plateau between the edges of each cWF has a decreasing tendency. This is sur-
face recombination - some of the photo-generated holes recombine before the drift
begins (see chapter 3.7). The holes may recombine at the contact/sample inter-
face or on defects from sample preparation. The precise mechanism of surface
recombination has not yet been explained. If we consider traps, the lifetimes of
the charge carriers are orders of magnitude larger than the measurement time.
Thus, trapping levels cannot be detected at these pulsation parameters. We get a
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combination of pulsation parameters for which the detector remains depolarized
and does not evolve further, except for surface recombination, which will also
stabilize.

We chose LPD = 150 µs to see if the sample evolves during the first polarity
T+. The rectangular cWF profile from this measurement can be described by
theory from chapter 3.2 and thus no evolution occurs in this configuration. And
therefore the current waveforms should be the same for LPD = 100 µs. And
indeed, when we change2 the laser pulse delay to LPD = 100 µs we get the
same current waveforms as in the graph in figure 5.5, i.e. current cWFs with
random noise between the leading and trailing edges that follows the rectangle.
Transit time is the same - approx. 6 µs. The collected charge (time integral) of
every cWF we measured is shown in figure 5.6, where the moving average is also
marked. Time interval with surface recombination is visualized with arrows. The
stabilization happens during the first 50 mins a since then, the sample is stable.
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Figure 5.6: Sample RX30. Collected charge of the hole current waveforms. One
blue dot represents one current WF. The blue line represents smoothed moving
average. Parallel red lines represent the upper and lower limit of the blue line on
time intervals starting at the first hour of the measurement. The black line and
arrows indicate the time interval, where the surface recombination is noticeable.

2Because of the non-negligible RLC effects at LPD < 80µs, we choose mostly LPD > 80µs.
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5.2 Bias Dependence

5.2.1 RX23 Sample
After finding the bipolar pulsation parameters preserving the detector in the
depolarized state, we measured the bias dependence on the RX23 sample with
the pulsing parameters LPD = 100 µs, T = 100 ms and T+ = 200 µs = T−.
The bias dependence of the hole current waveforms of the R23 sample is shown
in figure 5.7. Monte Carlo simulated waveforms are marked with a black dashed
line. Bias normalized cWFs are shown in figure 5.8.

For the Monte Carlo simulation, there is again an ambiguity between the
electric field inside the detector and the finite lifetime of the drifting charge. The
current waveforms have a different slope. If we consider the space charge along
the whole length of the detector, we would get an interval for the coefficient of
the space charge (3.17)

a = −2.5 kV/cm → −9 kV/cm. (5.7)

So the magnitude of the space charge depends on the bias a (U). On the other
hand if we consider the finite lifetime, we get the trapping time

τT D = 5.5 µs → 14 µs. (5.8)
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Figure 5.7: RX23 Sample. Pulsed bias dependence of the hole current waveforms
with pulsing parameters LPD = 100 µs, T = 100 ms, T+,T- = 200µs. The black
dashed line represent the Monte Carlo simulation.
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For both Monte Carlo models we get the same hole mobility

µh = (12 ± 2) cm2 V−1 s−1 (5.9)

which is equivalent to the hole mobility of the RX30 sample. Diffusion constant
for biases 70 V correspond with Einstein relation (2.4). For smaller biases is
possible, that trapping time starts to combine with diffusion, because trailing
edges get smaller quicker than says Einstein diffusion relation (2.4). The bias-
normalized current waveforms from figure 5.7 are shown in figure 5.8. The bias-
normalized hole waveforms start from the same point, therefore the same amount
of the photo-generated charge will always begin to drift regardless of the bias
difference, so surface recombination is not present.

After 3 µs they part ways. The slope is slightly different. If it were only life
time, the curves would overlap, but they diverge slightly. Break occurs halfway
through each cWF. This fact suggests that it is a spatial issue associated with
the detector. The percentage loss of charge during drift is almost the same.
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Figure 5.8: RX23 Sample. Bias-normalized pulsed bias dependence of the hole
current waveforms from figure 5.7. The current of each cWf was divided by its
bias.
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5.2.2 RX30 Sample
After finding the bipolar pulsation parameters preserving the detector in the
depolarized state, we measured the bias dependence with period T = 100 ms,
bias pulse width T+ = 200 µs = T− and laser pulse delay LPD = 100 µs.
Unfortunately, a fundamental mistake has been made. We accidentally applied
DC bias to the sample instead of bipolar pulsed DC bias! Due to the lack of
time, despite this error, we continued the measurement, but with the correct
pulsation parameters. The more interesting result we got. So the bias dependence
of hole current WFs is shown in figure 5.9. Black dashed lines represent the
MC simulation. The electric field profiles obtained by MC simulation are shown
in the inset of figure 5.9. One can notice from the left part of the sample an
increasing area of the generally linear electric field. Where the part of the linear
field is shortest for the largest bias 150 V. Otherwise, for the smallest bias, the
linear electric field reaches a quarter of the sample. To maintain the bias on the
electrodes according to formula (2.10), the residual electric field - the constant
part, must decrease with the increasing part of the non-constant electric field,
which the inset of the figure 5.9 confirms. This effect is reflected in the slope of
the current WF following the leading edge. In parts of the constant electric field,
the current WFs are constant. Thus, we estimate the lower limit of the lifetime of
the holes to be τh ≫ 60 µs (from transit time of the 10V waveform). For voltages
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Figure 5.9: RX30 Sample. Pulsed bias dependence of the hole current waveforms
with pulsing parameters LPD = 100 µs, T = 100 ms, T+,T- = 200µs. Black
dashed lines represent the fit by Monte Carlo simulation. Inset: Electric field
profile obtained by MC simulation.

higher than 90 V we see a sudden increase in the current before the falling edge.
A space charge was created under the cathode due to a briefly applied DC voltage
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and disappeared during the measurement. This is why we no longer see it for
voltages of 90 V and smaller. We measured from 150 V to 10 V.

The bias-normalization of the hole current waveforms Fig. 5.9 are shown in
Fig. 5.10. All current WFs after leading-edge start to decrease from the same
value of normalized current. Thus, it is clear that surface recombination cannot
be considered, because the same amount of holes starts drifting. But this is
inconsistent with the measurement in the figure 5.5 where we measured surface
recombination. It is possible that the gradual loss of current is hidden in a large
measurement error. In MC simulation we defined one deep trap with the following
parameters

τT D = 5 × 10−5 s. (5.10)
Einstein diffusion relation (2.4) is valid within the measurement error only for
biases greater than 110V. For lower voltages, a layer may form under the contacts
with a much lower lifetime than in the rest of the detector or a space charge may
form. Below contacts could be a deep trap region that scales with bias. Both
phenomena, or a combination of both, cause exponential drops at the beginning
and end of the cWFs. We are unable to distinguish these phenomena from the
measurements.

An interesting phenomenon is a fact that the sudden increase in current for
higher voltages in the 5.9 figure, hereafter normalization, is not so noticeable.
Measurement error - current fluctuations reach larger deflections than just the
sudden current increase. Which is all due to the bias normalization.
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Figure 5.10: Bias-normalized pulsed bias dependence of the hole current wave-
forms in TSh geometry. LPD = 100 µs, T = 100 ms, T+,T- = 200µs. Black
dashed lines represent the fit by MC simulation.
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As a next parameter, we obtained the drift mobility of holes by fitting bias
dependence of transit time, shown in Fig.5.11 by the equation (3.6)

µh = (15 ± 1) cm2 V−1 s−1. (5.11)
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Figure 5.11: RX30 Sample. Transit time dependency of the hole current wave-
forms from figure 5.9. The black dashed line represents the theoretical model.

5.3 Bias Pulse Width Dependence

5.3.1 RX30 Sample
So the shape of the cWFs depends on whether the sample has enough time to
depolarize. Thus, we further measured the bias pulse width dependence T+, T−
with fixed period T to determine the true effect of depolarization time (Tdepol =
T − T+ − T−). We stay with the period T = 100 ms and voltage U+ = 100 V,
U− = −100 V. Laser pulse delay is set to LPD = 150 µs because we want to find
out what happens at the end of the first polarity bias pulse. The bias pulse width
dependence of the unpolarized detector is shown in Fig. 5.12. Monte Carlo cWFs
simulations are marked with dashed lines. Electric field profiles from the Monte
Carlo simulation are also included in the inset. Post-measurement relaxation is
inserted in the figure 5.13.

We measured with T+, T− from 150 µs to 600 µs each so whole nonzero bias
pulse width was from 300 µs to 1.2 ms. Polarization shows up at T+ = 400 µs =
T−. Until then, T+, T− < 400 µs, cWFs curve behaves equally. The data are
describable by the description in the section 3.2, i.e., the holes drift through the
detector from the anode to the cathode without trapping in a homogeneous con-
stant electric field. We can see the current drop from 80 nA to 60 nA for the two
first cWFs so the surface recombination is again measurable. Relaxation after
the last measurement on RX30 sample restored the surface recombination mech-
anism. The diffusion of the hole cloud is also present as we see a symmetrically
stretched descending edge. But is five times bigger than should be according the
Einstein relation (2.4).
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Figure 5.12: RX30 Sample. Bias pulse width dependence of the hole current
waveforms with pulsing parameters LPD = 150 µs, U+ = 100 V, U- = -100 V,
T+=T-, T = 100 ms. The transit time prolongation is marked with an arrow.
Measured from 150 µs to 600 µs Inset: Electric field profile obtained by Monte
Carlo simulation. The anode and cathode are also marked with arrows.

T+ = T− ≈ 350 µs is the maximum bias pulse width when polarization is
not present. The ratio of non-zero bias pulse width to depolarization time is

κ = T+ + T−

Tdepol
= T+ + T−

T − (T+ + T−)
.= 0.7% (5.12)

only! Polarization begins and from this point on, the space charge begins to
accumulate under the anode. According to the Monte Carlo simulation, the
space charge reaches up to a quarter of the sample. The next bias pulse width
measurement is overshadowed by the already formed polarization and we talk
about the so-called memory effect. This is why cWFs continue to evolve and
transit time is increasing.

After measurement we set up pulsing parameters back to bias U+ = 100 V,
U− = −100 V, period T = 100 ms, bias pulse width T+ = 200 µs = T− and laser
pulse delay to LPD = 100 µs and once every 16 hours we measured few cWFs
to know the current state. Relaxation cWFs are shown in the figure 5.13. We
know from section 5.1 that these parameters don’t polarize the detector during
measuring a few cWFs. So if we can see some deviations from the rectangular
shape, it means that the detector is polarized. And that is what we can see. The
RX30 sample reached a depolarized state in 32 hours.

The evolution of the waveforms suggests that the region of the negative space
charge forms under the anode. In the Monte Carlo simulation, we varied only
the magnitude of the electric field. Transit time increases as the electric field
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increases. Thus, there is no ambiguity between the electric field and the lifetime.
The final lifetime of the carriers would not change the transit time.
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Figure 5.13: RX30 Sample. Relaxation within hours of a polarized detector. The
red line is the red line in figure 5.12.

5.3.2 RX23 Sample
The situation for the RX23 sample is slightly different. Bias pulse width depen-
dence for the RX23 sample is shown in figure 5.14. We measured with bias
U+ = 100 V, U− = −100 V, laser pulse delay LPD = 100 µs and period
T = 100 ms. Monte Carlo simulations are marked with dashed lines. Electric
field profiles from the Monte Carlo simulation are also included in the inset.
Here, unlike the RX30, polarization also occurs underneath the cathode, which
is evident by a hump on the trailing edge.

We measured with T+, T− from 200 µs to 600 µs each so whole nonzero bias
pulse width was from 400 µs to 1.2 ms. Polarization shows up at T+ = 500 µs =
T−. Until then, T+, T− < 500 µs cWFs curve behaves equally - linear decrease
with the same slope between the leading and trailing edge. As we discussed in
section 5.1.1, the slope can be realized by a deep traps or by a space charge in the
sample. The first two cWFs (red lines) has the same slope but different size so
again surface recombination is measurable. Diffusion of hole cloud is also present
as we see a stretched trailing edge. The diffusion constant again does not fit
Einstein’s formula (2.4) by an order of magnitude.

T+ = T− ≈ 400 µs is the maximum bias pulse width when polarization is
not present. The ration of non-zero bias pulse width to depolarization time is

κ = T+ + T−

Tdepol
= T+ + T−

T − (T+ + T−)
.= 0.8% (5.13)
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Figure 5.14: RX23 Sample. Bias pulse width dependence of the hole current
waveforms with pulsing parameters LPD = 100 µs, U+ = 100 V, U− = −100 V,
T+ = T−, T = 100 ms. The transit time prolongation is marked with an arrow.
Measured from 200 µs to 600 µs. Inset: Electric field profile obtained by Monte
Carlo simulation. The anode and cathode are also marked with arrows.

only! Polarization begins and from this point on, the space charge begins to
accumulate under the anode and cathode as well. According to the Mote Carlo
simulation the space charge is distributed in the first and last quarter of the
sample. Memory effect is also present. so measurement for T+ = T− > 300 µs
is biased by the measurement history for T+ = T− < 300 µs.

5.4 T- Bias Pulse Width Dependence RX30
The next parameter we were changing was the width of the second bias pulse T−.
This is a parameter which we discussed at the beginning of this chapter. After a
few days of relaxation, we prepared the measurement and during configuration,
we accidentally applied DC bias to the sample for about 5 seconds. To find out
what state the sample is in, we measured one cWF at the depolarizing parameters
from the first section of this chapter (T = 100 ms, T+, T− = 200 µs, U+ =
100 V, U− = −100 V and LPD = 100 µs). We got the same waveform as the red
curve in the graph in figure 5.12. So the sample became polarized immediately!
So we let the sample relax for a week. After one week, we again measured
the current state of the sample with depolarizing pulsation parameters. Even
after a week of relaxation, we did not get an ideal rectangular cWF, cWF had a
section of linear current drop at the beginning which we consider a new steady
state! It is possible that if we let the sample relax for a few weeks, the sample
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would thermally return to the fully depolarized state where we would again get
ideal rectangular waveforms, but this is not within the time capabilities of our
measurements. Therefore, we continued the measurements anyway.

We started measuring with pulsing parameters that do not polarize the sam-
ple, bias U+ = 100 V, U− = −100 V, period T = 100 ms, bias pulse width
T+ = 200 µs = T− and laser pulse delay LPD = 150 µs and we lowered the bias
pulse width T− from 200 µs to 0 µs. As before we set the laser pulse delay to
150 µs because it tells us the behaviour at the end of the first bias pulse. Bias
pulse width T− dependence of the hole current waveforms is shown in Fig. 5.15.
Monte Carlo simulated cWFs are marked with dashed lines. The inset shows
an electric field simulated by the MC method. The blur effect of the amplifier
resembling a shallow trap is also marked with the arrow.

0 , 0 0 , 5 1 , 0

1 , 1

1 , 2

1 , 3

0 2 4 6 8 1 0 1 2

0

1 5

3 0

4 5

6 0

7 5

9 0

a m p l i f i e r  b l u r

Cu
rre

nt 
(nA

)

T i m e  ( µs )

 2 0 0  µs
 5 0  µs
 0  µs
 M C  f i t

a n o d e
c a t h o d e

Ele
ctr

ic f
ield

 (k
V/c

m)

L e n g t h  ( N o r m a l i z e d )

Figure 5.15: RX30 Sample. Bias pulse width T− dependence of the hole current
waveforms with pulsing parameters T = 100 ms, T+ = 200 µs, U+ = 100 V,
U- = -100 V, LPD = 150 µs. Monte Carlo simulated cWFs are marked with
dashed lines. Inset: Electric field profile obtained by Monte Carlo simulation.
The anode and cathode are also marked with arrows.

For T− = 200 µs we obtain a hint of a rectangle which is our new stable state
(see Fig. 5.5 for the previous stable state). We started from this curve. So if we
decrease bias pulse width T−, the initial leading edge starts to increase. Depo-
larization time becomes insufficient for the total depolarization of the detector. A
negatively charged space charge begins to form under the anode so the beginning
of the cWFs begins to tilt negatively. And as we continue to measure the polar-
ization it adds up and the memory effect is present. Transit time is not shifted
yet, because the polarization does not reach such values as in the measurement
in section 5.3 (see figure 5.12 for comparison).

We repeated the measurement with the period T = 2 s to determine the effect
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of the depolarization time. Now depolarization time is more than 20 times longer
than before. The situation is the same as in figure 5.15. The first almost half of
the detector is starting to polarize. The evolution of the waveforms suggests that
the region of the negative space charge forms under the anode. The other half
of the detector remains in its original state. Thus, we can say that in the time-
resolved capabilities of our apparatus, we are not able to use the period length to
achieve a sufficiently long depolarization time for those pulsing parameters. This
measurement again proves the effectiveness of bipolar pulsing!

5.5 Depolarization Time Dependence RX30
In the first section of this chapter, we found pulsation parameters at which the
current waveform showed no time evolution. Thus, even if the detector becomes
polarized during a bias pulse, the time at which is no bias applied is sufficient
for eventual depolarization. During the depolarization time, the sample should
depolarize. The accumulated space charge should back move to the most ener-
getically favourable positions and thus the detector should go into a state, as was
before measurement.

We chose a symmetric bias pulse long enough to polarize our sample, so T+ =
T− = 500 µs. On the other hand, the longer depolarization time we have to
choose to start the measurement from the unpolarized state. Depolarization time
dependence of the hole current waveforms for T+ = T− = 500 µs is shown in
figure 5.16. Monte Carlo simulations are marked by dashed lines and the electric
field is shown in the inset.

Polarization starts to become more apparent around period T = 400 ms for
bias width T+ = T− = 500 µs. Negative space charge starts to accumulate under
the anode. The ratio of non-zero bias pulse width to depolarization time is

κ = T+ + T−

T − (T+ + T−)
.= 0.3% (5.14)

only! Since the first polarization starts to appear, the next measurement is af-
fected by the memory effect. Transit time starts to prolong with the last measured
cWF. It is due to the arising field under the anode caused by the arising space
charge. As a reminder, if it were the lifetime of the carriers - the presence of deep
traps - the transit time would not change. So we hole lifetime is infinity.

From Monte Carlo simulation we get hole drift mobility and diffusion coeffi-
cient

µh = 14.5 cm2 V−1 s−1 and D = 1.7 cm2V−1s−1,

where electric field was simulated by exponentials (5.2). The lifetime of the holes
is much bigger than the time resolution of the measurements.

From all the measurements made so far, perovskites MAPbBr3 appear to be
rather unstable detectors concerning the parameters. It is therefore important to
note that a relaxed state developed due to the short application of DC voltage.
And that is exactly what is beginning to manifest itself here. The full red curve in
the picture 5.16 for T = 800 µs is the relaxed state for RX30 and we can see a hint
of the polarization at the beginning of the graph. We have not been able to get
rid of this artefact. This fact is attributed to the change in the internal structure
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Figure 5.16: RX30 Sample. Depolarization time dependence of the hole current
waveforms with pulsing parameters LPD = 150 µs, U = 100 V, T+,T- = 500 µs.
Black dotted lines represent MC simulation. Inset: Electric field profile obtained
by MC simulation.

of the detector when a DC bias is applied. By comparing the electric field in the
inset plots in figure 5.12 and 5.15 (before and after the DC bias is applied), it is
clear that the space charge forms almost to the middle of the detector instead of
a quarter of the detector.

5.6 Laser Pulse Delay Dependence
Up to this point, we have varied the pulsing parameters that specify the shape of
the bias pulsing (see schematic in figure 4.1). But now we will keep the pulsing
parameters constant and change only the laser pulse delay LPD. This will give
us knowledge of how the sample evolves during the bias pulse. Again we set
the pulsing parameters to T+ = 200 µs = T−, period T = 100 ms, bias U+ =
100 V, U− = −100 V. We know from previous measurements that these pulsation
parameters do not create a memory effect. Laser pulse delay dependence of the
hole current waveforms is shown in Fig. 5.17.

We can see that at the end of the bias pulse the detector starts to polarize - a
small bump starts to grow at the beginning of the waveforms. The current within
the measurement error starts to decrease from the value 180 nA and descends
in a straight line which means there’s a space charge or deep trap inside the
detector, as discussed in the first section of this chapter. This behaviour can be
explained by the gradual expansion of the deep trap region under the anode (e.g.
impurities) into the sample. So at the beginning of the drift, we have the same
number of holes that start drifting through the detector towards the cathode. At
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Figure 5.17: RX23 Sample. Laser pulse delay dependence of the hole current
waveforms with pulsing parameters T = 100 ms, T+,T- = 200 µs, U+ = 100 V
and U- = -100 V.

the beginning of the detector, they pass through a deep trap region where some
of the charges are absorbed. If the region of traps begins to stretch, more charge
will be captured. When the drifting charge leaves the trap region it begins to
behave as in the previous cases without the extended trap area. As discussed in
section 5.1.1.
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5.7 Electron Bias Dependence
Up to now, we have been concentrating on the majority carriers, namely the
holes. So electrons are minority charge carriers. Pulsed bias dependence of the
electron current waveforms is shown in figure 5.18. We use the following pulsing
parameters. Period T = 100 ms, laser pulse delay LPD = 100 µs and bias pulse
width T+ = 200 µs = T−. In this measurement, we had to set the maximum
intensity of the light beam to detect anything at all. We were not able to find the
pulsating parameters to obtain the transit time. Electrons are subject to strong
trapping on the traps. This is why we see exponential drops for all biases.
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Figure 5.18: RX23 Sample. Pulsed bias dependence of the electron current wave-
forms with pulsation parameters T = 100 ms, LPD = 100 µs and T+,T- = 200
µs. The used bias in the legend is the absolute value of biases U+ and U-. First
polarity was positive and the second polarity was negative.
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Conclusion
This thesis presents a description of the charge transport in methylammonium
lead tribromide perovskites CH3NH3PbBr3 using bipolar bias pulsed Laser - in-
duced Transient Current Technique and in-house made Monte Carlo simulation
software for simulating the measured current waveforms. In the first chapter In-
troduction we have explained the basic problem that perovskites face today such
as degradation due to moisture, temperature and general traps inside the mate-
rial. In the next theoretical section Kinematics of Charge Carriers in Detector,
we defined the necessary equations such as the drift-diffusion equation and the
continuity equation, which are used to derive the theoretical current waveforms
in other parts of the paper. We have also defined a detector model on which we
simulate the current waveforms throughout the paper. The following also theoret-
ical chapter Charge Distribution and Current Response finally contains individual
examples of possible current waveforms, including the basic charge density drift
in the form of a delta function, we have also included charge lifetimes formed
by the shallow and deep trap. We have derived the possibility that the entire
detector contains space charge and its effect on the overall electric field inside
the detector. We have discussed possible charge densities and their effect on the
leading edge of current waveforms. And in the last theoretical part, we described
a possible theoretical model of surface recombination. All these models contain a
graphical interpretation of the theoretically calculated current waveform, which
allows us to identify individual phenomena in real current waveforms.

Experiment chapter contains a description of the measuring apparatus and a
description of the measured samples, which were obtained from the Université
Grenoble Alpes and Cea-Leti. We also justified the choice of the spot on the
detector on which we shine and confirmed that our apparatus allows repeatable
measurements despite the fact that we change samples during the measurement.

The last chapter L-TCT Results and Discussion contains all pulsed L-TCT
results measured on two methylammonium lead tribromide perovskite samples.
Almost all measured waveforms include Monte Carlo simulation based on the
arbitrary electric field, two trap levels, diffusion effects and laser pulse shape.
First, we searched for the pulsation parameters of the applied bias to obtain a
basic measurement configuration in which the detector does not polarize and no
memory effect occurs. In this step, we confirmed the basic assumption of the
advantage of bipolar pulsation instead of unipolar pulsation. Using only one po-
larity in a single pulse, both samples became polarized and it was necessary to
wait several hours to days for the sample to depolarize spontaneously. On the
other hand, when using both polarities in one pulse-bipolar pulsing the detector
was stable, it did not polarize for hours (we did not measure longer periods). This
was followed by sections in which we examined the effect of individual pulsing pa-
rameters such as the bias pulse width, second polarity pulse width, depolarization
time, laser pulse delay and bias. Almost each section contained two subsections
dealing with each sample separately and their comparison with each other when
changing the same parameter. Whichever parameter we varied, we always got
the same pattern of behaviour of the perovskites we studied.

We get a depolarized detector if we pulse a symmetrical bipolar bias pulse
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with a sufficiently long depolarization time. We have obtained a ratio of the
time length of the applied bias to the depolarization time of about 0.3% only!
If a shorter depolarization time or longer bias pulse width is used perovskite
starts to polarize immediately and the memory effect starts to grow. The first
positive voltage will slightly depolarize the detector. The following negative bias,
rather than depolarizing effects, serves here to keep it in its current state. It is
not clear from the measurements that the negative bias helps in depolarization.
After the bias is set to zero, the sample started to depolarize. The length of the
depolarization time determines whether the sample can completely depolarize or
not. In the case of asymmetric pulsation at the same bias pulse width but the
different magnitude of biases the sample immediately begins to polarize. Our
apparatus is capable of setting a two-second depolarization time, but even this
was insufficient for depolarization.

The RX30 sample is polarized under the anode, while RX23 is polarized un-
der the cathode as well. We measured the drift mobility of the holes around
13 cm2V−1s−1. The hole cloud is subject to diffusion. The polarization described
above can be explained by two phenomena. The first explanation, below the
contacts, is the trapping section which thanks to bias gradually expands into
the sample, causing the current drop we see in the waveforms. Whether this is
impurities or drift of the perovskite ions themselves we are unable to determine.
And the second consecration is in motion of space charge creating a non-constant
electric field again causing the current to drop. Or it’s a combination of both.

This is a unique approach to bipolar voltage measurement that is just begin-
ning to appear in other scientific papers. Results similar to these were not found
at the time of writing.

The perovskites we have studied are very sensitive to the measurement con-
ditions, but still show signs of a prospective detector. We created several models
and descriptions of the internal transport, but none were reliable. It is therefore
interesting to continue the research and to fully describe the charge carrier trans-
port mechanism inside the detector. As a follow-up measurement, it would be
interesting to test asymmetric bipolar pulsing, where the time integral of the volt-
age of each polarity is preserved. In a future study, the temperature dependence
of the current waveforms should be used to evaluate all parameters of traps, e.g.
trap energy, capture cross section or trap concentrations to push the knowledge
of perovskites a little further. Looking beyond photovoltaics, MHPs continue to
demonstrate the huge potential for application in a wider range of optoelectron-
ics including lasers, electromagnetic photodetectors, and light-emitting diodes to
name a few.
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