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and valuable discussions. I am also very grateful to Assoc. Prof. Pavel Hĺıdek, PhD.
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5.2 Landé g-factors of the electron and hole in GaAs/AlGaAs . . . . . . . 20

5.2.1 The summary of published experimental results . . . . . . . . 22
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Kĺıčová slova: Dvojitá kvantová jáma, GaAs/AlGaAs, Fotoluminiscence, Exciton,
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Chapter 1

Introduction

Two-dimensional quantum systems encourage attention of academic and industrial
world since their first fabrication in 1973. They manage many interesting and unique
physical properties (high mobility of electrons, integral and fractional quantum Hall
effect, phenomena connected with electron-nuclear spin coupling, etc.). Therefore
they have been a subject of intensive study and research. Many techniques, such as
photoluminescence, photoluminescence excitation and photoconductivity, are used
to achieve some useful results. Two-dimensional quantum systems promise a big use
in many technical applications. Some of them were already realized (semiconductor
lasers, transistors, etc.). Apart from many research workplaces all over the world
Institute of Physics of Charles University in co-operation with Institute of Physics
of the ASCR and Institute of Technical Physics I of Friedrich-Alexander University
in Erlangen, Germany, participates in a fundamental research of these interesting
quantum systems.

Under words “two-dimensional quantum structures” one can understand either
a wide class of quantum wells or superlattices. The main purpose of this diploma
thesis was to study double quantum wells by photoluminescence spectroscopy using
the external electric and magnetic fields. We studied one sample consisting of a sym-
metric double quantum well. In this paper we present our measurement in in-plane
magnetic field up to 9.6 T completed with temperature and excitation intensity de-
pendencies as well as our polarization-distinguished measurements of effective Landé
g-factor of neutral and charged excitons.

1



Chapter 2

Two-dimensional quantum structures

As mentioned in previous chapter our measurements were done on a system of
symmetric double quantum well. Therefore we would like to summarize some basic
properties of a single well and double quantum wells in this chapter. Under the
word quantum well we will understand an one-dimensional potential well used to
trap particles. This arbitrary system must be characterized by two-dimensional
translation symmetry. From now on we will respect this notation: z is the direction
of growth, normal to the planes of a layered structure, and its direction is always
marked as perpendicular. Direction parallel to the plane layers of a structure is
always called longitudinal.

2.1 The idealized single quantum well

In this section we will discuss the solution of Schrödinger equation for one-dimensional
square quantum well. Our survey will be very similar to the lecture from quantum
mechanics, for details see [1]. Using the term idealized we mean that the carrier
mass m in such structures is both position and energy independent. We use V0 and
d to denote the depth and the width of the quantum well, respectively. H denotes
the Hamiltonian of the system. The corresponding Schrödinger equation is

i~
δψ(z, t)

δt
= H(z, pz)ψ(z, t), (2.1)

where

H(z, pz) =
p2

z

2m
+ V (z), pz = −i~ δ

δz
. (2.2)

Symbol ~ marks as usually the reduced Planck constant (~ = 1.05457× 10−34 J s).
We take the origin in the middle of the well so that V (z) = 0 in the region |z| ≥ d/2
and V (z) = −V0 in the region |z| < d/2. Since Hamiltonian does not explicitly
depend on time we can factorize the wavefunction ψ(z, t) into

ψ(z, t) = χ(z) exp(− i

~
εt). (2.3)

2



Two-dimensional quantum structures 3

Function χ(z) must satisfy the eigenvalue problem (it solves the time-independent
Schrödinger equation)

H(z, pz)χ(z) = εχ(z), (2.4)

which can be written more explicitly[
− ~2

2m

d2

dz2
+ V (z)

]
χ(z) = εχ(z). (2.5)

Since potential V (z) is even (our choice of the origin) we can look for either even or
odd functions χ(z). Inside the well we can write:

χ(z) = A cos kwz; ε = −V0 +
~2k2

w

2m
for even states (2.6)

χ(z) = B sin kwz; ε = −V0 +
~2k2

w

2m
for odd states. (2.7)

kw denotes the wavevector of the particle inside the well. The region outside the
well is prohibited for particles therefore the wavefunction χ(z) must damp down
in the barrier. This is expressed by decreasing exponentials. Simultaneously the
wavefunction χ(z) must fulfil following boundary conditions:

• χ(z) and dχ(z)
dz

is continuous everywhere;

• lim
z→±∞

|χ(z)| = 0.

Applying these boundary conditions at z = d
2

we find out that the energy ε satisfies
the transcendental equations

kw tan

(
kw
d

2

)
= κb for even states (2.8)

kw cot

(
kw
d

2

)
= κb for odd states. (2.9)

κb stands for the wavevector associated with the evanescent waves outside the well

κb =

√
−2mε

~2
. (2.10)

The discrete quantum mechanical spectrum of the energy ε is in contrast with the
classical continuous spectrum. A quantum well of thickness d admits n(d) bound
states where:

n(d) = 1 + Int

[√
2mV0d2

π2~2

]
, (2.11)

Int[x] denotes the integer part of x. As can be seen from Eq. (2.11) a one-dimensional
quantum well always supports at least one bound state, irrespective of the height
of the confining barrier. In Fig. 2.1 we can see the first bound state of the single
quantum well of the height V0 and width d. It is the first even state.
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V0

−d/2 d/20
Figure 2.1: The ground state of the single quantum well of the height V0 and width d.

2.1.1 Density of states

The density of states ρ(ε) is a physical quantity which gives a number of quantum
states |ν〉 per unit energy and unit area available around a given energy ε.

ρ(ε) =
1

S

∑
ν

δ(ε− εν), (2.12)

where εν is the energy associated with the state |ν〉. Based on the parabolic bands
assumption the formula for ρ(ε) results in the two-dimensional quantum structures
as:

ρ(ε) =
m

π~2

∑
n

Y(ε− En); En < 0, (2.13)

where Y(x) is the step function defined Y(x)=1 if x > 0 and Y(x)=0 if x < 0, S
is the sample area. Because of the step function Y(x) the density of states ρ(ε) is
staircase-shaped.

2.2 The symmetric double quantum well

After the small summary of the basic properties of the idealized single quantum
well we will briefly outline the topic of the symmetric double quantum well (DQW).
This will consist of two equivalent one-dimensional quantum wells of depth V0 and
width d which are separated by a distance h. The corresponding Hamiltonian of the
coupled wells reads

H =
p2

z

2m
+ V (z − z1) + V (z − z2), (2.14)

where

V (z − zi) =

{
0 |z − zi| ≥ d/2,
−V0 |z − zi| ≤ d/2.

(2.15)

i = 1, 2 and zi corresponds to the centre of respective wells.
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2.2.1 The tight binding approximation

When h is high enough we get two isolated wells with the ground state eigenfunctions
χ1(z−z1) and χ1(z−z2) for the wells centered at z = z1 and z = z2, respectively. As
the exact solution of Eq. (2.14) we can take the linear combination of the eigenfunc-
tions χν(z−zi) of the individual wells where ν runs over the discrete and continuous
spectra. To obtain a simple formula for energy ε of the double quantum well system
we retain only a linear combination of the ground states of the isolated wells:

ψ(z) = αχ1(z − z1) + βχ1(z − z2). (2.16)

This technique is known as the tight binding approximation. We let now the Hamil-
tonian (2.14) to act on the function (2.16). Using the matrix representation we
obtain: [

E1 + s− ε (E1 − ε)r + t
(E1 − ε)r + t E1 + s− ε

] [
α
β

]
= 0, (2.17)

where E1 is the energy of the ground state of the isolated well. The quantities r, s
and t are called the overlap (r), shift (s) and transfer (t) integrals, respectively and
they are defined as follows:

r = 〈χ1(z − z1)|χ1(z − z2)〉 = 〈χ1(z − z2)|χ1(z − z1)〉 (2.18)

s = 〈χ1(z − z1)|V (z − z2)|χ1(z − z1)〉 = 〈χ1(z − z2)|V (z − z1)|χ1(z − z2)〉 (2.19)

t = 〈χ1(z − z1)|V (z − z1)|χ1(z − z2)〉 = 〈χ1(z − z2)|V (z − z2)|χ1(z − z1)〉. (2.20)

Using some simple mathematical manipulations we obtain from Eq. (2.17) the for-
mula for energy ε of the double quantum well in the scope of the tight binding
approximation:

ε = E1 ∓
t

1∓ r
+

s

1∓ r
. (2.21)

From the Eq. (2.21) we can see that the energy of the ground state of the isolated
well E1 is shifted to a new value E1 + t

1+r
due to the presence of the other well.

2.2.2 The exact solution of the symmetric DQW

As can be found in [1] to obtain the exact eigenstates of the symmetric double
quantum well we need to solve the following equation:

2 cos kwd+

(
ξ − 1

ξ

)
sin kwd±

(
ξ +

1

ξ

)
exp(−κbh) sin kwd = 0, (2.22)

where

ξ =
κb

kw

; κb =

√
−2mε

~2
; kw =

√
2m

~2
(ε+ V0). (2.23)

The sign plus in Eq. (2.22) corresponds to the antisymmetric states, the sign minus
corresponds to the symmetric states (with respect to the center of the structure).
Similarly to the single quantum well the double quantum well also supports always
at least one bound state.
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2.3 Quantum wells in real heterostructures

This section will pay attention to the real heterostructures, semiconductors com-
posed of more than one material. Also alloys can be used to obtain the desired
physical properties. Nowadays many heterostructures are extensively used in opto-
electronical applications. To be able to decide which materials are the best to create
almost an idealized heterostructure one need to consider the band structure and the
lattice constant of both materials. Especially in optoelectronics some particular
wavelengths are required and the band gap parameter is of great importance.

So called Vegard’s law is usually used to calculate a lattice constant of the
AlxGa1−xAs alloy:

aAlxGa1−xAs = xaAlAs + (1− x)aGaAs. (2.24)

In our heterostructures we use a pair of the most popular materials, GaAs and
AlGaAs. Their lattice constants are very similar, their change is less than 0.15% as
function of x. Thus it is possible to let them grow on each other almost without
stress on their interfaces. This is valid for any intermediate alloy of AlxGa1−xAs.

2.3.1 Growth of real heterostructures

There are two dominant ways in today’s industry for making heterostructures. The
first one is called molecular beam epitaxy (MBE) and the second one is metal-organic
chemical vapour deposition (MOCVD). Both are in principle simple techniques but
there are too many parameters which must be controlled. So far our samples were
prepared by MBE in Erlangen, Germany, we describe shortly the MBE technique
only.

The scheme of MBE apparatus is displayed in Fig. 2.2. It consists of an evapo-
rator, a heated holder for the substrate, several Knudsen cells containing material
for deposition with shutters on the top and RHEED (reflected high-energy electron
diffraction) accessory for monitoring the growth of the heterostructure. There is
an ultrahigh vacuum (UHV) in the whole apparatus assuring that molecules of
vaporized elements (e.g. Ga, Al and As) would not collide with each other and that
they would produce a molecular beam. This beam is pointed to the heated holder on
the substrate that can rotate during the growth. This way we can minimize possible
variations in composition across the wafer. The beams are controlled through the
shutters. Once they are opened the growth can start or proceed. The flux of
vaporized elements is controlled through the temperature of the cell.

Now RHEED description follows. An electron gun is used to proceed high-energy
electrons that are directed at nearly grazing incidence to the surface of the sample.
The intensity and pattern of diffracted electrons are displayed on a screen. They
change in a periodic way as step by step each monolayer is grown. Thus we can count
monolayers precisely and from the diffraction pattern we can deduce the structure
of the surface.
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Figure 2.2: The scheme of molecular beam epitaxy apparatus.

The speed of MBE is approximately 1 monolayer per second. To obtain a high-
quality sample one should start with pure materials in Knudsen cells. Every possible
pollution devastates the physical properties of the final heterostructure.

2.3.2 Layered structures

The compounding of different materials during MBE growth is advantageously used
at a preparation of heterostructures with a particular band gap structure. The band
gap of an AlxGa1−xAs alloy can be counted via the formula:

EAlxGa1−xAs
g (meV) = EGaAs

g (meV) + 1240x (meV); x < 0.45. (2.25)

Nowadays three alignments according to the band gap structure are known, type I or
straddling alignment, type II or staggered alignment and finally type III or broken-
gap alignment. To get a basic idea about these notions please see Fig. 2.3.

Our sample GaAs/AlGaAs shows type I alignment which is usually described by
Anderson’s rule. This rule states that the vacuum levels of the two materials should
be lined up, as we can see in Fig. 2.4. From this figure we see that offset ∆EC of the
conduction band is equal to the difference between the electron affinity χ of the two
materials (an electron affinity is the energy an electron from the conduction band
minimum needs to get to the vacuum level). The offset ∆EV is then given by the
equation:

∆EV = ∆Eg −∆EC . (2.26)

In our sample with the Al barrier content x = 0.33 the band offsets ∆EC
.
= 230 meV

and ∆EV
.
= 150 meV are commonly used.
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type I type II type III

CB CB CB

VB

VB

VB

Figure 2.3: Three types of possible alignment according to the band gap structure. CB
denotes the conduction band, VB stands for valence band.

EC

EV

Eg
GaAsEg

AlGaAs

∆E
V

∆E
C

χGaAs χAlGaAs

vacuum level

conduction band

valence band

AlGaAs AlGaAsGaAs

Figure 2.4: The scheme of quantum well in the system GaAs/AlGaAs which is a typical
example of alignment type I.

With the help of MBE the simple profiles can be grown. The most famous are the
tunneling barrier and the quantum well. Specifically for our materials, a tunneling
barrier consists of a layer of AlGaAs surrounded by GaAs. A quantum well is the
opposite of the barrier and consists of a thin layer of GaAs surrounded by two thick
layers of AlGaAs.
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2.3.3 Modulation doping

In some optoelectronical devices there is a need to have many free particles, for
example free electrons, apart from their dopants. To solve this requirement so called
modulation doping is often used. Its principle is based on the transfer of carriers
from the remote wide-gap doped region to the narrow-gap undoped one.

In case there is a discontinuity in conduction bands the travelling electrons/holes
lose their potential energy after entering the region of the narrow gap material. They
become trapped in this area as it is not possible for them to climb over the barrier
∆EC . Consequently, free carriers are separated from their doping counterparts.
The electrostatic potential of charged dopants attracts carriers back to the doped
region. However, due to the discontinuity in the conduction bands the electrons
can not return to their donors. They are only pressed to the interface where they
are trapped in the triangular potential well. As we could see from the previous
section the energy levels are quantized in a quantum well. Thus the electrons can
occupy the same state for motion in z direction but they remain free in other two
dimensions. The two-dimensional electron gas (2DEG) is formed in this way. The
modulation doping has provided us with two positive outcomes:

• the electrons are separated from their donors ⇒ scattering by ionized impuri-
ties is reduced,

• the electrons are confined to two dimensions.

The separation between electrons and donors can be supported by putting a spacer
layer between the doped and undoped region.



Chapter 3

Quantum structures subject to the electric
field

The research of the effects of the applied external electric field on the quantum
structures gives us the opportunity to construct the optoelectronical devices such
as fast electro-optical modulators, etc. The effects induced by electric field are very
often called the Stark effect. In quasi two-dimensional structures two kinds of Stark
effect are possible. The electric field can be applied either parallel to the growth
axis z or perpendicular to it. As in our experiments the electric field was always
applied parallel to the growth axis z we discuss only this type of Stark effect in this
thesis.

3.1 The transverse electric field

The corresponding Hamiltonian of the system with applied electric field F along z
axis can be written as follows:

H =
p2

x

2m
+

p2
y

2m
+

p2
z

2m
+ V (z)− qFz. (3.1)

We use m to denote the mass of the particle and assume that it is the same in
the well and in the barrier. q denotes the charge of the particle. For an electron
q = −|e|, for a hole q = |e|, (e = −1.602× 10−19 C is the charge of the electron). As
we can see from Eq. (3.1) in plane (x, y) the motion of the particle is not restricted
so we will concentrate only on the solution of the one-dimensional problem:[

− ~2

2m

d2

dz2
− qFz

]
χ(z) = Eχ(z). (3.2)

The general form of the solution of Eq. (3.2) is the combination of the Airy functions
which are continuously extended in the points of the potential jump. Nevertheless,
this form is a little bit complicated. One can simplify it with assumption of the

10
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E2

E1

H1
H2

2 1 4 3
�� ��

Figure 3.1: The basic diagram of the interband recombination in the DQW under an
external electric field action. Symbols E1,2, H1,2 mark the two lowest lying energy levels
of electrons and holes, respectively. Numbers 2 and 3 (1 and 4) denote the spatially direct
(indirect) electron-hole recombination, respectively. After reference [3].

damping exponentials everywhere outside the well. Applying the external electric
field on the quantum well the well gets to the tilted position as we can see in Fig. 3.1.
The particle inside the well becomes essentially localized by a triangular well. In case
the barrier height is finite with increasing electric field the particle accumulation is
never complete. The field-induced tunneling appears (when F is sufficiently large)
and the particle is swept out from the quantum well.

The absorbed light from a diode laser generates pairs of free particles. The
carriers are excited in the GaAs as well as in the AlxGa1−xAs layers. Applying the
bias voltage the excited carriers are transported into the wells and to the surface of
the sample. Consequently, bound complexes such as neutral excitons, positively or
negatively charged excitons can be formed in the whole volume of the sample.

As the charge of the electrons and holes is of the opposite sign the electrons
become localized in the opposite part of the well than the holes. The electrons
always prefer to occupy the states with lower energy, mostly they are localized on
the energy level E1. Similarly, the holes always prefer to occupy the states with
higher energy, mostly they are localized on the energy level H1. For details see
Fig. 3.1.

Due to the Coulomb interaction the exciton can be formed from an electron and
a hole. Let us assume that an electron with energy E1 from the left well and a hole
with energy H2 as well from the left well are bound together into an exciton. In this
case we call it spatially direct exciton and use DX to denote it. Numbers 2 and 3
mark the spatially direct electron-hole recombination in Fig. 3.1. The energy of DX
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transition E1 - H2 is almost independent on the applied bias. Thus the DX peak
should always appear approximately at the same energy in our spectra. We see DX
transitions in our PL spectra in zero magnetic field in Fig. 7.1.

The spatially indirect exciton is formed when an electron from one well is bound
to a hole from the adjacent well. Symbol IX stands for the indirect excitons. In
Fig. 3.1 numbers 1 and 4 denote the indirect transitions. The energy levels E1 and
H1 are approaching each other (the energy of the indirect transitions decreases)
when the bias voltage increases. Thus the energy of IX peak is always lower than
the energy of DX peak and depends strongly on applied bias voltage. Our measured
spectra show this behavior, see Fig. 7.1.

3.2 The transverse electric field in the tight binding approxi-

mation

To obtain some simple formulas for energy levels in the symmetric DQW we can
again use the tight binding approximation as we did in Subsection 2.2.1. At the
beginning we make some assumptions and set some symbols to clear our notation.
We take k‖ = 0 for simplicity. Symbols zR (zL) denote the center of the right (left)
well with respect to the origin of coordinates, respectively. We express the influence
of the electric field with the shift of the energy levels of the isolated quantum wells:

Eν
R,L(F ) = Eν

R,L(F = 0)− qFzR,L. (3.3)

Furthermore we assume that other energy levels are far away from the ground states.
Therefore we take the same linear combination of the ground states (2.16) of the
isolated wells as we did in Subsection 2.2.1. In addition to that we assume that shift
integral s and overlap integral r, defined in 2.2.1, are equal to zero. With all these
simplifications we can write the formula for eigenenergies of symmetric DQW:

E1,2 = E1 ±
√

(qF∆)2

4
+ t2, (3.4)

where E1 is the energy of the ground state of the isolated well, t is transfer integral
defined in 2.2.1 and ∆ = zR − zL. Index 1 (2) belongs to the sign “+” (“−”),
respectively.

The eigenfunctions of the symmetric DQW in the presence of electric field are
given by the linear combination |Ψ〉 = a(F )|χ1(z− z1)〉+ b(F )|χ1(z− z2)〉. Applied
electric field brakes the original symmetry of the Hamiltonian of DQW. So originally
symmetric DQW behaves as asymmetric in the presence of electric field.



Chapter 4

Quantum structures subject to the
magnetic field

Magnetic field can be applied on the two-dimensional (2D) quantum structure in
two main directions: parallel (so called Voigt orientation) or perpendicular (Fara-
day orientation) to the plane layers. In this chapter we will give a brief overview
of the basic relevant theory. To introduce magnetic field into the corresponding
Hamiltonian we replace the operator of the particle momentum ~p in the Schrödinger
equation with the operator (~p − q

c
~A) as the operators of the kinetic and canonical

momentum are not the same in the external electromagnetic field. Here we omit the
interaction between the spin of an electron and magnetic field ~B as next chapter is
set aside to inform about Zeeman splitting.

4.1 Perpendicular magnetic field

In this section we will have a look at the 2D quantum systems subjected to the
perpendicular magnetic field ~B = (0, 0, B). There are many possibilities how to

choose the vector potential ~A which corresponds to a given field B. However all
results should be gauge-invariant and depend only on B. We choose so called Landau
gauge of the vector potential ~A = (0, Bx, 0) in which there is the simplest algebra.

Applying the magnetic field ~B the Hamiltonian of 2D system changes into

H =
p2

x

2m
+

(qBx)2

2m
+

p2
y

2m
− qBpyx

m
+

p2
z

2m
+ V (z). (4.1)

From the Eq. (4.1) we can see that the Hamiltonian is y-independent. This fact
allows us to write the wavefunction Ψ(~r) in the following form:

ψ(~r) =
1√
S

exp(ikyy)ϕ(x)χ(z), (4.2)

13
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where S is the sample area. The Schrödinger equation becomes[
p2

x

2m
+

1

2
mω2

C(x− x0)
2 +

p2
z

2m
+ V (z)

]
ϕ(x)χ(z) = εϕ(x)χ(z). (4.3)

As we can see from Eq. (4.3) the potential V (z) is additive. The motion along z is
not disturbed by the present magnetic field. Thus the z-part of the final solution
will remain the same as before and the corresponding energy of the 1D bound state
will be added. The x-part of the Eq. (4.3) is the Schrödinger equation for a one-
dimensional harmonic oscillator of frequency ωC = |q|B/m (so called cyclotron
frequency) with the center at x0 = ~ky/qB. The wavefunction ϕ(x) can be written
in form of Hermite polynomials, [1]. The contribution to the total energy from the
harmonic oscillator is

EB
n = ~ωC(n+ 1/2), n ∈ N, (4.4)

where N denotes the set of non-negative integers. The energy EB
n does not depend

on ky. Thus states with given n but different ky are degenerate forming so called
Landau levels.

The originally constant density of states for 2D quantum system changes due to
presence of perpendicular magnetic field. It collapses to a series of δ-functions at
given energies EB

n spaced from each other by quantity ~ωC (in an ideal case where
electrons are never scattered). Usually it is assumed that δ-functions are broadened
to a Gaussian or Lorentzian profile. The allowed number of states in each Landau
level per unit area is given by an equation (the spin degeneracy is already included)

nB =
|q|B
π~

. (4.5)

With increasing magnetic field B the separation between the Landau levels grows.
So does the number of states nB each Landau level can hold.

4.2 Parallel magnetic field

To get an in-plane magnetic field ~B = (0, B, 0) one can choose the vector potential

gauge in a form ~A = (Bz, 0, 0). The corresponding Hamiltonian of the system is

H =
p2

x

2m
+

(qBz)2

2m
+

p2
y

2m
− qBpxz

m
+

p2
z

2m
+ V (z). (4.6)

The associated Schrödinger equation can be solved either with the help of the stan-
dard perturbation theory or with the help of the tight binding approximation (TBA)
introduced above. We will use the TBA procedure and the same notation as we did
in Subsection 2.2.1 and in Section 3.2. The form of the Hamiltonian allows the
separation of variables. The x, y-dependent part of the eigenstates are plane waves
with the 2D wavevector ~k = (kx, ky). The remaining z-component of the eigenstates
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is described with the wavefunctions |χν(z−zi)〉 of the isolated wells within the scope
of TBA. We assume that these wavefunctions do not depend on magnetic field B
and that r = s = 0 (s and r are the shift and overlap integrals defined earlier in

Subsection 2.2.1). We express the influence of the magnetic field ~B = (0, B, 0) with
the shift of the energy levels of the isolated quantum wells:

ER,L(B) = ER,L(B = 0) +
~2(kx − kR,L)2

2m‖
+

~2k2
y

2m‖
, (4.7)

where m‖ is the in-plane effective mass of the particle and kR,L = qBzR,L/~. Ge-
nerally the origin of coordinates can be chosen so that the equality zR = −zL is
fulfilled. In that case the parameter ∆ (defined in Section 3.2) is given by expression
∆ = 2zR = −2zL.

Using the last equation for energy states of isolated wells and the orthonormality
of states |χν(z−zi)〉 (used as a basis set) we can write the Hamiltonian of the system
in a matrix form

H =

[
EL(B) t
t ER(B)

]
, (4.8)

where t is the transfer integral defined in Subsection 2.2.1. The formula for eigenen-
ergies follows

E1,2 =
ER + EL

2
∓
√

(ER − EL)2

4
+ t2, (4.9)

where index 1 (2) belongs to sign - (+), respectively. The eigenfunctions are again
the linear combinations of states |χν(z−zi)〉. Entering Eq. (4.7) into (4.9) we obtain:

E1,2(kx, ky) =
EL(0) + ER(0)

2
+

~2(k2
x + k2

y)

2m‖
+
q2B2∆2

8m‖

∓

√
1

4

(
ER(0)− EL(0)− ~qB∆

m‖
kx

)2

+ t2. (4.10)

We can see that the magnetic field applied along y axis modifies the energy dispersion
along x axis.

4.2.1 Indirect excitons in in-plane magnetic field

Indirect excitons (IX) being formed in the tilted DQW under applied bias voltage
have attracted attention in the theoretical and experimental field during last years.
The excitonic photoluminescence (PL) in DQW was theoretically studied by Gor-
batsevich and Tokatly, see [5] and later on also by Chang and Peeters, [6]. We
present here just the basic overview of this topic.

The spatial separation of electrons and holes in adjacent wells leads in the in-
plane magnetic field B‖ to a shift of the IX ground state from the zero point of
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the reciprocal space to a finite center-of-mass (CM) momentum in the reciprocal
space. The exciton in-plane dispersion remains parabolic, but its minimum is dis-
placed. The IX dispersion at a finite ~B‖ = (0, B‖, 0) can be written in following
approximative form:

EIX(Px, Py) = E0 +
P 2

y

2M
+

(Px − |e|B‖∆)2

2M
, (4.11)

where ∆ denotes the main distance between an electron and a hole forming IX, E0

and M mark the IX energy at rest and its in-plane mass, respectively. Px and Py

are the in-plane components of the IX momentum. From Eq. (4.11) we see that the
displacement of parabola is linear in magnetic field B‖ and also in parameter ∆.

Only the IX with nearly zero momentum ~P ≈ ~0 can be optically active due to
the conservation of the particle’s momentum (the slight relaxation of the momentum
conservation appears due to the finite photon momentum). The optically generated

excitons relax to the states close to the new dispersion minimum ~P = (|e|B‖∆, 0, 0).
Because their new momentum is not zero the IX are optically inactive. So there
should be almost no PL arising from IX in the higher in-plane magnetic fields. The
only signal we get is from carriers thermally excited to states with higher energies,
which explains the blueshift of the IX peak.

Parlangeli et al. introduced in [7] a simple model of IX PL in the in-plane mag-
netic field B‖, using also the formula (4.11). They made few other assumptions:
they used the Boltzmann statistics of the IX gas instead of the Bose-Einstein dis-
tribution and assumed a constant density of the IX gas. Finally they obtained the
formula for PL intensity arising from optically active states

I ∝ exp

(
−
e2∆2B2

‖

2MkBT

)
, (4.12)

where kB denotes the Boltzmann constant and T is standard symbol for the tem-
perature of IX gas. As outcome we see that the energy of PL line should increase
quadratically with B‖.

4.2.2 Brief overview of published experimental results

Parlangeli et al. published in 2000 their measurements of IX PL of DQWs in the sys-
tem GaAs/AlGaAs in the in-plane magnetic field, [8]. They applied previously intro-
duced model of the Gaussian damping to explain measured data. A very good agree-
ment between theory and experiment was achieved. They observed the quadratic
increase of the IX recombination energy with increasing B‖. The damping of IX PL
peak was as well in accordance with theory, in particular with Eq. (4.12).

Another experiment was performed by Butov et al., [9]. They studied the kinetics
of IX PL at a finite B‖. They showed the expected quadratic shift of IX PL energy
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as well as the damping of the IX PL line. However, their damping was substantially
slower with B‖ than Parlangeli et al. observed.

The recent experiments performed by our group are in contradiction to the above
mentioned theory and confirmation experiments, see [10, 11]. The IX line did survive
in the PL spectra of studied DQW structure up to high in-plane magnetic fields.
The total PL intensity of IXs remained unchanged or slightly decreased, but no
Gaussian damping was found. Orlita et al. explain in [11] the survival of the IX line
by the IX localization which enables the relaxation of the IX in-plane momentum,
whose conservation is responsible for the damping of the IX luminescence intensity
observed by other groups. This localization should be supported by a relatively
weak non-radiative recombination in comparison to the radiative one observed in
the studied DQW structure.

To conclude, the above presented measurements demonstrate that there is a strong
dependence of IX PL on specific parameters of samples like the exciton density, the
presence of localization centres, etc.

4.2.3 Density of states

With the knowledge of the energy position Ei(kx, ky) we are able to write down the
formula for density of states g(E) on the given energy E (the spin degeneracy is
already included)

g(E) =
2

(2π)2

∑
i=1,2

∫
1.BZ

δ(Ei(kx, ky)− E)dkxdky, (4.13)

where 1.BZ states for the first Brillouin zone. Further reading to this topic can be
found for example in [4].



Chapter 5

Landé g-factor

The changes (shifts and splittings) of the energy spectra of a particle or an atom
due to the presence of an external magnetic field are called Zeeman effects. The
study of Zeeman splittings and magnetic g-factors of free electrons, holes and bound
complexes such as exciton and trion can give us some information about the binding
energy of bound complexes, coupling between exciton states, etc. It is also relevant
for other phenomena. In this chapter we present a corresponding basic theory of
Zeeman splitting for an atom, an electron and a hole as well as for the bound
complexes in GaAs/AlGaAs.

5.1 Zeeman splitting in an atom

In most atoms there are several electron configurations (given by a set of quantum
numbers) giving the same energy, the energy levels are degenerate. The presence of
a magnetic field breaks the degeneracy resulting in the separated energy levels for
each electron configuration.

The Hamiltonian of an atom in a magnetic field is:

H = H0 +W , (5.1)

where H0 is the unperturbed Hamiltonian of the atom (without magnetic field) and
perturbation W can be written in the following form

W = i
|e|~
m0

~A∇− |e|~
2m0

~σ · ~B, (5.2)

where m0 is the reduced mass and −|e| is the charge of an electron, ~ is reduced
Planck constant. The operator ~σ is related to the spin angular momentum ~s of an
electron. This relation is given by equation ~s = 1

2
~σ. Note that we neglected the

term proportional to A2 arising from expansion of (~p− e ~A)2.

Putting the formula ~A = 1/2[ ~B×~r] into expression forW and using the definition

of an orbital angular momentum ~L (~L = ~r × (−i~∇)) Eq. (5.2) can be rewritten

18
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into

W = − |e|
2m0

(~L+ 2~s) · ~B = −~µ · ~B. (5.3)

We introduced ~µ, so called operator of magnetic momentum of an electron

~µ =
e

2m0

(~L+ 2~s). (5.4)

To simplify the later algebra we define the total angular momentum ~J by

~J = ~L+ ~s. (5.5)

We treat our Hamiltonian H = H0− ~µ · ~B in sense of the standard perturbation
theory. First of all we need to describe unperturbed eigenstates of an atom, we do
so with the help of a set of quantum numbers |njlm〉. We use the standard notation
of quantum mechanics which can be widely found in the literature, e.g. in [12, 13].

Now our task is to evaluate the matrix element of perturbation W using the
eigenstates |njlm〉,

〈njl′m′| − ~µ · ~B|njlm〉. (5.6)

To evaluate it we rewrite the expression for operator of magnetic moment of an
electron ~µ with the help of Eq. (5.5)

~µ =
|e|

2m0

(~L+ ~s+ ~s) =
|e|

2m0

( ~J + ~s) = Ĝ ~J, (5.7)

where we introduced new operator Ĝ. To express this operator we make a scalar
product of Eq. (5.7) with vector ~J . We obtain

Ĝ =
|e|

2m0

(
1 +

~J2 + ~s2 − ~L2

2 ~J2

)
, (5.8)

where we used the square of the Eq. (5.5).

Furthermore we use the action of operators ~J2, ~s2, ~L2, ~Jz on the eigenfunction
|njlm〉 which can be found in [12, 13]. The magnetic field ~B in the perturbation
term does not depend on coordinates, Eq. (5.3). Therefore we reduce our calculation
and evaluate the effect of perturbation W in following form (the magnetic field
~B = (0, 0, B) is parallel to the z axis):

〈njl′m′| − µzB|njlm〉 = 〈njl′m′| − ĜJzB|njlm〉

= −µB

(
1 +

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

)
mBδmm′δll′ . (5.9)

For the sake of brevity so called Bohr magneton appears in the last equation, µB =
|e|~
2m0

. There are following values of quantum numbers for electrons: s = 1/2, j =
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|l± 1/2|, l = 0, 1, 2, . . . , m = ±j,±(j− 1), . . . To simplify the last formula so called
Landé g-factor is defined:

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
. (5.10)

The energy of a level En,j in the presence of magnetic field is given by

En,j,l,m = En,j −mgµBB. (5.11)

The shifts of energy levels in the presence of magnetic field are symmetric to the
unperturbed value En,j. The difference between adjacent energy levels is given by

∆E = gµBB, (5.12)

and it is proportional to the Langé g-factor and to the induction of magnetic field.
The splitting described by Eq. (5.12) is called anomalous Zeeman effect. It was
observed experimentally before spin of an electron was theoretically discovered and
therefore a satisfactory explanation of this effect was missing.

In case of a spinless particle the Landé g-factor has value g = 1 and the distance
of adjacent energy level is for all states the same

∆E = µBB. (5.13)

The splitting of energy levels given by Eq. (5.13) is known as normal Zeeman effect.
In case of strong applied magnetic fields1 the coupling between orbital and spin

angular momentum is broken and each of them shows an independent reaction to
the magnetic field. The perturbation W in this case can be written

W = −~µ · ~B = −|e|B
2m0

( ~Lz + 2~sz). (5.14)

As unperturbed wavefunctions we choose |nlmlms〉. ml (ms) denote the projection
of the orbital (spin) angular momentum into the z axis, respectively. The correction
to the energy due to the presence of strong magnetic field is given by

∆Eml,ms = −µBB(ml + 2ms). (5.15)

The distance of adjacent splitted components is µBB. The splitting of energy levels
in strong magnetic fields described by Eq. (5.15) is called the Paschen-Back effect.

5.2 Landé g-factors of the electron and hole in GaAs/AlGaAs

Zeeman splitting, Landé g-factor and their dependencies on the well thickness L
and on the magnetic field have been investigated by many groups in GaAs/AlGaAs

1The splitting ∆E is greater than the doublet splitting of an level induced by magnetic field.
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type I and II quantum wells during last years. The analysis of measured spectra is
provided using the spin Hamiltonian formalism, mostly.

We consider first the Hamiltonian for bulk excitons. They consist of an electron
associated with the conduction band minimum and of a hole associated to the valence
band maximum. Van Kesteren et al. derived in [14] the Hamiltonian of a system
using symmetry considerations only2

Hex = He +Hh +He−h, (5.16)

where

He = µBge

∑
i=x,y,z

Se,iBi (5.17)

Hh = −2µB

∑
i=x,y,z

(κJh,i + qJ3
h,i)Bi (5.18)

are terms describing the Zeeman splitting of the electron and hole in the presence
of magnetic field, respectively, and term

He−h = −
∑

i=x,y,z

(aJh,iSe,i + bJ3
h,iSe,i) (5.19)

describes the spin-spin coupling of the electron and hole forming an exciton. The
cubic terms of J3

h,i are mostly much smaller than the linear ones and can usually be
neglected in calculations. The explanation of used parameters follows:

• µB is the Bohr magneton,

• ge is Landé g-factor of the electrons,

• κ and q are the Luttinger constants for the hole,

• a,b are the spin-spin coupling constants.

In GaAs/AlGaAs QWs the upper valence band is split into a light-hole band
with Jh,z = ±1/2 and a heavy-hole band with Jh,z = ±3/2. At low temperatures
the hole occupies the Jh,z = ±3/2 states predominantly. We assume, in accordance
with [15], that for the valence band the separation of heavy- and light-hole states
is much larger than any Zeeman splitting. To describe the sublevels of the heavy-
hole band we use an effective spin Σz = ±1/2. Under all these assumptions and
neglecting spin-spin coupling the Zeeman splitting of the electron and hole is given
by

He +Hh = geµB
~B · ~S − ghµBBzΣz. (5.20)

gh can be expressed in terms of Luttinger parameters

gh = 6κ+ 13.5q. (5.21)

2Therefore it is valid also for type I and II GaAs/AlGaAs quantum wells.
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5.2.1 The summary of published experimental results

Different experimental methods were used to determine the sign and the value of
Landé g-factors of the electron and hole. Some results were obtained already but
not all of them are in the mutual agreement. We try to summarize recent work in
this field in next paragraphs.

Van Kesteren et al. published in 1990 their work where they studied the excitons
in type II GaAs/AlAs QWs using optically detected magnetic resonance in zero and
in a finite magnetic fields, [14]. The substrate and cap were from GaAs, the inside
structure consisted of GaAs and AlAs layers. More samples with different widths of
GaAs and AlAs layers were studied. For Landé g-factor of the electron they found
out following values: ge,x = ge,y

.
= (1.97− 1.98); ge,z

.
= 1.9 which remained the same

for all samples. The results for the hole g-factor depend on the particular sample:
gh,x = gh,y < 0.01; gh,z = 2.3 (for 2.5 nm GaAs layers); gh,z = 2.9 (for 1.7 nm
GaAs layers). Van Kesteren et al. made the conclusion that the dependence of the
hole g value on the thickness of the GaAs layer is probably due to the valence band
mixing in the QWs.

The study of the magnitude and sign of the g-factor for conduction electrons in
type I GaAs/AlGaAs QWs was done by Snelling et al. in 1991, [16]. This group
used the combined measurement of decay time of PL and of the suppression of its
circular polarization under polarized optical pumping. Experimentally determined
values of ge as well as theoretically calculated ones are investigated with respect to
the well width. In theoretical calculations the 3-band ~k · ~p theory was used together
with the assumption of allowance for non-parabolicity of the bulk GaAs conduction
band and penetration of the electronic wavefunctions into the AlGaAs barrier. The
barrier Al content was 0.3. However, they found out that the penetration effect is
rather small for L ≥ 5 nm.
For L < 5 nm the electron is expected to spend much of its time in the barrier and
therefore its g value should become positive, reaching the AlGaAs bulk value ∼ +0.4
for L → 0 nm. With increasing well width (L ≥ 5 nm) the g value is expected to
approach monotonously the asymptotic value of bulk GaAs ∼ -0.44. So ge should
reverse the sign and cross zero axis around L

.
= 5 nm.

Snelling et al. published another paper in 1992 where besides the electron g-
factor the exciton and heavy-hole g-factor in type I GaAs/AlGaAs QWs were in-
vestigated, [15]. The barrier content was 0.36. This time they collected the exciton
PL from their sample using the polarizer to distinguish between the opposite cir-
cular polarizations, σ+ and σ−. The exciton g-factor gex was derived from their
measurements and using equation gex = ge + gh the hole g-factor was calculated (as
ge the above mentioned reference was used). With increasing well width L the hole
g-factor also increases, from negative values for small L (L < 8 nm) it becomes po-
sitive for large L (L > 8 nm). Because the theoretical calculations using Eq. (5.21)
and constant parameters κ and q do not reproduce the observed L dependence of
gh Snelling et al. conclude that Luttinger parameters κ and q may vary with L as
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well.
In 1996, Shields et al., [17], investigated the magnetooptical spectra of neutral

and negatively charged excitons in remotely doped 30 nm-wide GaAs QWs upon
their excess electron density. At this moment we point out just the result of ge

measurement: ge
.
= (0.42 ± 0.02) which is in a very good agreement with the bulk

value of GaAs ∼ -0.44 (apart from the sign which is always a little bit controversial
because it depends on sign convention used during computation).

The dependence of electron g-factor on the total density of the two-dimensional
electron system (2DES) was measured by Tutuc et al. in 2002, see [18], using
Shubnikov-de-Haas oscillations and in-plane magnetoresistance. They assumed g as
independent of the applied magnetic field. Their measurements were done by the
field at which full spin polarization was achieved. The values of measured electron
g-factor vary from 1.3 (total density of 2DES 0.8 × 1010 cm−2) up to 2.6 (n =
6.5 × 1010 cm−2). This is in contradiction with latest theory as this predicts that
with decreasing density of the 2DES the g-factor should monotonically increase.
Tutuc et al. suppose that it is due to the low disorder GaAs 2D electrons and holes.

One of the latest reports to this topic we found is the temperature dependence
of the conductivity and the magnetoresistance in parallel field of a high mobili-
ty 2DHG in GaAs/AlGaAs heterostructure which was measured by Proskuryakov
et al. in 2002, see [19]. The output of their measurements is the dependence of
magnetic hole g-factor on the hole density counted in accordance with the formula
g = (2EF )/(µBBS), where BS is the magnetic field corresponding to the full spin
polarization of the 2D system. They observed a linear behavior, increasing the hole
density the hole g-factor also increases, varying from value 0.4 for 1.5 × 1010 cm−2

up to 1.45 for hole density 8.2× 1010 cm−2.

5.3 Landé g-factor of the exciton in GaAs/AlGaAs

A neutral exciton X0 consists of one conduction-band electron and one valence-
band hole bound by the Coulomb interaction. We consider the heavy-hole band
only which is consistent with previous section. There are four basis states |Sz, Jh,z〉
for such a formed exciton:

e ↑ h ↓; e ↓ h ↑; e ↑ h ↑; e ↓ h ↓ . (5.22)

In zero field there are two doublets in which spins are parallel and antiparalell. In
a magnetic field applied parallel to the z axis there are further splittings of the
doublets. As we know from the selection rules only transitions with the total spin
change of±1 are optically allowed. Total spin change of +1 (-1) corresponds to right-
(left-) handed circularly-polarized PL light indicated by a solid (dotted) arrow in
Fig. 5.1. As we can see only two optically allowed transition are observable. The
corresponding splitting is given by [15]

∆1,2 = |ge + gh|µBBz. (5.23)
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Figure 5.1: The energy level diagram of the neutral exciton with two optically allowed PL
transitions. After reference [20].

According to the Snelling et al. the value of the exciton g-factor can be determined
using ge and gh values

gex = ge + gh. (5.24)

Since it is not possible to make an experimental distinction between the electron
and hole g-factors by using PL, the expression ge +gh is often labeled as an effective
exciton g-factor geff resulting in a splitting ∆E = geffµBB.

As described already in Subsection 5.2.1 the exciton g factor was measured in
1992 by Snelling et al., [15]. The dependence of gex on the well width L was investi-
gated. They observed the change of sign for L between 7.34 nm and 11.2 nm. They
made a conclusion that gex is negative for narrow wells and increases monotonically
together with the well width.

Recently the dependence of the exciton g-factor on the magnetic field (from 0
to 9 T) was studied by Glasberg et al. in PL spectra of GaAs/AlGaAs QWs, [21].
The value of ∼ +0.5 was found for gex at very low fields. For higher fields there is
the sign reversal and last reported value is ∼ −0.7 for magnetic field slightly above
7 T.

To demonstrate the fact that exciton g-factor and Zeeman splitting still attract
the attention of scientific world we report about PL measurement in magnetic fields
up to 50 T in different GaAs/AlGaAs QW samples published by Vanhoucke et al.
in 2001, [20]. The value gex = 1.5 for 10 nm wide QW was reported. However this
work did not confirm the previous conclusion about magnetic field dependence of
gex. Vanhoucke et al. conclude that gex does not depend on the magnetic field.
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Figure 5.2: The energy level diagram of the triplet and singlet state of the negatively
charged exciton with six optically allowed PL transitions. After reference [20].

5.4 Landé g-factors of the charged excitons in GaAs/AlGaAs

Charged excitons (also called trions) are expected to form when neutral excitons
are present in an environment with excess holes or electrons. The negatively (posi-
tively) charged exciton, often labeled as X− (X+), emerges when a third particle,
an electron (a hole), is bound to the neutral exciton, respectively. We will outline
some basic knowledge about trions, especially for negatively charged excitons. The
similar conclusion can be made also for positively charged excitons.

Since the two electrons forming X− are identical the well known Pauli’s exclu-
sion principle allows only an antisymmetric total wavefunction. So we can factorize
it into symmetrical (antisymmetrical) spin part with an antisymmetrical (symmet-
rical) space part, respectively. There is one possibility how to construct the an-
tisymmetrical spin wavefunction of two electrons, known as the singlet state X−

s ,
1/
√

2(e ↓ e ↑ −e ↑ e ↓). There are three possibilities how to construct the symmet-
rical spin wavefunction, known as the triplet state X−

t (can be found in Fig. 5.2).
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These states are degenerate, the degeneracy is removed in the presence of magnetic
field due to the Zeeman interaction determined by trion g-factor. In Fig. 5.2 we
consider the interaction of conduction band electrons (spin ±1/2) and heavy-holes
(spin ±3/2) only. The recombination of one electron and the hole can be observed
leaving one excess electron in the QW. There are in total eight different energy levels
for X− but only six of them are optically allowed due to the selection rules.

As total spin of the two electrons in singlet state is equal to zero the Zeeman
splitting is determined by the spin of the hole and hole g-factor only. However,
both transitions from the singlet level differ from each other in the final state of an
electron, consequently in spin projection of the final electron. Therefore the electron
g-factor has to be taken into account while determining the Zeeman splitting of X−

s

as well. For the triplet state it is clearly seen that both g-factors (ge and gh) play
a significant role. The observable Zeeman splitting is after Vanhoucke et al. given
by equation

∆E = (ge + 3gh)µBB. (5.25)

As mentioned before the straight determination of ge and gh is not possible from
PL spectra. Consequently the effective g-factor of negatively (positively) charged
exciton gX− (gX+), respectively can be defined by

∆E = gX±µBB. (5.26)

As ∆E usually the difference in PL energy between the σ+ and σ− component of
the singlet and triplet state is used.

The PL arising from the triplet states of charged excitons is observable in strong
magnetic fields. In our experimental results we deal with the PL arising from the
singlet state of charged excitons only.

The formation of both, singlet and triplet state of X− was observed by Shields
et al. already in 1996, [17]. The evolution of PL peak energies with magnetic field
was investigated in remotely doped 30 nm-wide GaAs/AlGaAs QWs, nevertheless,
no particular value of gX± was pointed out from their experiments.

One of the first values for gX− and gX+ were determined by Glasberg et al.
using the PL measurement in magnetic fields 0 to 9 T in GaAs/AlGaAs QWs,
[21]. Changing the illumination conditions they were able to control the density
and type of the excess carriers in the QW. Consequently they could resolve the
PL arising from the recombination of X− and X+ within the same sample. They
observed a magnetic field dependence of the g-factors gX− and gX+ , especially for
gX+ . Both g-factors show the positive sign and roughly the same value ∼ +0.5 at
low field and sign reversal after. With increasing the magnetic field the g-factors
decrease monotonically, reaching values slightly below -1 for gX−

s
, below -2 for gX+

s

at approximately 7 T.
In one of the latest measurements of PL in magnetic fields up to 50 T in different

GaAs/AlGaAs QW samples Vanhoucke et al. distinguished the singlet and triplet
states of X− trion, [20]. They outlined below mentioned effective g-factors of X−



Landé g-factor 27

trion for three different QW widths: 15 nm: gX−
s

= 1.3, gX−
t

= 1.4; 12 nm: gX−
s

=

1.9, gX−
t

= 2.1; 10 nm: gX− = 1.9 (as there was no experimental recognition of

different states of X− in this QW). Furthermore Vanhoucke et al. conclude that
gX− and gX+ do not depend on the magnetic field which is again in contradiction
with Glasberg’s measurements.

As we could see from the overview many special structures were designed to study
and enhance particular effects. A year ago a new sample consisting of a double-
barrier resonant tunneling diode RTD where the GaAs QW was embedded between
AlAs barrier was introduced by Teran et al., [22]. By varying the applied bias
and the intensity of illumination they were able to observe both, the negatively
and positively charged excitons. The formation of trions and their binding energy
was discussed. However, no particular value of gX± was pointed out from their
experiments.
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Experimental details

6.1 Experimental setup

Our measurements of PL in electric and magnetic fields were realized in the optical
laboratory, Department of Semiconductors and Semiconductor Optoelectronics of
the Institute of Physics, Charles University in Prague. The basic scheme of our
experimental setup is sketched in Fig. 6.1. We used the standard configuration where
the excitation photon energy exceeds the band gap of AlxGa1−xAs, so carriers are
supplied into the quantum wells by diffusion and drift from the surroundings barriers.
Luminescence was excited by a 25 mW semiconductor diode laser (λ = 633 nm).
We suppose that the excitation intensity per unit area is I0 ≈ 10 Wcm−2 after the
focusing of laser beam on the sample. This excitation density was lowered by the
neutral density filters. The PL was measured by a commercial FT-IR spectrometer.
The structure of our sample allowed us to apply a bias voltage Unn by means of
selective Ohmic contacts.

The measured sample was mounted into the cryostat of the superconducting
magnet Spectromag SM4000-11.5 Oxford Instruments. It allows us to measure PL
in the Faraday as well as in the Voigt configuration. The achievable magnetic field
varies within the interval 0 - 11.5 T, however, for below reported measurements 9.6 T
was the highest value we used. We can also vary the temperature inside the cryostat
within the interval ∼1.4 - 300 K. The temperature is measured by resistors Allan-
Bradley. Our experimental setup was supplemented with the new power supply from
Oxford Instruments this year. It simplifies the control over the adjustment of the
given value of magnetic field and increases the safety of operation in the laboratory.

The commercial Fourier spectrometer brand name IFS 66/S BRUKER was used
to analyze the measured data. The PL of DQW was detected by the Si diode. The
measured interval was 10000 - 14000 cm−1, (1.24 - 1.74 eV). The standard spectral
resolution, 2 cm−1 (0.25 meV), was used.
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Figure 6.1: The basic scheme of our experimental setup for measurements of electro- and
magneto-photoluminescence.

6.2 Sample TP982

Our sample was prepared by the Institute of Technical Physics I of Friedrich-
Alexander University in Erlangen, Germany (thereof the abbreviation TP in the
name of the sample).

The schematic picture of studied sample is sketched in Fig. 6.2. It was grown by
MBE (this technique was described in Subsection 2.3.1) at a temperature of 630 ◦C
on a semi-insulating GaAs substrate oriented in the [001] direction. The growth
started with a 400 nm-wide n-doped (Si, 1 × 1018 cm−3) GaAs layer, followed by
a 200 nm-wide intrinsic Al0.33Ga0.67As layer. Next, a sequence of two symmetric
DQWs with 14ML (≈ 4 nm)-wide Al0.33Ga0.67As central barrier was grown. The
well widths are 28 ML (≈ 8 nm). The growth then continued with a 200 nm-
wide intrinsic Al0.33Ga0.67As layer, followed by a 200 nm-wide n-doped (Si, 1× 1018

cm−3) GaAs cap layer. The measured devices were defined by photolithography,
mesa-isolated and selectively contacted to the bottom and to the top n-region. The
flat-band regime was achieved for Unn ∼ +0.2 V. The n-top (n-bottom) contact
was connected to the high (low) contact of the voltage source, respectively. The
possibility to vary Unn within the interval -1.5 V up to +2.0 V allows us to tilt the
DQW in both directions.

Initially we wanted to study two different mesa structures, B8 and B12. Un-
fortunately, the structure B12 did not show a good response to the applied bias
and the quality of measured spectra was insufficient. Thus all below presented ex-
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Figure 6.2: The schematic picture of studied sample TP982. The content of AlxGa1−xAs
in the middle barrier is 0.33 as well. The unit ML denotes the monoatomic layer, 1 ML .=
0.28 nm. Lengths are not in scale.

perimental results originate from the structure B8, sample TP982. The data were
obtained within several measurements during my work on diploma thesis. Due to
the readjustment of experimental setup it was not possible to keep all laboratory
conditions identical for all measurements. Therefore, the spectra measured under
the same conditions differ from each other slightly.
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Experimental results

7.1 Measurements without magnetic field

We start the presentation of our experimental results with the PL spectra of DQW
in the zero magnetic field at T = 5 K. In Fig. 7.1 we can see the voltage dependence
of PL from DQW. These spectra were chosen among all measured spectra at various
temperatures as the sample ones to illustrate the basic features.

As introduced in Section 3.1 the direct (DX) and indirect (IX) transitions are
clearly seen in Fig. 7.1. The inset in Fig. 7.1 is the schematic picture of the tilted
DQW, shown to explain the nature of DX and IX transitions. Below the energy
1.53 eV we can see the slight increase in the PL intensity. This does not originate
in the DQW. It is the background PL of the bulk GaAs (which was used as the
substrate).

An immediately noticeable feature in Fig. 7.1 is a clear asymmetry of measured
spectra with respect to the sign of Unn. This effect is more pronounced in Fig. 7.2.
It shows the voltage dependence of the peak energies deduced from spectra 7.1.
As stated in the growth protocol described in Section 6.2 the sample TP982 was
designed and grown as a symmetrical structure. Therefore, this asymmetry in PL
spectra with applied bias voltage is a little bit unexpected. We assume that this
asymmetry is induced by the damping of the excitation intensity in the sample as the
number of photo-generated particles decreases exponentially with the penetration
depth and by different effective thickness of the sample on sides of DQW where the
light is absorbed. The absorption coefficient at the used excitation energy can be
estimated as 2×104 cm−1 in GaAs and 104 cm−1 in AlGaAs. Since this penetration
depth is comparable with the thickness of our sample, different density of electron-
hole pairs is generated near the cap and the substrate layer.

In Fig. 7.1 we can see that under Unn = −0.7 V more peaks than DX and IX
can be resolved in PL of DQW. These peaks are labeled as A and B in accordance
with Zvára et al. [23] where the explanation of these new bands was suggested.
For the sake of completeness we will recall the basic assumptions and conclusions.
As mentioned earlier the tilting of the DQW induced by the applied bias voltage
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Figure 7.1: The PL spectra of DQW in the zero magnetic field, T = 5 K, excitation
power 0.2I0. An apparent brake near Unn = −0.7 V is caused by a non-equidistant step in
the voltage. The black lines are just guides for eye. The inset shows the tilted DQW with
schematically sketched DX and IX transitions.

leads to the localization of electrons and holes in the adjacent wells and to the
screening of the external electric field. Both the electrons and the holes become
degenerate in strong fields forming spatially separated two-dimensional hole (2DHG)
and electron gases (2DEG). We assume that our structure is neutral and that the
carrier density is less than 1011 cm−2 in our sample (it will be discussed below in this
section). According to Zvára et al. such densities are insufficient to screen excitonic
interaction efficiently, so our system should be described by excitons interacting with
other free carriers.

The formation of A and B peaks is more visible in Fig. 7.3, especially for Unn =
−0.5 V and Unn = −0.7 V. Both peaks are observed at a higher electric bias when
2D gases become degenerate. Due to the high density of electrons and holes in the
respective wells the excitons interact with other quasi-particles, forming quasi-stable
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Figure 7.3: The PL spectrum of DQW
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citation power 0.5I0. The new bands A
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just guides for eye.

many-particle complexes (such as negatively or positively charged excitons).
The position of band A changes only slightly with Unn, see Fig. 7.2. Thus Zvára

et al. conclude that the band A should be related to the direct exciton DX localized
in one well coupled to a hole from 2DHG in the adjacent well (positive trion). The
band B should be related to the direct exciton DX localized in one well but coupled
to an electron from the 2DEG in the adjacent well (negative trion). For details see
[23].

7.1.1 Excitation dependence of PL spectra

Using the neutral density filters we changed the illumination conditions during our
experiments. We could reduce the excitation power to 50%, 20%, 10%, 5%, 2% and
1% of its original value. The measurements for all these intensities were done in
zero magnetic field under various applied biases and temperatures. We selected one
illustrative set of spectra, see Fig. 7.4. It shows the excitation dependence of PL
from DQW in zero magnetic field under Unn = −1.2 V, T = 5 K. We will describe
it in following paragraphs.
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Figure 7.4: PL spectra of DQW as a function of the excitation power in the zero magnetic
field, T = 5 K, Unn = −1.2 V.

An immediately noticeable feature in Fig. 7.4 is the increasing of the PL intensity
with the increasing excitation power, reflecting the apparent increase in the density
of electron-hole pairs generated by this excitation. Let us note that with the rising
excitation power the effective temperature of particles increases as well and therefore,
lower excitation densities were preferred in our experiments. The majority of our
experiments was done using 20% and 50% neutral density filters. We considered
that as a reasonable compromise between the density of generated particles and the
detected PL signal.

Another clearly recognizable feature seen in Fig. 7.4 is the shape of measured PL
lines. For low excitation intensities only direct and indirect transitions are observed.
A slight indication of another transition below the DX peak can be seen in the spec-
trum with 50% neutral density filter used (pink line). When no neutral density filter
was used (100% excitation) third peak in energy below DX is clearly distinguishable
(dark green line). We assume that this is a bound complex of particles, especially
the negative trion (the reason why we identified it as negative trion and not positive
will be explained later on in this chapter). There are enough free particles to bound
such a complex when such a high excitation intensity is used. Moreover, the energy
difference between negative trion and DX peak is ∼3 meV which also supports our
assumption to assign this third peak as the trion. It is not much higher than the
reported value ∼1.8 meV for negative trions in single QWs, see [21].
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Now we discuss the shift of the IX energy position with the excitation power.
For the sake of clarity, this feature is depicted separately in Fig. 7.5. Please note
that all excitation spectra are presented for Unn = −1.2 V. Increasing the excitation
power the energy of the IX transition increases as well. Concerning the energy
of the IX transition, the increase of the excitation intensity at a constant Unn is
thus equivalent to the decrease of the applied bias on the structure at a constant
excitation intensity. When many carriers are created they can screen the external
electric field more efficiently. The tilt of DQW is then lower and the energy of IX
transitions is willing to approach the energy of the direct ones, it increases.

It is noteworthy that the dependence of the IX energy on the excitation density
can be roughly described by a logarithmic function, see Fig. 7.5. The similar study
of the blueshift of the IX energy on the excitation power in biased coupled quantum
wells was performed by Negoita et al. [24]. Their sample consisted of a single pair
of 6 nm-wide GaAs quantum wells separated by a 4.2 nm-wide Al0.3Ga0.7As barrier,
surrounded by thick, pure AlAs barriers. Negoita et al. investigated the blueshift of
IXs using a laser tuned to the DX resonance (therefore no free carriers were created).
They observed similar behavior of the energy of the IX transition as a function of
the excitation power as we did in Fig. 7.5. Their explanation of this logarithmic
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increase supposes a linear shift at the low density which saturates to another linear
shift at higher densities. In [24] Negoita et al. conclude that there are two ways how
to envision a density-dependent IX blueshift. First free electrons and holes created
by the laser screen out the perpendicular electric field or screen out the electron-hole
Coulomb interactions. Second the energy shift is primarily a many-body effect of
the exciton-exciton interactions. Negoita and co-workers proposed in [24] several
different ways how to envision these interactions:

• the screening of the excitons by each other reduces the binding energy of the
excitons,

• the excitons screen out the perpendicular electric field which reduces the quan-
tum confined Stark shift,

• the long van der Waals attraction of the excitons is screened out, leaving a
greater overall repulsion between the excitons due to Pauli exclusion,

• the excitons can be viewed as the repulsive point particles and the blueshift
can be viewed as due to the mean-field interaction self-energy.

However, a proper theoretical treatment is still necessary. From time-resolved results
Negoita et al. conclude that their blueshift of IX line (about 25 meV) is primarily
a many-body effect caused by the large dipole-dipole interaction of the IXs, which
is partially canceled by the effect of lattice heating at higher density (therefore they
used two different linear shifts to describe it). They excluded the screening caused
by free carriers due to the DX tuned laser.

We used the knowledge of the dependence of the IX peak energies on the ex-
citation power to calculate approximately the density of photocreated carriers in
our DQW. First the screened electric field Ẽ was calculated from the shift of IX
transitions. The external electric field E is defined by applied bias voltage and the
distance between the metallic contacts on the structure. Finally, we determined the
density of carriers using the approximate concept that two wells of DQW can be
assigned to two planes of the plane capacitor. Our computation is in accordance
with the theory presented in [23] by Zvára et al.

Ẽ = E − σ

2ε0εr

, (7.1)

where σ is the charge density in a single well (left of right) and εr = 12.5 is the
relative dielectric constant. The calculated densities of photocreated carriers are de-
picted in Fig. 7.6. The results of our calculations refer to the comparable conditions
of our sample to the Zvára’s sample from the density point of view. We shell persist
in their interpretation of A and B peaks here.
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Figure 7.7: The temperature dependence of PL from DQW in the zero magnetic field under
applied bias Unn = −1.1 V, excitation power 0.5I0.

7.2 Measurements in in-plane magnetic field

Our measurements of PL from DQW in the in-plane magnetic field were motivated
by the contradiction in experimental results published recently by our and other
groups as was mentioned in Subsection 4.2.2. Since the recombination of IXs via
localized states was proposed in recent papers [10, 11] of our group to overcome this
contradiction we have decided to study the temperature dependence of IX PL to get
some insight into the localization mechanism of IXs. We present here the measured
spectra in zero as well as in finite in-plane magnetic fields and therefore a reasonable
comparison can be made.

Let us focus the discussion on Fig. 7.7 with the temperature dependence of
PL from DQW in the zero magnetic field at Unn = −1.1 V for excitation density
I = 0.5I0. Increasing the temperature the PL of IX transitions remains clearly
visible. Even at T = 20 K the IX transitions are well defined and distinguishable
in the PL spectra. The relative decrease of the IX PL with increasing T is caused
by thermally induced enhancement of the population of DX states. These states
recombine much faster than the IX ones.

Another feature observable in Fig. 7.7 is a formation of new peak below the DX
transitions which appears above T = 12 K. Its intensity increases simultaneously
with the lowering of the DX PL. This peak corresponds to peak A in Fig. 7.3. It
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Figure 7.9: The temperature dependence
of PL from DQW in the in-plane magnetic
field 8 T at Unn = −0.7 V for excitation
power 0.5I0.

appears in all measured spectra in the in-plane magnetic field and will be discussed
later on in this section.

Having discussed that the PL of IX transition does not vanish with increasing
temperature in the zero magnetic field we present our measurements at the finite
in-plane magnetic field of B‖ = 8 T. Two sets of PL spectra are shown. The first
of them, Fig. 7.8, was taken at Unn = −0.3 V where DX transitions and trions are
observable, only. No IX transitions are present. The second set of measured spectra
in Fig. 7.9 shows the PL of DQW under Unn = −0.7 V. The DQW is already tilted
enough and spatially indirect excitons are formed. We can surely identify the IX
transitions within the temperature interval ∼1.4 K - 12 K. For T higher than 12 K
the IX transitions are not recognizable in our spectra.

To explain this thermally induced quenching of IX PL line, we turn our attention
to the basic theory presented in Subsection 4.2.1, which predicts the B‖-induced
damping of PL line arising from free indirect excitons. Let us assume that indirect
excitons formed in our sample are not free but they are localized. In such a case there
is a possibility for an indirect exciton to pass its momentum to the localization center
and recombine in a radiative way. Consequently, the law of particle momentum
conservation is fulfilled and the PL arising from these IX states can be observed.
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Figure 7.11: The temperature dependence
of PL from DQW in the in-plane magnetic
field 6 T under Unn = −1.3 V, excitation
power 0.5I0.

Increasing the temperature the localized indirect excitons become free due to the
thermal excitation. They relax into the dispersion minimum which is placed at
~P = (|e|B‖∆, 0, 0) in the reciprocal space. Hence, they are not optically active and
consequently, the decline of IX PL is observed.

In our opinion, the above presented measurements elucidate the discrepancy
among different works [8, 9, 10, 11] discussed in Subsection 4.2.2. Based on our
findings we interpret the apparent contradiction as a result of different localization
of IXs in different samples. The damping of IX concerns of free exciton PL, the
steady IX PL corresponds to the PL of localized IX. The release of localized IX is
caused by the temperature rise.

We will describe now the peak below the DX transition mentioned at the be-
ginning of this section. The peak A is observable in the zero magnetic field as well
as in the finite in-plane magnetic fields. We assume that this peak corresponds to
the recombination of complex particle consisting of an electron or a hole bound to
the neutral exciton, often referred to as the negatively or positively charged exciton.
For low temperatures the intensities of IX and DX peaks are high and only a weak
indication about formation of peak A is present. Increasing the temperature the
intensity of IX peak decreases. The localized indirect excitons escape from locali-
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zation centres and become free. Simultaneously, the intensities of DX and A peaks
increase. We assume that free excitons bind another particle and form trions. This
assumption is confirmed in Figs. 7.9 and 7.10 where the intensity of the peak A
is higher than the intensity of the DX peak from T = 8 K up to T = 25 K. At
T = 25 K the intensity of the peak A starts to decrease and simultaneously, the
intensity of DX transition increases again. We assume that trions dissociate at this
temperature into an exciton and another particle (an electron or a hole). If this
interpretation is correct the intensity of DX peak should increase again. A weak
indication of increasing DX intensity at T above 25 K is deducible in our spectra
in Fig. 7.9 as well as in Fig. 7.10. Another hint that our assumptions about the
rearrangement of particles from exciton into trionic states and vice versa are correct
is given by the total integral PL intensity depicted in Fig. 7.10. While the intensi-
ties of individual peaks change with temperature the total integral intensity remains
roughly the same. This finding confirms that none of recombination mechanisms is
connected with a localization of recombining species on a particular defect, where
one could expect a distinct increase of the nonradiative recombination. However,
to proof our assumptions further measurements at higher temperatures should be
performed.

We measured the temperature dependence of IX PL in the finite in-plane mag-
netic fields at various values of the magnetic field B‖. We present here another set
of PL spectra at B‖ = 6 T for an illustration in Fig. 7.11. In the left part of this
figure the increasing intensity of all spectra is observed. It is the contribution from
bulk GaAs as mentioned previously.

7.3 Measurements in perpendicular magnetic field

In this section, we present our measurements in the perpendicular magnetic fields up
to Bper = 9 T. We explain our assignment of peaks to the negatively and positively
charged excitons as promised before. At first we will discuss the voltage dependence
of PL from DQW attained at the excitation power 0.2I0. Our discussion will then
continue with the excitation power dependence measured approximately at the same
effective electric field on DQW.

Typical PL spectra of DQW in the perpendicular magnetic field as a function
of applied bias Unn are shown in Fig. 7.12. These particular spectra were taken at
Bper = 9 T, T ∼ 1.4 K and the excitation power I = 0.2I0. In experiment, we
detected both circular polarizations of the emitted signal, i.e. the right-handed σ+

and left-handed σ− components. The assignment of the individual polarizations is in
agreement with the theory presented by Vanhoucke et al. in [20]. It was confirmed
as well from our experimental setup geometry. Red (blue) line stands for the σ−

(σ+) polarization in all below presented PL spectra, respectively. Fig. 7.12 shows
the behavior akin to Fig. 7.1 depicted for the zero magnetic field. The formation of
direct and indirect transitions is nicely visible. The flat band regime was achieved
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Figure 7.12: The PL of DQW for both polarizations σ+ and σ− in the perpendicular
magnetic field 9 T at T ∼ 1.4 K, excitation power I = 0.2I0.
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Figure 7.13: A schematic picture of two considered configurations of the valence and con-
duction bands according to the relation between ge and gh.

approximately at Unn ∼ +0.2 V.
One special feature of peaks below DX transition is worthy seeing in Fig. 7.12.

Focusing our attention on spectra within the bias intervals (−1.5 V; −1.1 V) and
(0.2 V; 2.0 V) we see that in energy lower lying transitions (σ− polarization) show
higher intensity than in energy higher lying ones. Taking account of the carrier ther-
malization, this behavior is expectable. Nevertheless, within the interval (−0.9 V;
0 V) we see just the opposite.

We attempt to explain such a peculiarity using a simple model depicted in
Fig. 7.13 where the conduction band for electrons and the valence band for heavy
holes are sketched. Both bands are splitted into two parts, each half corresponds
to one spin state of the particle (spin up ↑ or spin down ↓). Usually, the con-
ditions ge < 0; gh > 0 and |ge| < |gh| are supposed for g-factors in the system
GaAs/AlGaAs. The model sketched in Fig. 7.13a is drawn in accordance with these
assumptions. In the following discussion, we generally use symbols E+ and E− to
denote upper and lower energies, respectively. We will even see that (for our data
only and not in general) E+ corresponds to the polarization σ+ and E− to σ−.

The model in Fig. 7.13a describes well the observed intensity behavior of neutral
excitons (EX). An electron e↑ with a hole h↓ recombine together on energy E+

emitting a photon. An electron e↓ with a hole h↑ forming a neutral exciton recombine
together on energy E−. The splitting of the valence band plays a dominant role in
this model. Due to the thermal occupation there are more holes with spin up h↑ and
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therefore, the recombination process on energy E− should be more pronounced in PL
spectra. Our measurements confirm this conclusion. Unfortunately, this model fails
when it is applied on the intensity behavior of charged excitons which are observed
in Fig. 7.12.

We assign the peaks below DX transitions to the trions, in particular to the
positive and negative trions for the positive and negative bias Unn, respectively. We
suppose that this fact results from the previously mentioned strong inhomogeneity
in generation of electron-hole pairs above and under DQW. Applying positive Unn

holes are predominantly supplied into the well whereas the negative bias leads to
the excess of electrons in the DQW. Henceforward, the positive and negative trions
will be denoted as PT and NT, respectively.

Let us now discuss the positive applied bias and consequently the behavior of
positive trions. In a very naive picture, two kinds of positive trions can be formed.
They differ just in orientation of the electron spin as spin configuration of holes is
given by the Pauli’s exclusion principle. We will denote them as PT+ (e↑ h↓ h↑)
and PT- (e↓ h↑ h↓).

(e↑ and h↓) recombine together from PT+ emitting a photon of energy E+,
leaving a hole h↑ in the valence band. In similar way, (e↓ and h↑) recombine together
from PT- on energy E− and a hole h↓ is left. We assume that there are more
electrons with spin up e↑ due to the thermal distribution. As depicted in Fig. 7.13a
E+ is higher than E− due to the bigger Zeeman splitting of the valence band. The
transition at energy E+ should be more pronounced in PL spectra as there are more
electrons e↑. Its intensity should be higher than the intensity arising from PT-
recombination on energy E−. However, having a look at our data in Fig. 7.12 we
realize that our results do not agree with this simple model. We observe exactly the
opposite. Nevertheless, this discrepancy would be explained leaving assumptions
ge < 0; gh > 0 and |ge| < |gh| done previously.

Therefore, let us change these inequalities into the exactly opposite: ge > 0; gh <
0 and |ge| > |gh|. This will change the spin splitting of both bands resulting in the
situation sketched in Fig. 7.13b. The splitting of the conduction band is now higher
than the splitting for the valence band. We will discuss the negative trion, for
completeness. Again, we get two possibilities how to form NT due to the Pauli’s
exclusion principle: NT+ (e↑ h↓ e↓) or NT- (e↓ h↑ e↑). In this case the splitting
of the conduction band decides about the recombination energy. According to the
scheme in Fig. 7.13b, the recombination energy E+ is higher than E−. We assume
that there are more holes with spin down h↓ due to the thermal occupation. Thus
the intensity of the NT+ recombination should be higher than the intensity arising
from the NT- recombination. We really observe this behavior. In Fig. 7.12 we see
that the higher energy peak shows higher intensity than the peak at the lower energy
for negatively charged excitons within the bias interval (−0.9 V; 0 V).

Hence, our experimental data are in agreement with the suggested model just
when in the system GaAs/AlGaAs unusual conditions ge > 0; gh < 0 and |ge| > |gh|
are taken into account. We are aware that this conclusion is rather ambitious, since
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Table 7.1: The values of the effective g-factors of neutral excitons at various bias Unn and
magnetic field Bper. For empty spaces no corresponding spectrum was measured.

9 T 8 T 7 T 6 T 5 T 4 T 2 T

2.0 V 0.68 0.67 0.39
1.5 V 0.67 0.65 0.40 0.44 0.21 0.27 0.19
1.0 V 0.60
0.7 V 0.62 0.64 0.42 0.43 0.19 0.11 0.16
0.4 V 0.63
0.2 V 0.67 0.56 0.38 0.42 0.20 0.11 0

0 V 0.62 0.55 0.42 0.42 0.22 0.14 0
-0.5 V 0.63 0.65 0.48 0.43 0.27 0.15 0.06
-0.7 V 0.61
-0.9 V 0.61

-0.95 V 0.63
-1.0 V 0.69 0.70 0.52 0.42 0.14 0.16 0.10

it contradicts the majority of up to now published experimental results. Another
plausible explanation of the analyzed task is an improperly described source of
the charging of DQW. We have expected above that the charge is supplied into
DQW from the top contact, where most of the light is absorbed. This expectation,
however, would not have been correct. At first, the absorption constant profile
in the structure is not known well enough to describe absorption on both sides
of DQW precisely. At second, the nonradiative recombination in the cap layer
could be significantly higher than that in the substrate layer. Such effect would
consequently revert above expected model conditions and the model 7.13a would be
valid. Therefore, further experimental investigations in this direction are definitely
necessary, as well as considerations about the relevance of the used theoretical model.

7.3.1 Effective g-factors

The PL signal from the studied sample has been investigated in a wider range of
parameters than shown in Fig. 7.12. Different values of the perpendicular magnetic
field were set up, as well as various values of the bias voltages were applied to
the structure. We do not show all these spectra here as they exhibit very similar
behavior as those in Fig. 7.12. We present the calculated values of the effective
g-factors for neutral, indirect, positively and negatively charged excitons.

The g values were calculated in accordance with the theory presented in Chapter
5 by means of Eq. (5.26) where the quantity ∆E was taken as the Zeeman splitting
between the circular polarizations σ+ and σ−. We found out that the g-factors for
all bound complexes (EX, NT, PT) depend on the magnetic field. Moreover, there
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Figure 7.14: The voltage dependence of
the effective g-factor of neutral exciton for
various magnetic fields at T ∼ 1.4 K, excita-
tion power I = 0.5I0.
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Figure 7.15: The magnetic field depen-
dence of the effective g-factor of neutral ex-
citon for various Unn at T ∼ 1.4 K, excitation
power I = 0.5I0.

is a rather strong dependence on the applied bias, especially for indirect excitons.
At first let us present our results for neutral direct excitons. All extracted values

of the g-factor are summed up in Tab. 7.1 and depicted in Figs. 7.14 and 7.15.
For low magnetic fields there is quite a big experimental error in determining the
Zeeman splitting and thus the calculated g values have to be weighted with respect
to this error. Based on our data, we conclude that absolute value of the g-factor
tends to decline significantly with decreasing magnetic field for all measured Unn.

Values summarized in Tab. 7.2 show that geff of IXs achieves at low magnetic
fields considerably higher values than for neutral DXs. We assume that an electron
and a hole forming IX are widely separated from each other in comparison to DXs.
Therefore, their particular g-factors do not affect each other so much and finally
do not give the zero limit for the effective g-factor of indirect exciton. Moreover,
IX interact with the electron gas in the wells and their g-factor can be increased in
this way. The calculated values of IX effective g-factor are 1.33, 1.44 and 2.12 for
Unn = −1.0 V, −1.3 V and −1.5 V at low magnetic fields, respectively.

Increasing the magnetic field the neutral exciton effective g-factor increases as
well and reaches the value of 0.6 - 0.7 at Bper = 9 T. In these fields the surroundings
of an exciton become polarized. The interaction of an exciton with surrounding, in
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Figure 7.16: The voltage dependence of
the effective g-factor of negatively charged
and indirect exciton for various magnetic
field at T ∼ 1.4 K, excitation power I =
0.5I0.
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at T ∼ 1.4 K, excitation power I = 0.5I0.

spin polarized particles is of an order B2
per and has not been considered in Eq. (5.23).

Hence, the g values can be increased at higher magnetic fields. The magnetic field
dependence of the effective g-factor of the neutral exciton is shown in Fig. 7.15.

Now we compare our results with those already discussed in Section 5.3. Snelling
et al. [15] showed that the sign of g-factor changes with the well width. They
concluded that for narrow wells the sign of g-factor for the neutral exciton is negative.
It should cross zero above L ≈ 7 nm and further on remain positive. The well widths
in our DQW are ∼8 nm. As can be seen from Tab. 7.1 all values of the effective
g-factor are positive in accordance with Snelling’s conclusions. Nevertheless, the
comparison of results achieved on single and double QWs can be misleading.

Such an agreement is not attained when the result from Glasberg et al. [21] are
considered. According to them, the g-factor of the neutral exciton is ∼0.5 for low
magnetic fields then changes its sign and reaches the value of ∼-0.7 at fields above
Bper = 7 T. The g values calculated from our measurements do not exhibit any sign
reversal.

Another reference for g-factor of the neutral exciton can be found in Vanhoucke et
al. [20]. The magnetic field dependence was investigated up to fields of 50 T. The
reported g-factor of the neutral exciton was ∼1.5. We did not get such a high value
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Table 7.2: The values of the effective g-factors of indirect excitons and negatively charged
excitons for various bias voltage and magnetic field. The indirect exciton interacting with the
electron gas in the wells appears from Unn ≈ −0.9 V down to Unn = −1.5 V. For empty spaces
no corresponding spectrum was measured.

9 T 8 T 7 T 6 T 5 T 4 T 2 T

0 V 0.69 0.36 0.51 0.48 0.40 0.25 0.15
-0.5 V 1.15 0.98 0.99 0.96 1.06 0.96 1.19
-0.7 V 1.23
-0.9 V 1.48

-0.95 V 2.03
-1.0 V 2.33 2.29 1.85 1.63 1.29 1.07 1.33
-1.1 V 2.68
-1.3 V 3.14 3.13 2.00 2.54 1.70 1.54 1.44
-1.5 V 3.43 3.25 2.07 3.49 2.39 1.90 2.12

Table 7.3: The values of the effective g-factors of positively charged excitons for various bias
voltage and magnetic field. For empty spaces no corresponding spectrum was measured.

9 T 8 T 7 T 6 T 5 T 4 T 2 T

2.0 V 1.42 1.33 1.19
1.5 V 1.32 1.14 0.96 0.66 0.68 0.42 0.47
1.0 V 1.08
0.7 V 1.04 0.92 0.82 0.61 0.63 0.39 0.41
0.5 V 1.05
0.4 V 1.04

from our calculations, however, we worked with magnetic fields up to 9 T only.
Nevertheless, there is an indication in Tab. 7.1 that the g value could rise with
increasing magnetic field.

Let us focus our attention on the charged excitons now. The calculated g values
of the negative trion and indirect excitons are summed up in Tab. 7.2 and depicted
in Figs. 7.16 and 7.17. Similarly, the g values of the positive trion are presented in
Tab. 7.3 and depicted in Figs. 7.18 and 7.19. The g-factors are remarkably higher
than those for neutral exciton. We assume that it is caused by the presence of
the third particle which effectively increases the g-factor of charged excitons. The
change of their effective g-factors with the magnetic field is lower than it was for
neutral excitons.

Now we discuss our accordance or contradiction with already published experi-
mental data of other groups. A detailed summary of it was already provided in the
Section 5.4. Glasberg et al. [21] reported positive signs of g-factors for low magnetic



Experimental results 48

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4 T ~ 1.4K
I=0.5I0

 

 
g ef

f o
f p

os
iti

ve
 c

ha
rg

ed
 e

xc
ito

n

Applied Voltage (V)

Bper=
 9T
 8T
 7T
 6T
 5T
 4T
 2T

Figure 7.18: The voltage dependence of
the effective g-factor of positively charged ex-
citon for various magnetic fields at T ∼ 1.4 K
and excitation power I = 0.5I0.
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dence of the effective g-factor of positively
charged exciton for various Unn at T ∼ 1.4 K
and excitation power I = 0.5I0.

fields and estimated value of ∼0.5. Our measurements confirm the positive sign of
g-factors for both types of charged excitons, but the absolute value of the g-factor
only for the positive ones. Our calculated value of g-factor for negative trion is
within the interval 0.15 - 1.33 and depends strongly on the applied bias voltage.
Glasberg et al. observed the sign reversal and negative values of g-factors for fields
above Bper = 7 T. Again, we are in contradiction with their measurements as we do
not observe any sign reversal for charged excitons.

Let us recall the value of ∼1.9 for the g-factor of the negative trion in a single
QW 10 nm-wide reported by Vanhoucke et al. [20]. The width of the investigated
well is the closest value to our well widths ∼8 nm. Nevertheless, a direct comparison
of Vanhoucke’s results with our data is not possible as g-factor strongly depends on
well width according to Snelling at al. [15]. However, we see that our values lying
within the interval 0.15 - 2.33 are of the same order as those of Vanhoucke et al..
For the sake of completeness, we should mention that we are in contradiction to this
work in one part, particularly in the magnetic field dependence of the g-factor of
negatively charged excitons. Vanhoucke et al. did not observe any dependence on
the magnetic field, but we do, see Tab. 7.2 and Fig. 7.17.

At the end of this subsection we summarize few basic outcomes of calculated
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g-factors of indirect, neutral and charged excitons:

• The absolute value of the effective g-factor for a neutral direct exciton is in
the limit of low magnetic fields significantly lower than for trions and indirect
exciton.

• We observe a very strong dependence of geff on applied Unn, especially for
indirect excitons.

• We observe the magnetic field dependence of geff for all bound complexes.

• We do not observe any sign reversal of geff for all bound complexes.

7.3.2 Excitation dependence of PL spectra

Having investigated the g-factors of trionic and excitonic states in DQW, an appeal-
ing question about the origin of a strong rise of the g-factor for IXs appeared. This
dependence is clearly seen in Tab. 7.2 or in Fig. 7.16. In order to find an explana-
tion for it, we have established two basic models and performed the experiment to
find out some arguments allowing of the decision about their relevance. At first we
describe these models and after that we show achieved experimental data.

The first model supposes an increase of IX g-factor due to the interaction with
other particles in the DQW. Since the tilting of DQW leads to the increase of the IX
lifetime and consequently to the rise of their density, the enhanced g-factor of IXs
would simply reflect the increased strength of the many-body interactions at higher
IX concentrations.

The second model is related to the barriers surrounding both wells. Since the
g-factors of electrons and holes in the quantum well and in the barriers strongly
differ, cf. e.g. g-factors for the electron ge = −0.44 in bulk GaAs and ge = 0.42
in bulk Al0.33Ga0.67As [2], any changes in probabilities of particles to be found in
barriers should strongly affect the observed g-factor. As the tilting of DQW in-
duced by the applied bias Unn strongly modifies electron and hole wavefunctions,
the experimentally observed increase of g-factor could be given by the change of the
tunneling efficiency into surrounding barriers.

The PL from DQW was measured in the perpendicular magnetic field Bper =
9 T under various excitation intensities. The temperature was set to ∼ 1.4 K.
A particular bias Unn was chosen for each excitation power in order to achieve
approximately the same tilting of the DQW. In other words, the energy of the IX
transition was kept constant. The measured spectra are presented in Fig. 7.20. The
values of excitation power and applied bias are written nearby each corresponding
PL line.

The Zeeman splitting and the ratio of peak intensities σ+/σ− were extracted
from PL spectra in Fig. 7.20 and plotted into Fig. 7.21. We did not find any notice-
able effect that the Zeeman splitting changes within the interval of used excitation
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Figure 7.20: The excitation dependence of
PL intensity for both polarizations σ+ and
σ− in the perpendicular magnetic field 9 T
at T ∼ 1.4 K measured approximately at the
same effective electric field inside the struc-
ture.
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powers. It remains almost the same within the experimental error for all excita-
tion power used1 but the intensity ratio dramatically changes with the change of
excitation power.

No noticeable change of Zeeman splitting indicates that the effective g-factor of
indirect excitons remains unaffected by the IX density inside DQW, which contra-
dicts the first suggested model. Therefore, the second proposed model seems to be
more appropriate. Unfortunately, the lack of published experimental data does not
allow a comparison of these results with independent ones.

Nevertheless, even though the second model seems to be more suitable, the first
one cannot be simply refused. The decrease of the excitation density, causing the
damping of the IX concentration, simultaneously leads to the strong decline of the
effective temperature of the IX gas. This lowered temperature brings about stronger
spin polarization as clearly seen from the ratio σ+/σ− depicted in the Fig. 7.21. This
enhanced polarization strengthens the many-body interactions in the IX gas and can
at least partially compensate the effects of decreasing IX density.

1It was not possible to extract the Zeeman splitting value for excitation power 0.05I0. The
position of IX peak for σ+ polarization is not well defined.
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Since the achieved data do not allow a definite decision on the relevance of both
models further experiments are desirable. In particular, measurements in a wider
range of excitation densities would certainly help in the explanation of the discussed
effect and should be therefore realized.



Chapter 8

Conclusions

We summarize the main achieved results of this diploma thesis in the next para-
graphs.

• The PL spectra of DQW were measured in dependence on electric and mag-
netic fields, different excitation power as well as on various temperatures. Due
to our experimental setup and geometry of the sample we could observe si-
multaneously both the neutral and charged excitons within the same sample.

• The special attention was given to the temperature dependencies of the in-
direct transitions in the finite in-plane magnetic field. For low temperatures
no damping of IX PL was observed. To explain the discrepancy between our
group (no IX PL damping) and Parlangeli’s group (the IX PL damping was
observed at low fields) a simple model of localized indirect excitons was dis-
cussed. Our measurements partly confirm the model of IX localization which
was proposed by our group few years ago. In this thesis presented experimen-
tal results really indicate that the localization of IX plays a crucial role in IX
recombination.

• The Zeeman splitting was determined from many polarization-distinguished
spectra for various values of Unn and perpendicular magnetic field. Thereafter
the effective values of g-factors were calculated for the direct and indirect, as
well as neutral and charged excitons. We proposed and discussed few models
to describe the behavior of geff . We found out that the g values are rather
small for neutral exciton at low fields (almost equal to zero) while they are
approaching much higher values for charged and indirect excitons. Only few
publications can be found on this topic and some of them are in the contra-
diction with each other. Therefore, further experiments need to be performed
so some definite conclusions can be formed on the basis of observed data.
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