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and Université de Grenoble

for the degree of Doctor of Philosophy

Jan KUNC

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



This thesis was submitted by:
Jan KUNC
Enrolled in PhD study program: Physics, quantum optics and
optoelectronics (F-6) since 2006 at the Charles University, Prague and
Enrolled in PhD study program: Physique, physique des materiaux since
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List of Latin symbols

a∗0 effective Bohr radius
B magnetic field
d degeneracy of Landau levels
dQW width of quantum well
e elementary charge (e = 1.602× 10−19 C)
EC energy of bottom of conduction band
EF Fermi energy
Eg energy of forbidden gap
En,e energy of the bottom of nth electronic subband
En,hh energy of the top of nth heavy hole subband
En,lh energy of the top of nth light hole subband
EV energy of top of valence band
g Landé g-factor
G Density of states at arbitrary magnetic field
G0 Density of states at B = 0 T
ge Landé g-factor of electrons
gh Landé g-factor of heavy holes
h Planck constant (h = 6.626× 10−34 Js)
h̄ reduced Planck constant h̄ = h/2π = 1.055× 10−34 Js
jz projection of angular momentum l = 3/2 in the quantization axis,

hole spin state
kB Boltzmann constant (kB = 1.38× 10−23 J/K)
kF Fermi wave vector
m0 free-electron mass (m0 = 9.1× 10−31 kg)
m effective mass
me effective mass of electron
mh effective mass of heavy hole
ml effective mass of light hole
n subband index
N index of Landau level
ne concentration of electrons
Ne index of electronic Landau level
nD concentration of donors
nFD Fermi-Dirac distribution
nh concentration of holes
Nh index of hole Landau level
nph concetration of photo-excited carriers
Rxx Longitudinal resistance
Rxy Hall resistance
s projection of angular momentum l = 1/2 in the quantization axis,

electron spin state
T temperature
Te temperature of electrons
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Th temperature of holes
Vconf confinement potential
VH Hartree electrostatic potential
Vxc exchange and correlation potential
x, y coordinates in the plane of quantum well
z coordinate perpendicular on the quantum well, growth direction,

quantization axis

List of Greek symbols

∆EZ Zeeman spin splitting
∆s spin splitting of electronic Landau level
ǫ unit vector of the polarization of light
ǫ0 permitivity of vacuum (ǫ0 = 8.85× 10−12 F/m)
ǫr relative permitivity
Γe broadening of electronic Landau level
Γh broadening of hole Landau level
µ mobility
µB Bohr magneton (µB = 9.27× 10−24 J/T)
νm, νn band index
σ0 Longitudinal conductivity at B = 0 T
σxx Longitudinal conductivity
σxy Hall conductivity
σ+ left-handed circular polarization
σ− right-handed circular polarization
τq quantum lifetime
τtr transport lifetime
ωc cyclotron angular frequency
ωe cyclotron angular frequency of electrons
ωh cyclotron angular frequency of heavy holes
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Used abbreviations
2D, 3D Two and three dimensions
2DEG Two-dimensional electron gas
AF Anti-ferromagnetic
arb.u. Arbitrary units
CB Conduction band
CF Composite fermion
CCD Charge coupled device
DFA Density function approximation
DOS Density of states
EFA Envelope function approximation
Eq. Equation
Fig. Figure
FIR Far infrared
FQHE(S) Fractional quantum Hall effect (state)
FWHM Full width at half maximum
GZS Giant Zeeman splitting
HWHM Half width at half maximum
IQHE(S) Integer quantum Hall effect (state)
LED Light emitting diode
LL Landau level
MBE Molecular beam epitaxy
MIT Metal insulator transition
ML Monolayer
PL Photoluminescence
PLE Photoluminescence excitation
QW Quantum well
QHE Quantum Hall effect
RS Raman scattering
Tab. Table
SL Superlattice
VB Valence band
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Chapter 1

Preface

1.1 Preface (English)

Many-body quantum mechanical systems of identical interacting particles are of perpetual
interest in the solid state physics. An electron gas is a good example of such a system.
At high magnetic fields, the manifestation of electron-electron interaction is enhanced in
two-dimensional systems and the striking properties of interacting particles are experi-
mentally accessible. Confinement of the motion into two dimensions helps to strengthen
many-body interactions as well. Since its first experimental observation on the surface
of liquid helium [1] two-dimensional electron gas (2DEG) has profited interest in wide
variety of materials and types of quantum confinement. Especially its confinement into
a semiconductor heterojunction in silicon inversion layer [2] has attracted attention at
the beginning of its discovery and later on many investigations have been performed in
such devices like Field Effect Transistors (FET) and Metal Oxide Semiconductor FET
(MOSFET). Remote doping in High Electron Mobility Transistors (HEMT) allowed to
significantly increase mobilities of a 2DEG and the technological progress in the meth-
ods of the Molecular Beam Epitaxy (MBE) growth like Atomic Layer Epitaxy (ALE) has
highly improved the quality of confined electron gas. In former geometries, confinement
in the heterojunction of two materials was usually used, which led to the confinement
in a triangular-like potential. However, two heterojunctions can be placed close to each
other in order to construct quantum well (QW), where potential shape is variable and
many shapes has been investigated like rectangular, parabolic or graded potential QWs,
symmetrically and asymmetrically n-doped, p-doped and undopped QWs. The progress
in the understanding of the properties of a 2DEG has not been connected only to the
special geometries of quantum confinement, but also to the choice of the material. After
early studies based on silicon (Si), there has been an extensive interest in III-V semi-
conductor compounds of gallium (Ga), arsenic (As), indium (In), phosphorus (P) and
nitrogen (N) and especially QWs of GaAs, GaInAs, InP and GaN has been studied in
1970’s and 1980’s. Among others, considerable amount of attention has been paid also to
the diluted magnetic semiconductor heterostructes based on doping the QWs by magnetic
ions of manganese (Mn). New challenges appeared in 1990’s by using II-VI compounds
of cadmium (Cd), tellurium (Te) and mercury (Hg) like CdTe, CdHgTe and HgTe and by
recent investigations of QWs based on lead (Pb) and tellurium (PbTe).

1
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Preface 2

Experimental investigation of a 2DEG has led in past to many fundamental discover-
ies. Let’s mention especially the integer quantum Hall effect (QHE) discovered in 1980 by
Klaus von Klitzing et al. [3] in Si MOSFET and the discovery of the Fractional quantum
Hall effect (FQHE) two years later by D. C. Tsui et al. [4]. The unceasing experimental
effort can be traced in order to understand properties of 2DEG in these striking integer
and fractional quantum Hall states until these days. Interaction of 2DEG with a lat-
tice vibrations (polarons and magneto-polarons), vibrational modes of 2DEG (plasmons),
magnons, rotons and other quasiparticles inherent to the electron gas has led also to deeper
understanding of processes in many-body systems.

Throughout this work, we will present the experimental study of a two-dimensional
electron gas confined in semiconductor, asymmetrically modulation doped quantum wells
based on II-VI compound of CdTe and part of the work will deal with a diluted magnetic
semiconductor of CdMnTe. Our motivation to study 2DEG in CdTe QW is mainly of
fundamental interest. We will focus on the properties of strongly correlated electron gas in
integer and fractional quantum Hall states and experimental manifestation of many-body
electron-electron interaction will be the pivotal goal of presented work. The experimental
techniques, we have used, are especially measurements of magneto-photoluminescence and
longitudinal and Hall magneto-resistance. As the complementary techniques, Far Infrared
(FIR) magneto-absorption, Raman scattering and photoluminescence excitation has been
used too.

In chapter 2, we introduce briefly a theoretical background, necessary to understand
basics of an electron motion in a periodic crystal, confined potential and perpendicular
magnetic field. The chapter 3 describes the structure of the investigated MBE grown
samples and basics of the samples growth are mentioned. In chapter 4 we present our
calculations of the confined states. Their energies are calculated in the Local Density
Approximation (LDA) including a many-body electron-electron interaction. Short intro-
duction of the complementary FIR cyclotron resonance absorption and Raman scattering
experiments is presented in the following chapter. We provide detailed analysis of the
low filed magneto-resistivity in the chapter 6.1 and survey of high field experiments in
perpendicular magnetic field is presented. The comprehensive, magneto-optical study of
2DEG is presented in the chapter 7. First, we present basic analysis of magneto-PL of
CdTe and magnetic CdMnTe QWs and then, particular attention is paid to the detailed
analysis of the spin gap enhancement of fully populated Landau levels. In the following
section the interpretation of the magnetic field induced intensity changes of PL emission
is presented. Last chapter 8 is devoted to the photoluminescence excitation, comparison
is done between quasi-absorption spectra and calculations presented in chapter 4. At
the end, we summarize the main results obtained during this work, list of publications is
provided and future perspectives are suggested.
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Preface 3

1.2 Préface (En français)

Les systèmes quantiques constitués de plusieurs particules indiscernables en interaction
sont d’un intérêt majeur dans le domaine de la physique des solides. Le gaz d’électrons
est un bon exemple d’un tel système. Dans le régime des champs magnétiques intenses,
la manifestation de l’interaction électron-électron est amplifiée et les propriétés de cette
interaction sont plus facilement accessibles par l’expérience. Le confinement du mou-
vement dans deux dimensions renforce de plus les interactions multi-corps. Depuis sa
première observation expérimentale sur la surface de l’Hélium liquide, le gaz bidimension-
nel d’électrons (GE-2D) a suscité de l’intérêt pour de nombreux systèmes de matériaux et
des types de confinement quantique différents. En particulier, le confinement électronique
dans une hétérojonction semi-conductrice dans des couches de silicium en inversion a sus-
cité beaucoup d’intérêt et de nombreuses études ont été réalisées dans de tels systèmes,
comme des FET (Field Effect Transistor) et MOSFET (Metal Oxide Semiconductor FET).
La technique du dopage hors du puits quantique dans les structures HEMT (High Elec-
tron Mobility Transistors) a permis d’augmenter de manière significative les mobilités des
GE-2D et les progrès technologiques des méthodes d’épitaxie par jets moléculaires MBE
(Molecular Beam Epitay) ont permis une forte amélioration de leur qualité. Dans les
premières études, le confinement électronique était habituellement obtenu à l’interface en-
tre deux matériaux et présentait un potentiel de forme triangulaire. Cependant, deux
hétérojonctions peuvent être également réalisées près l’une de l’autre, et constituent un
nouveau type de confinement, le puits quantique (QW; quantum well), où la forme du
potentiel de confinement est variable et offre de nombreuses possibilités d’études, comme
des potentiels rectangulaires ou paraboliques. La possibilité d’étudier des puits non-dopés
ou dopés de manière symétrique ou non, dopage de type n- ou p- a été particulièrement
intéressante et instructive. Les progrès dans la compréhension des propriétés d’un GE-2D
n’ont pas été dus seulement aux géométries de confinement, mais également au choix des
matériaux utilisés. Après les premières études, basées essentiellement sur le silicium (Si),
il y a eu un intérêt considérable pour les alliages semi-conducteurs des groupes III et V,
basés sur le gallium (Ga), l’arsenic (Ar), l’indium (In), le phosphore (P) et l’azote (N).
En particulier, les puits quantiques de GaAs, GaInAs et de GaN ont été énormément
étudié dans les années 1970 et 1980. De plus, un intérêt considérable a été prêté aux semi-
conducteurs magnétiques dilués, basés sur un dopage avec des ions magnétiques comme
le manganèse (Mn). De nouveaux défis sont apparus dans les années 1990, où l’on a
commencé à employer des composés des groupes II et VI, comme le cadmium (Cd), le
tellure (Te) et le mercure (Hg), comme CdTe, CdHgTe et HgTe et, plus récemment en-
core, par des études portant sur des puits quantiques à base de plomb (Pb) et de tellure
(PbTe). La recherche expérimentale sur les gaz électroniques bidimensionnels a permis
de découvrir beaucoup de principes de physique quantique fondamentale. Ainsi, l’effet
Hall quantique (Quantum Hall Effect - QHE) a été découvert en 1980 par Klaus von
Klitzing dans un transistor MOSFET de silicium. La découverte de l’effet Hall quan-
tique fractionnel (Fractional Quantum Hall Effect - FQHE) deux ans après par Dan Tsui
en est un autre exemple. Ce type de recherche expérimentale visant à comprendre les
propriétés d’un GE-2D dans les régimes de l’effet Hall quantique entier ou fractionnaire
se perpétue encore aujourd’hui. L’interaction d’un GE-2D avec les vibrations du réseau
cristallin (polarons et les magnéto-polarons), les modes vibratoires de 2DEG (plasmons),
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Preface 4

les magnons, les rotons et d’autres quasi-particules inhérentes au gaz d’électrons, ont
également permis une meilleure compréhension des systèmes multi-corps. Dans ce travail,
nous présentons l’étude expérimentale de gaz d’électrons bidimensionnels confinés dans
un puits quantique semi-conducteur, asymétriquement n-dopé, à base de composés II-VI,
CdTe. Une partie du travail traitera de puits quantiques magnétiques de semi-conducteurs
dilués CdMnTe. Notre motivation pour étudier GE-2D dans CdTe QW est principalement
d’intérêt fondamental. Nous nous concentrerons sur les propriétés du gaz d’électrons forte-
ment corrélés dans le régime de Hall quantique et sur la manifestation expérimentale des
interactions multi-corps. Les techniques expérimentales que nous avons employées, sont
en particulier la magnéto-photoluminescence et la mesure du magnéto-transport longi-
tudinal et transverse (magnéto-résistivité de Hall). Nous avons aussi employé des tech-
niques complémentaires, comme la magneto-absorption infrarouge (Far infrared - FIR),
la diffusion Raman et l’excitation de la photoluminescence (Photoluminescence excita-
tion - PLE). Dans le deuxième chapitre, nous présentons brièvement un fond théorique,
nécessaire pour comprendre les principes du mouvement électronique dans un cristal
périodique, dans un potentiel confiné, en présence d’un champ magnétique perpendic-
ulaire. Le troisième chapitre décrit la structure des échantillons élaborés par MBE et nous
expliquons brièvement les techniques de croissance. Dans le chapitre 4 nous présentons
nos calculs des états confinés et leurs énergies. Nous avons considéré les interactions
électron-électron dans l’Approximation de densité locale (Local Density Approximation
- LDA). Une brève description des expériences complémentaires d’absorption infrarouge
et de diffusion Raman est présentée dans le chapitre suivant. Nous présentons l’analyse
détaillée de la magnéto-résistivité à faible champ magnétique dans le chapitre 6.1 puis
nous étendons ces résultats au régime de champ magnétique intense. L’étude magnéto-
optique du gaz bidimensionnel est présentée dans la chapitre 7. Nous présentons d’abord
l’analyse élémentaire de magnéto-PL de puits quantiques de CdTe et de CdMnTe et puis,
une attention particulière est prêtée à l’analyse détaillée du spin splitting des niveaux de
Landau entièrement peuplés. Dans la section suivante, l’interprétation de la modulation de
l’intensité de la PL en fonction du champ magnétique est présentée. Le chapitre 8 est dédié
à la spectroscopie d’excitation de la photoluminescence (PLE). Nous faisons une compara-
ison entre les spectres de quasi-absorption et les calculs présentés dans le chapitre ??.
Finalement, nous récapitulons les résultats principaux obtenus pendant ce travail, la liste
des publications issues de ce travail et les perspectives à donner à ce travail.
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Preface 5

1.3 Úvod (Česky)

Mnoha-částicové kvantové systémy identických interaguj́ıćıch částic jsou předmětem neu-
tuchaj́ıćıho zájmu ve fyzice pevných látek. Jedńım z př́ıklad̊u takového systému je elek-
tronový plyn. Ve vysokých magnetických poĺıch, stejně tak omezeńım prostorových stupň̊u
volnosti elektronového plynu do dvou dimenźı, jsou projevy mnoha - částicových in-
terakćı dále zvýrazněny a vlastnosti interaguj́ıćıch částic se stávaj́ı experimentálně lépe
dostupné. Od svého objeveńı na povrchu kapalného helia byl dvou-dimenzionálńı elek-
tronový plyn (2DEP) studován v široké řadě materiál̊u a typech kvantového omezeńı.
Zpočátku, zejména jeho studium v heterostrukturách na bázi křemı́ku vyvolalo širokou
vlnu zájmu a později byla řada studíı provedena taktéž v takových strukturách, jako jsou
polem ř́ızený tranzistor (Field Effect Transistor - FET) a polem ř́ızený tranzistor typu
MOSFET (Metal Oxide FET). Dopováńı v oblasti mimo aktivńı část heterostruktury
přispělo k vytvořeńı transistoru s vysokými pohyblivostmi elektron̊u (High Electron Mo-
bility Transistor - HEMT) a stejně tak vývoj v oblasti technologie r̊ustu výrazně přispěl ke
zlepšeńı kvality 2DEP. Kvantové omezeńı 2DEP na rozhrańı dvou materiál̊u bylo zpočátku
nejčastěǰśı použ́ıvanou geometríı. Avšak daľśı možnost́ı je umı́stit dvě taková rozhrańı
bĺızko vedle sebe, což vede k vytvořeńı tzv. kvantové jámy, kde tvar potenciálu kvantového
omezeńı může být libovolně měněn a takové potenciály jako je pravoúhlý, parabolický, či
stupňovitý byly studovány, stejně tak jako r̊uzné zp̊usoby symetrického a asymetrického
dopováńı. Porozuměńı chováńı 2DEP však nebylo spojeno jen s r̊uznými geometriemi
kvantového omezeńı, ale také s volbou materiál̊u. Po počátečńıch studíıch ve strukturách
na bázi křemı́ku se zájem obrátil na polovodiče typu III-V, jako jsou galium (Ga), ar-
sen (As), indium (In), fosfor (P) a duśık (N) a zejména kvantové jámy na bázi GaAs,
GaInAs, InP a GaN byly studovány v sedmdesátých a osmdesátých letech 20. stolet́ı.
Mezi jinými, značná pozornost byla věnována též zředěným magnetickým polovodič̊um
(Diluted Magnetic Semiconductors - DMS) na bázi manganu (Mn). Nové oživeńı zájmu o
tuto problematiku přǐslo počátkem devatesátých let minulého stolet́ı s př́ıchodem rozv́ıjej́ıćı
se technologie II-VI polovodič̊u jako jsou kadmium (Cd), telur (Te), rtuť (Hg) a předevš́ım
heterostruktury CdTe, CdHgTe a HgTe byly studovány, stejně tak jako užit́ı olova (Pb)
v PbTe v posledńıch letech. Experimentálńı studium 2DEP vedlo v minulosti k mnoha
objev̊um fundamentálńıho charakteru. Zmiňme předevš́ım celoč́ıselný kvantový Hall̊uv jev
(integer quantum Hall effect - IQHE) objevený v roce 1980 Klausem von Klitzingem et
al. [3] v křemı́kové heterostruktuře typu MOSFET a objev zlomkového kvantového Hallova
jevu o dva roky později [4] a intenzivńı experimentálńı úsiĺı ve studiu nevšedńıch vlast-
nost́ı 2DEP v režimu celoč́ıselného a zlomkového kvantového Hallova jevu lze vystopovat
do dnešńıch dn̊u. Studium interakćı 2DEP s mř́ıžkovými vibracemi (polarony a magneto-
polarony), vibračńıch mod̊u 2DEP (plasmon̊u), magnon̊u, roton̊u a daľśıch kvazičástic
inherentńıch elektronovému plynu vedlo taktéž k hlubš́ımu porozuměńı proces̊u v mnoha-
částicových systémech. Tato práce je souhrnem zejména experimentálńıho studia dvou-
dimenzionálńıho elektronového plynu omezeného v asymetricky dopovaných kvantových
jamách na bázi II-VI materiálu, CdTe. Část práce je pro srovnáńı věnována též kvan-
tovým jamám na bázi CdMnTe. Naš́ı hlavńı motivaćı je základńı výzkum vlastnost́ı
2DEP. Zaměř́ıme se na vlastnosti silně korelovaného elektronového plynu v celoč́ıselných a
zlomkových kvantových Hallových stavech a na projevy mnoha-částicových interakćı. Mezi
zde použité experimentálńı techniky patř́ı předevš́ım měřeńı magneto-fotoluminiscence,
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Preface 6

podélného a Hallova odporu a jako doplňkové techniky bylo použito měřeńı infračervené
absorpce, Ramanova rozptylu a excitačńı fotoluminiscence.

V kapitole č. 2 nast́ıńıme teoretické základy pohybu elektronu v periodickém krys-
talovém potenciálu, kvantových jamách a magnetickém poli. V kapitole č. 3 poṕı̌seme de-
tailně strukturu použitých vzork̊u a v kapitole č. 4 uvedeme kvantově-mechanické výpočty
pásové struktury ve dvou studovaných vzorćıch. Výpočty jsou provedeny v aproximaci
lokálńı elektronové hustoty (Local Density Approximation - LDA) včetně zahrnut́ı mnoha-
částicové elektron-elektronové interakce. Následuj́ı kapitola je úvodem do doplňkových
měřeńı infračervené absorpce a Ramanova rozptylu. Detailńı analýza měřeńı magneto-
rezistivity se nacháźı v kapitole č. 6.1. Analýza magneto-fotoluminiscence je prezentována
v kapitole č. 7, kde nejdř́ıve seznámı́me čtenáře se základy fotoluminiscence v kvan-
tových jamách CdTe a magnetických kvantových jamách CdMnTe a poté je zvláštńı po-
zornost věnována spinovému štěpeńı plně obsazených Landauových hladin a vlivu elektron-
elektronové interakce. Daľśı podkapitola se detailně zabývá intenzitńımi změnami luminis-
cence v magnetickém poli. Posledńı kapitola je věnována excitačńı luminiscenci, kde jsou,
mimo jiné, výpočty energetických hladin prezentované v kapitole č. 4 srovnány s experi-
mentem. Na samotném konci shrneme stěžejńı výsledky této dizertačńı práce a nast́ıńıme
perspektivy daľśıho vývoje studia 2DEP.
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Chapter 2

Theoretical overview

In the first chapter, theoretical basics used throughout the presented thesis are introduced.
The theoretical overview here is not intended to be comprehensive introduction into the
solid state physics, what can be found elsewhere [5, 6]

2.1 Solution of the Schrödinger equation in periodic crystals

Stationary solution of the Schrödinger equation in ideal, infinitely large, periodic crystal
is given in a single-particle approximation according to the Bloch theorem, Eq. (2.1)

Ψk(r) = eik·ruk(r) (2.1)

by plane wave eik·r determined by the vector k and function uk(r) periodic with a period of
the lattice. Having hamiltonian of the crystal Ĥ, Eq. (2.2), given by the crystal potential
V (r),

Ĥ = − h̄2

2m0
△+ V (r) (2.2)

and solving Schödinger stationary equation (2.3)

ĤΨk(r) = EkΨk(r) (2.3)

by using wave functions (2.1) as an ansatz, one can find equation (2.4) for the unknown
functions uk(r).

− h̄2

2m
[−k2uk(r) + 2ik · ∇uk(r) +△uk(r)] + V uk(r) = Ekuk(r) (2.4)

Equation (2.4) has several solutions for every k vector. Every solution corresponds to
one band in the band structure of the crystal and will be specified by additional index
νm, uνm,k(r). Solving first equation (2.4) at k=0, obtaining solutions uνm,0(r) and then
expanding solutions uνm,k(r) at non-zero k vectors into the basis of the solutions uνm,0(r)

uνn,k(r) =
∑

νm

cνm(k)uνm,0(r) (2.5)

7
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Theoretical overview 8

leads to the set of equations for expansion coefficients cνm(k). This is well-known kp-
approximation of the band structure in the vicinity of given k vector. Considering solutions
around Γ point, it can be shown [6], that energy ǫnk of the band νm can be described as

ǫνn,k = ǫνn0 +
h̄2

2

∑

α,β

kα
1

µαβνn
kβ (2.6)

where 1/µαβνn is an effective mass tensor. This is a so called effective mass approximation of
the electronic band structure. A resulting motion of the electron in the periodic crystal can
be seen as a motion of a free electron with an effective mass, which is different from the free
electron mass m0. It can be shown, that in CdTe, which has a zinc-blende crystallographic
structure, the effective mass tensor reduces to a scalar for the conduction band1 and its
mass is positive, however, for the valence band2, the effective mass can not be replaced by
a scalar, the effective mass is anisotropic and negative. Usually, for the sake of simplicity,
spherically averaged value for effective mass of holes in the valence band is taken.

2.2 Quantum confinement

Let’s consider confinement of the electron motion in the z-direction described by the con-
finement potential Vconf (z). Electron motion is usually described here in the envelope func-
tion approximation (EFA), neglecting the part uνm,k(r) of the Bloch wave function (2.1)
periodic with the lattice constant of host material. Hamiltonian (2.7) in EFA and effective
mass approximation

Ĥconf = − h̄2

2m
△+ Vconf (z) (2.7)

leads to the separable Schrödinger equation and its solution can be written as (2.8),

ψkx,ky ,n(r) =
1√
Ω
eik⊥·r⊥χn(z) (2.8)

Wave function (2.8) is a product of the in-plane solution 1√
Ω
eik⊥·r⊥ and envelope wave

function χn(z) of the nth subband in the z-direction, where k⊥ = (kx, ky), r⊥ = (x, y) are
in-plane wave-vector and position. Ω is an area of the sample in order to normalize the
in-plane part of the total envelope wave function.

Energy dispersion (2.9) of carriers confined in z-direction, but free in the x-y plane,

En(kx, ky) =
h̄2k2⊥
2m

+ En0 (2.9)

in two dimensions is in the vicinity of k⊥ = 0 (Γ point) parabolic in the plane of quantum
well. Confinement energy En0 of the bottom (top) of nth subband in the conduction (va-
lence) band depends on many factors like a width and height of the confining potential,
shape of the quantum well, presence of electron or hole gas or electron-hole plasma. In or-
der to obtain the values of confinement energy comparable with an experiment, numerical
solutions are usually neccessary, as will be shown in the case of our QWs in the chapter 4.

1Conduction band is the lowest energy band, which is unoccupied or only partially occupied. Electrons
are free to move in the atomic lattice.

2Valence band is the highest energy band, fully or nearly fully occupied.
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Theoretical overview 9

2.3 Motion of confined carriers in perpendicular magnetic fields

Motion of the confined carriers with an effective mass m in the presence of magnetic field
B = (0, 0, B) perpendicular to the plane of the QW is solved by replacing momentum
operator p by p − qA, where q is a charge of the investigated particle and A is a vector
potential. In the Landau gauge A = (0, Bx, 0) the Hamiltonian (spin is not taken into
account) in the effective mass and envelope function approximation reads:

Ĥfield = − h̄2

2m

∂2

∂x2
+

1

2m

[

−ih̄ ∂
∂y
− qBx

]2

− h̄2

2m

∂2

∂z2
+ Vconf (z) (2.10)

Since hamiltonian Ĥfield commutes with ky, one can separate variables, so as the solution
of the stationary Schrödinger equation is

ψky(r) =
1√
Ω
eikyyϕ(x, z) (2.11)

in the form of the plane wave 1√
Ω
eikyy and the part ϕ(x, z) depending on x and z coordi-

nates. Substituting (2.11) into (2.10) allows to separate also x and z coordinates,

ϕn,N (x, z) = χn(z)φN (x) (2.12)

where χn(z) is given by
(

− h̄2

2m

∂2

∂z2
+ Vconf

)

χn(z) = En0χn(z)

and φN (x) is a wave function of linear harmonic oscillator expressed in terms of Hermite
polynomials HN

φN (x) =
1√
lB

1
√

2NN !
√
π
e
− (x−x0)

2

2l2
B HN

(

x− x0
lB

)

(2.13)

at the position
x0 = −l2Bky (2.14)

where

lB =

√

h̄

eB
(2.15)

is a magnetic length and the energies

EN = h̄ωc

(

N +
1

2

)

(2.16)

denote the energies of so called Landau levels, separated by h̄ωc = h̄eB/m, where ωc is a
cyclotron angular frequency. Total energy of the state |n,N, ky〉 in r-representation

〈r|ky, n,N〉 = ψky ,n,N =
1√
Ω
eikyyχn(z)φN (x) (2.17)

is given by

EnN = En0 + h̄ωc

(

N +
1

2

)

(2.18)

and it is degenerated in the quantum number ky. Degeneracy d does not depend on the
material parameters and grows linearly with magnetic field, d = 2eB/h.
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Theoretical overview 10

2.4 Density of states

Density of states G(E) (spin is not taken into account) per unit area at the energy E can
be calculated in 2D by

G(E) =
1

(2π)2

∫

δ(E − E(k⊥))dk⊥ (2.19)

giving in the quantum wells with parabolic dispersion step-like density of states G(E) at
zero magnetic field

G(E) =
m

πh̄2

∑

n

θ(E − En0) (2.20)

and density of states in a from of sum of δ-functions

G(E) =
eB

h

∑

n,N

δ(E − EnN ) (2.21)

in the perpendicular magnetic field B. Formulas (2.20) and (2.21) are derived for ideal
system, where energy levels are infinitely sharp. However, every physical systems manifest
always certain degree of broadening of various origin (lifetime, disorder, etc.) which can
be phenomenologically introduced describing energy levels by gaussian or lorentzian line
shapes.

Assuming, that energy En0 or EnN has a statistical distribution f(0,Γ), where first
statistical moment is zero and second Γ, the convolution

GΓ(E) = f(0,Γ) ∗G(E) (2.22)

describes the density of states of broadened levels and broadening Γ. It is straightforward
to show, that at zero magnetic field in the case of Gaussian

fG(0,Γ) =
1√
2πΓ

e−
E2

2Γ2 (2.23)

and Lorentzian broadening

fL(0,Γ) =
1

πΓ

1

1 +
(

E
Γ

)2 (2.24)

the density of states is given by

Ggauss
Γ (E − ǫmn) =

m

πh̄2
1

2

(

1 + erf

(

E − En0

Γ
√

2

))

(2.25)

and,

Glorentz
Γ (E − ǫmn) =

m

πh̄2
1

2

(

1 +
2

π
arctan

(

E − En0

Γ

))

(2.26)

respectively. The density of states in the magnetic field can be obtained by substitution
of distribution functions (2.23) or (2.24) on place of δ-functions in idealized density of
states (2.21).
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Theoretical overview 11

2.5 Fermi golden rule

So far, we have introduced the energy levels alone. In optical experiments, which are a
pivotal part of the presented work, the probabilities of the transitions between particular
energy levels are important. Assuming classically described electro-magnetic radiation

E = e0E0e
−i(ωt−k·r) (2.27)

with amplitude of the electrical intensity E0 oscillating with a angular frequency ω, polar-
ization e0 and wave vector k. It interacts with a matter in a single photon, semi-classical
approximation3 by interaction hamiltonian,

Ĥint =
e

2m0
[p ·A + A · p] (2.28)

where m0 is electron mass and A is a vector potential of the incident electromagnetic
radiation E. The probability pij of the absorption between the initial, fully occupied |i〉
(energy Ei) and final, completely empty |j〉 (energy Ej) state is given by Fermi Golden
rule,

pij =
2π

h̄
|〈f |V |i〉|2δ(Ef − Ei − h̄ω) (2.29)

where V is in the electric dipole approximation,

V =
ieE0
2m0ω

e0 · p (2.30)

and the intensity of the transition is determined by matrix element |Vij |2 = |〈f |V |i〉|2.
Set of transitions with non-zero matrix element |Vij |2 determines selection rules. Selection
rules for inter-band transitions in CdTe and CdMnTe in the magnetic field are depicted in
Fig. 2.1 and Fig. 2.2. The hole levels jz = ±3/2 are ordered in both materials in the same
way, but electronic levels s = ±1/2 have opposite ordering (electronic level s = +1/2 is
at higher energy than level s = −1/2 in CdMnTe, in contrast to CdTe). This is caused
by electron-manganese sd-interaction, which inverts the ordering of the electronic levels
s = ±1/2 with respect to CdTe. The convention of σ+ (left-handed) and σ− (right-handed)
circular polarization follows convention of Born, Wolf [7]. σ+ (σ−) polarized photons have
projection of the angular momentum into quantization z-axis Lz = +h̄ (Lz = −h̄).

If the initial (final) electronic state involved in the absorption process is only partially
occupied (empty) one has to consider the fact, that electrons (resp. holes) are fermions and
Pauli exclusion principle has to be taken into account. Then, the probability of absorption
pij

pij =
2π

h̄
|〈f |V |i〉|2niFD(1− nfFD)δ(ǫf − ǫi − h̄ω) (2.31)

is determined also by the occupation factors n
i(f)
FD of the initial and final states given in

the thermal equilibrium by Fermi-Dirac distribution (2.32).

nFD =
1

e
E−EF
kBT + 1

(2.32)

3Semi-classical approximation reflects the fact, that the matter is described quantum mechanically,
however, electro-magnetic radiation classically.
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Theoretical overview 12

Figure 2.1: Selection rules for interband optical transition in CdTe as a function of magnetic field.
Optical interband transitions accompanied by emission of σ+ and σ− circularly polarized photons
are represented by red arrows.
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Figure 2.2: Selection rules in CdMnTe. The two upper(lower) levels correspond to the two spin-
resolved electronic (hole) energy levels. Exchange sp-d interaction manifests itself in a typical
field dependence, which is described by Brillouin function instead of a linear field dependence as
expected in non-magnetic structures. Allowed optical transitions in σ+ (σ−) circular polarization
are sketched out by black (red) arrows.

In contrast to the absorption, the spontaneous emission4 (photoluminescence) can
not be described, until electro-magnetic radiation is described quantum mechanically.
However, PL intensity can be related to that of the absorption by means of Einstein
coefficients ( [6], p. 272) and the same Fermi Golden rule (2.31) can be used to describe
also spontaneous emission.

4In our case, we mean by spontaneous emission especially photoluminescence. Generally, it can be any
kind of radiative recombination process which can take place without presence of other electromagnetic
radiation, like electroluminescence, chemoluminescence, triboluminescence, etc.
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Theoretical overview 13

2.6 Inter-band matrix elements

Evaluating matrix element |Vij |2 gives the information on the intensity of the transition.
Full wave function (including Bloch part) of the initial and final state can be be written
at zero magnetic field in r-representation as,

〈r|i(f)〉 = Ψi(f)(r) = uνi(f)(r)
1√
Ω
eik⊥·r⊥χi(f)(z) (2.33)

where uνi(f)(r) is the periodic part of the Bloch function in a center of the Brillouin zone,
νi(f) is an index of the band and χi(f)(z) is an envelope wave function in the direction
of quantum confinement. Neglecting integrals of mixed products of quickly oscillating
functions uνi(f)(r) and slowly varying envelope functions χi(f)(z), one gets

〈f |V |i〉 = e0 · pij
∼= e0 · 〈uνi |p|uνf 〉〈χi|χf 〉+ δνiνfe0 · 〈χi|p|χf 〉 (2.34)

The second term in (2.34) is zero for inter-band (νi 6= νf ) transitions, hence, within used
approximation, the strength of inter-band transitions is given only by the overlap of the
envelope functions pij ∝ |〈χi|χf 〉|2. This leads to the selection rule i+j is even number in
the symmetrical QWs and if the QW is rectangular and infinitely deep, only transitions
i = j are allowed. However, we are interested in the study of asymmetrically doped
QWs, where these selection rules may be strongly violated. Therefore we will present the
envelope function calculations in chapter 4 in order to properly determine selection rules
between particular subbands.

In magnetic field, the envelope function is given by ϕni(f)Ni(f)
(x, z) = χni(f)

(z)φNi(f)
(x),

where Ni(Nf ) are quantum numbers of the Landau level in the initial and final state. Due
to the orthogonality of linear harmonic oscillator functions 〈φNi |φNf

〉 = δNi,Nj , only inter-
band transitions between Landau levels with the same quantum number Ni = Nj are
allowed within this approximation. Moreover, due to orthonormality of the functions
φNi(x) and φNj (x), the oscillator strength does not depend on the index of the Landau
levels between which the transition occurs.
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Chapter 3

Samples

The samples used in the presented study are semiconductor modulation doped quantum
wells based on II-VI material CdTe. The samples have been grown by molecular beam
epitaxy (MBE) in the Institute of Physics, Polish Academy of Sciences (IFPAN). The
growth method of high quality QWs containing 2DEG has been developed in IFPAN in
1990’s [8]. Throughout the whole presented study, we have focused our main attention on
non-magnetic modulation doped CdTe/Cd0.74Mg0.26Te quantum wells of the well width
20 and 30 nm. Part of the experimental work has been also devoted to the magnetic quan-
tum wells based on diluted magnetic semiconductor CdMnTe with very low manganese
concetration.

Figure 3.1: Structure of the samples.

The sample structure is sketched in the Fig. 3.1. The samples are grown on the
(100)GaAs semi-insulating substrate which are nowdays of very high and reproducible
quality with respect to the CdTe substrates. Different lattice constants of GaAs and
CdTe cause the strain in the grown sample, which is relaxed by growing roughly 2 µm
buffer layer of CdTe, ≈ 2 µm layer of CdMgTe followed 5 times by set of superlattice (SL)
and 100 nm thick spacer of CdMgTe. The SL consists of 4 monolayers (ML) of CdTe and
4 ML of CdMgTe. The quantum well itself consists of 62 (sample No. 013008A) or 93
(sample No. 020108A) MLs of CdTe. In order to reduce the interface roughness between
CdTe QW and CdMgTe barrier, the atomic layer epitaxy (ALE) technique1 of growth has

1Atomic layer epitaxy technique (ALE) has been introduced in 1970’s by T. Suntola, Finland [9]. The
ALE is used to grow 2 component materials of uniform structure, well aligned with the substrate. It is

14
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Samples 15

been used for growing the initial 6 and final 6 ML of CdTe QW and other monolayers
have been grown by standard MBE technique. The QW is followed by the spacer of the
same width as the width of the QW, and followed by 5 nm wide iodine doped (CdMgTe:I)
layer. The sample is terminated by 50 nm wide cap layer.

The sample based on diluted magnetic semiconductor CdMnTe (No. 013108A) has
been grown in the similar way as the sample No. 013008A. The main difference is the
width of the QW, which is here 21.1 nm and the content of digitally doped manganese
inside the QW. Digitally doped CdTe:Mn QW consists of 8 ML of CdTe at the beginning
and at the end of the QW, 1 ML of CdMnTe and 6 times set of 7 ML of CdTe and 1 ML
of CdMnTe. The resulting manganese concentration was of about 0.5%.

As the main difference between the two non-magnetic samples No. 013008A and No.
020108A is the width of QW, for the sake of simpler formulation, we will use the notation
20 nm and 30 nm wide QW, respectively. In all references on CdMnTe QW, the sample
No. 013108A will be considered.

We had few pieces of each type of introduced samples available. The set of samples
used for resistivity measurements was equipped with indium electrical contacts as depicted
in Fig. 3.2. Two current contacts and 4 smaller contacts (roughly square configuration)
were placed on each side of the sample in order to measure both longitudinal and Hall
resistivity.

Figure 3.2: Configuration of the electrical contacts. Pairs of contacts a.-c. and b.-d. used to
measure Hall resistivity Rxy = Uy/Ix, pairs of contacts a.-b. and c.-d. used to measure longitudinal
resistivity Rxx = Ux/Ix. Two current contacts marked e. and f.

For purely optical experiments, we have used samples without electrical contacts. The
samples used in far infrared experiments were polished under small angle in order to avoid
interferences between plan parallel surfaces of the sample.

based on the growth of the two elements separately, 1 ML of the 1st and the 2nd compound, alternatively.
This is in contrast to the standard, two or more component material growth, where all the components
are grown simultaneously.
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Chapter 4

Band structure calculations

4.1 Introduction

Basic knowledge of the energy structure of any experimentally studied physical system is of
the fundamental importance for further data interpretation. We have calculated energies
of confined states in the two, non-magnetic QWs in the density function approximation
(DFA). Electronic and hole wave functions have been calculated in envelope function
approximation (EFA). Beside more advanced, like tight binding methods [10, 11, 12] of
heterostructure wave-function calculations, EFA represents a good approximation in QWs
of such a width like 20 and 30 nm [13, 14]. Generally, EFA is restricted to high symmetry
points in the heterostructure band structure, in contrast to tight-binding methods, which
are capable to handle band structure in whole Brillouin zone [6]. For the sake of simplicity,
we will restrict ourselves to the Γ point alone and zero temperature. In the discussion,
we justify the validity of the parabolic approximation of the valence band structure in the
vicinity of the Γ point.

4.2 Self-consistent solution of Schrödinger and Poisson equation

The hamiltonian (eq. 4.1) describes the structure of our QWs. It contains the kinetic

energy T = − h̄2

2
d
dz

1
me(z)

d
dz , confinement potential Vconf , electro-static Hartree potential

VH and many-body contribution Vxc, which accounts for electron-electron interactions.

Ĥ = − h̄
2

2

d

dz

1

m(z)

d

dz
+ Vconf (z) + VH + Vxc (4.1)

In the hamiltonian (4.1) m(z) is the position dependent effective mass either of electrons
or holes. In our calculations, we consider z as a growth direction. In the case of hole wave
function calculations, the many-body exchange and correlation potential Vxc diminishes
due to their very small concentration. Since we have used z-dependent material parameters
(effective mass, permitivity), discontinuities of resulting envelope wave function χi(z) on
the heterostructure interfaces have to be properly taken into account. The form of the
kinetic operator T leads to the continuous envelope wave function χi(z) and

1
me(z)

dχi(z)
dz .

However, dχi(z)
dz is discontinuous. Although there are other possibilities how to order
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Band structure calculations 17

momentum operators [14], the form of kinetic operator used here is generally accepted
and experimentally justified [15].

All z-dependent input parameters p(z) (p(z) stands for effective massm(z),relative per-
mitivity ǫr(z) and confinement potential Vconf (z)) were described by shape function (4.2)

p(z) = (pout − pin)
(

1

e
z−z1
w + 1

+
1

e−
z−z2
w + 1

)

+ pin (4.2)

determined by the value of a given parameter pin inside and pout outside QW and by
the coordinates z1, z2 of the QW-barrier interface. Width w of the QW-barrier interface
was chosen to be comparable to the lattice constant in CdTe (w = 0.1 Å). The shape
function (4.2) has been chosen for the sake of simple numerical implementation.

Exchange and correlation term [16, 17, 18, 19, 20] are in DFA given by formula (4.3).

Vxc = −
e2

8πǫ0ǫr(z)a∗0(z)

{

1 + 0.0545rs(z) ln

[

1 +
11.4

rs(z)

]}[

2

π(4/9π)1/3rs(z)

]

(4.3)

Parameter a∗0(z) is an effective Bohr radius, Eq. (4.4),

a∗0(z) =
4πǫ0ǫr(z)h̄

2

me(z)e2
(4.4)

and rs, Eq. (4.5), is a dimensionless electron density parameter.

rs(z) =

{

4

3
π[a∗0(z)]

3ne(z)

}−1/3
(4.5)

Electrostatic Hartree potential VH is calculated by self-consistent solution of Poisson,
Eq. (4.7), and stationary Schrödinger equation, Eq. (4.6), in order to obtain electronic
envelope wave-functions χn(z) and subband energies En.

Ĥχn(z) = Enχn(z) (4.6)

d2VH
dz2

=
e2

ǫ0ǫr(z)



nD(z)− ne
∑

n∈occupied
|χn(z)|2



 (4.7)

Concentration of donors nD(z) in the Poisson equation (4.7) is taken to be spatially
distributed in the rectangular region (in z-direction) of the width 5 nm. Doping region is
separated from the QW by the spacer of the same width as a width of the QW (Tab. 4.1).

As a second step, using self-consistently calculated electro-static potential of electrons,
we have calculated energy spectrum of holes by solving hamiltonian (4.1) using effective
mass of light or heavy holes and neglecting Vxc term.

We have implemented the simplest, although not the fastest, method of numerical
solution of the set of Schrödinger and Poisson equations, which is based on discretization
of the z-axis into intervals with nodes in zk, where k = {1, .., N − 1} and N is number of
equidistant interval of the length dz. Approximating the envelope wave function χn(z) by
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Band structure calculations 18

Parameter sample 013008A sample 020108A

width of QW 20 nm 30 nm
spacer between QW and doping layer 20 nm 30 nm

concentration of 2DEG 4.5× 1011 cm−2 2.9× 1011 cm−2

effective mass of electrons in the QW 0.1m0 [this work]
effective mass of electrons in the barrier 0.11m0 [21]
effective mass of heavy holes in QW 0.5m0 [this work]

effective mass of heavy holes in the barrier 0.58m0 [21]
effective mass of light holes in QW 0.14m0 [21]

effective mass of light holes in the barrier 0.16m0 [21]
relative permitivity in the QW ǫr=9.0 [21]
relative permitivity in the barrier ǫr=8.5 [21]

valence band offset 30% [22]
offset of the barrier for holes Vbarrier,h = 125.4 meV

offset of the barrier for electrons Vbarrier,e = 293 meV
gap of CdTe Eg(CdTe)=1.605 eV [23]

gap of Cd0.74Mg0.26Te Eg(Cd0.74Mg0.26Te)=2.023 eV [23]

Table 4.1: Parameters of the samples used in DFT calculations.

a vector χn(zk) and derivative
dχn(z)

dz by finite difference (χn(zk+1)− χn(zk))/dz leads to
the matrix representation (4.8) of the kinetic energy operator T ,

T = − h̄
2

2
D1

1

m(z)
D2 (4.8)

where an example of the numerical implementation of the operators D1 and D2 for the
case of the z-axis discretization on four elements with N = 5 nodes at positions zk is
shown in matrices (4.9) and (4.10), respectively. Tests of the convergence of the solution
has been done by refining the z-axis.

D1 =
d

dz
=

1

dz













−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1













(4.9)

D2 =
d

dz
=

1

dz













1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1













(4.10)

The material parameters used in the calculations [21] are summarized in the table 4.1.

4.3 Results

First, we compare the three potential contributions to the total potential of electrons in
20 nm wide QW, see Fig. 4.1. The negative sign of Vxc reflects the attractive character of
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Band structure calculations 19

the electron-electron exchange interaction.
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Figure 4.1: Three components of total effective potential in 20 nm wide QW containing 2DEG of
concentration 4.5 × 1011 cm−2. Confinement Vconf , Hartree VH and exchange and correlation Vxc

potentials are depicted by black, red and blue curves, respectively.

Spatial evolution of the edge of the conduction and valence band, across the 20 and
30 nm wide QW, is depicted in Fig. 4.2 and Fig. 4.3, respectively. Due to asymmet-
ric, single-side doping, positively charged donors in the doping layer attract(repel) elec-
trons(holes) in the QW, and thus causing a spatial shift of the electronic(hole) envelope
wave functions χe

n(z)(χ
h
n(z)). This spatial shift changes selection rules in asymmetrically,

with respect to symmetrically, doped QWs.
Diminishing of the confinement effect with growing width of the QW is apparent via

squeezing of the inter-subband distance for both electronic and hole levels. The calculated
electron, heavy and light hole energies for both QWs are summarized in the Tab. 4.2. The
electron subband energies are related to the ground electronic state e1 (E1,e = 0 meV),
and both light and heavy holes are related to the ground state of heavy holes hh1 (E1,hh).

20 nm wide QW 30 nm wide QW

n En,e En,hh En,lh En,e En,hh En,lh

1 0 0 4.7 0 0 2.3
2 30.7 8.5 24.7 20.9 3.8 12.1
3 66.4 19.7 51.8 37.5 9.3 26.1

Table 4.2: Energies of the first three lowest lying electronic, heavy hole and light hole levels for
both 20 and 30 nm wide QWs. Bottom of the conduction band is taken as a reference zero-energy
for electrons. Zero-energy reference for holes is taken at the top of valence band of heavy holes.

We have found, that in 20 nm (30 nm) wide QW, the Fermi energy lies at 53.9 meV
(75.7 meV) below the conduction band edge (measured from the bottom of the conduction
band in the flat band region on the left hand side from the doping layer, see Fig. 4.2 and
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Band structure calculations 20
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Figure 4.2: Resulting band structure (black solid lines) in 20 nm wide CdTe QW. Electron con-
centration 4.5 × 1011 cm−2. Upper(lower) black solid line corresponds to the spatial evolution of
the bottom(top) of conduction(valence) band in z-direction. Calculated in Γ point of the reciprocal
band structure. First electron and heavy hole wave-functions are plotted by thin black, blue and
red colors in the corresponding band. Modulation doping is depicted by greyed rectangle in the left
part of the figure.
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Figure 4.3: The same as Fig. 4.2, but calculated for 30 nm wide CdTe QW containing 2DEG of the
concentration 2.9× 1011 cm−2.

Fig. 4.3). According to the literature [24], donor binding energy in CdTe QWs at zero
magnetic field is roughly 21 meV. Therefore we conclude, that donors are located well
above the Fermi energy in both quantum wells, hence we expect that all of them are
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Band structure calculations 21

fully ionized at zero temperature. The difference ≈22 meV between the Fermi energy
of the 2DEG and the position of donors in the 20 nm wide QW could be a reason of
possible reoccupation of donor states by electrons at the temperature higher than 40 K
(5kBT = 22 meV at ≈40 K). This could be therefore a reason of decreasing electron
concentration of 2DEG inside the QW at so high temperatures. However, this effect will
be accompanied by temperature induced lowering of the Fermi energy, which will occur
already at roughly 25 K (EF = 5kBT at ≈25 K).

4.4 In-plane dispersion

Although the majority of our experiments are sensitive only to the band structure in the
vicinity of Γ point, in several cases, also band structure further apart the Γ point becomes
important. These are, for example, correct interpretation of the photoluminescence exci-
tation (PLE) spectra and description of the PL spectral line shape at zero magnetic field.
For the sake of simplicity, we will use throughout this work a parabolic approximation
for both conduction and valence bands. This simplified approach, although often used
and valid especially for the conduction band, often fails in the description of the valence
band. Therefore, we have calculated the structure of the valence band in order to verify
the parabolic band approximation for holes. We have used 4× 4 kp-Hamiltonian (4.11),

Hkp =









Hhh −H+
⊥ c b 0

c∗ Hlh −H−⊥ 0 −b
b∗ 0 Hlh −H−⊥ c
0 −b∗ c∗ Hhh −H+

⊥









(4.11)

where Hhh and Hlh are given by hamiltonian (4.1) for heavy and light holes, respectively.
Terms H±⊥ read

H±⊥ =
h̄2k2⊥
2m0

(γ1 ± γ2) (4.12)

and terms b and c are given by

b =

√
3

2

h̄

m0
(kx − iky)(γ3pz + pzγ3) (4.13)

and

c =

√
3

2

h̄2

m0
[γ2(k

2
x − k2y)− 2iγ3kxky]. (4.14)

Luttinger parameters γ1 and γ2 can be expressed in terms of the mass of heavy and
light holes,

γ1 =
m0

2

(

1

ml
+

1

mh

)

(4.15)

and

γ2 =
m0

4

(

1

ml
− 1

mh

)

. (4.16)

This is more convenient, since the effective masses, which can be directly determined from
the experiment, are more intuitive parameters as compared to the Luttinger parameters.
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Band structure calculations 22

The effective mass of the light hole ml = 0.14m0 and the Luttinger parameter γ3 = 1.6
were taken from [21]1. The solution of the Schrödinger equation

Hkpψkx,ky ,n(r) = Ekx,ky ,nψkx,ky ,n(r) (4.17)

is, in general, anisotropic in reciprocal space. However, for the wave vectors of our interest,
the anisotropy is small, hence we take the solution in the direction k⊥ = k⊥√

2
(1, 1). We

have solved Schrödinger equation (4.17) in the basis of the envelope wave functions (2.8).
The solution converged well when taking the basis of the ten lowest-energy heavy hole
and the ten lowest-energy light hole states. The valence band structure of both 20 nm
and 30 nm wide QWs are shown in Fig. 4.4 and Fig. 4.5, respectively. We plot the
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Figure 4.4: Dispersion of the lowest heavy and light hole valence band states in 20 nm wide QW.
Vertical dashed line show Fermi wave vector corresponding to the electron concentration in the
conduction band ne = 4.5 × 1011 cm−2. Approximative parabolic energy dispersion of heavy hole
states is depicted for comparison by dash-dotted line.

energy dispersions of the first three heavy and first two light hole states. It should be
noted that the terms “light” and “heavy” for holes are no longer correct when we talk
about in-plane dispersion of valence band holes. The reason is twofold. Firstly, heavy
holes are heavier than light holes only in the the z-direction (growth direction) of QWs.
As a result, the energy of quantum confinement for the first heavy hole subband hh1 is

1In the literature, the mass of light holes ranges from 0.12m0 to 0.16m0 and the value of Luttinger
parameter γ3 from 1.6 to 2.5. We have found, that in our QWs, solutions of the valence band structure
lead to non-physical valence band structure for any γ3 > 1.7 and effective mass of light holes ml > 0.15.
Such solutions give increasing energy of holes (conduction band-like dispersion) at high wave vectors.
Hence, we have chosen values ml = 0.14m0 and γ3 = 1.6, which give correct k⊥ → ∞ limit of valence
bands.
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Band structure calculations 23
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Figure 4.5: Dispersion of the lowest heavy and light hole valence band states in 30 nm wide QW.
Vertical dashed line show Fermi wave vector corresponding to the electron concentration in the
conduction band ne = 2.9 × 1011 cm−2. Approximative parabolic energy dispersion of heavy hole
states is depicted for comparison by dash-dotted line.

smaller than for the first light hole subband lh1. However, in the in-plane direction (x, y
directions), heavy holes hh1 are always lighter than light holes lh1 in the near surroundings
of the Γ point. This property of the quantum confinement is in the literature called “mass
reversal” and it is described by the k·p-Hamiltonian (4.11). The second reason is that
light and heavy holes are generally mixed at k 6= 0. This follows from the terms b and c
in k·p-Hamiltonian (4.11). However, we follow terminology usually used in the literature
(e.g. Ref. [6]), and call the bands according to their pure states in the z-direction and at
the Γ point (k = 0).

We compare the calculated valence band structure with the approximative parabolic
dispersion of heavy hole states, see dispersions plotted by dash-dotted lines in Fig. 4.4
and Fig. 4.5. One can see that although the approximation is quite rough, it describes at
least the lowest energy heavy hole band with the precision better than 1 meV up to the
Fermi wave vector. Hence, for the sake of simplicity, we will use in our data analysis the
parabolic approximation of the heavy hole energy dispersion.
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Chapter 5

Basic characterization of the samples

5.1 Raman scattering

Raman scattering (RS) is an inelastic scattering of photons. It carries an information about
low-energy excitations, which change the rotational, vibrational or electronic state of the
investigated system. Our goal was to experimentally study mainly low-energy electronic
properties of a 2DEG, determined by the spin splitting of electronic Landau levels and
cyclotron resonance excitations.

The inelastic scattering is every scattering mechanism, during which the energy of the
incident photon hν0 is changed to some different, scattered energy hν1. Energy difference
∆E = |hν0 − hν1| corresponds to a given excitation (vibrational, rotational or electronic)
between certain ground |0〉 and excited |1〉 state with energies E0 and E1, respectively.
The Raman scattering signal consists of two main components, Stokes and anti-Stokes.
They can be distinguished according to their position in the Raman spectra. The Stokes
(anti-Stokes) component appears on the lower (higher) energy part of the Raman spectra
with respect to the energy hν0. These two components also differ by their relative intensity.
The Stokes component is usually stronger. The relative strength of the two components
is given mainly, beside the matrix elements of the transitions, by the degeneracy of the
initial and final states and by the thermal distribution, which describes the occupation of
the states |0〉 and |1〉 involved in the Raman scattering process. The energy of the incident
photons hν0 can be chosen arbitrarily. The intensity of the Raman scattering is generally
very weak. However, it is possible to enhance its intensity by tuning the energy of either
incoming or outgoing (scattered) photons in resonance with an energy Ereal of certain,
optically active excitation of the investigated system. If the energy of the photons hν0
(hν1) is in resonance with Ereal, then we talk about incoming (outgoing) resonance.

We studied RS using the laser light generated by Ti:saphire laser tunable in the spectral
range from 700 − 900 nm. We employed the polarization resolved technique for both
excitation and detection of RS (σ+ or σ− circular polarization). A preferable configuration
for optimal excitation and detection of RS was when excitation and detection were set to
opposite circular polarizations. In Figs. 5.1 and 5.2 we present Raman spectra obtained in
resonant and non-resonant configurations, respectively. Non-resonant Raman scattering in
Fig. 5.2 was measured by tuning the energy of incoming photons hν0 well below the band
gap energy of CdTe. Resonant Raman scattering was measured by tuning hν0 roughly
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Figure 5.1: Raman signal measured at the temperature of T = 4.2 K. Energy of the incident laser
was tuned 120 meV above main PL emission line (1.589 eV) and the laser power on the sample
was of about Pexc = 60 µW. Raman scattering was generated by σ−exc circular polarization and
emitted signal was collected in σ+PL circular polarization. Laser spot size was estimated to be of
about 200− 600 µm in diameter.

60 meV above the edge of the forbidden gap. The intensity of the Raman signal is then
enhanced by both incoming and outgoing resonances. Comparing both resonant and non-
resonant Raman scattering spectra, one can clearly see that, as expected, the resonant
Raman spectra are much richer. Moreover, although they are richer, they were excited
also by the laser light of ≈ 5× weaker intensity.

We have observed a set of 5 Raman lines in resonantly excited RS, see Fig. 5.1. These
lines are observed at the energies of 16.7, 21.2, 24.1, 34.2 and 42.5 meV below the energy
of the laser excitation. The Raman signals with the Stokes shift of 21.2 and 42.5 meV
correspond to the first and second harmonics of LO-phonon in CdTe. The Raman shift of
16.7 meV is close to the energy of TO-phonon in bulk CdTe (≈ 17.5 meV) or this peak
could be interpreted also as a LA-phonon in X and L point of a Brillouin zone, see Fig. 5.3.

Raman signal at the energy of 24.1 meV (Fig. 5.1) is interpreted as LO-phonon in
the Cd0.74Mg0.26Te barrier. The expected energy 24.7-26.4 meV was obtained by the
linear interpolation between the energy of LO-phonon in CdTe (21.6 meV) and MgTe
(36.5-40.0 meV) [21]. The origin of the signal at the energy of 34.2 meV is unknown.
The Raman peak in non-resonantly induced RS at the energy of 36.5 meV is due to LO-
phonon of GaAs substrate (see Fig. 5.2). This set of vibrational modes observed in the
resonant and non-resonant RS was very similar in both 20 and 30 nm wide quantum wells.
Therefore we present here only the data measured in 30 nm wide QW.

The intensity of the second LO-phonon replica marked by 2LO in Fig. 5.1 is stronger
than than the intensity of the first replica (1LO). The reason is, that the second LO-
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Figure 5.2: The same parameters of the experiment as in the Fig. 5.1, but the energy of the
laser light was tuned below the energy of PL emission (≈ 13 meV) and the excitation power was
Pexc ≈ 300 µW.

Figure 5.3: Dispersion of optical and acoustical phonons in CdTe according to [25]. Red arrows show
phonons which are observed in the measured Raman scattering spectra (see Fig. 5.1 and Fig. 5.2).
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Basic characterization of the samples 27

phonon replica 2LO undergoes outgoing resonance with the energy levels, which take part
in the photoluminescence radiative recombination, thus its intensity is more enhanced.
We have found, that also the first LO-phonon replica can be enhanced when tuned in
the resonance with the PL. Because the PL originates in the electron-hole recombination
inside the QW, we assign also both 1LO and 2LO phonon replicas to have origin in the
confined LO-phonon modes inside the QW. However, it should be noted that the signal
from bulk LO-phonon modes will also contribute to both signals of 1LO and 2LO. This
is because the energies of confined and bulk LO-phonons are in our samples very close
to each other (much closer than the spectral resolution we have). This is caused by the
fact, that the energy dispersion of LO-phonons is almost constant, or negligibly changes
across the 1st Brillouin zone. The smallest z component of the quantized wave vector
kz,min = π/dQW (dQW is a width of the QW) is roughly 40 − 50× smaller than the size
of the 1st Brillouin zone k1.BZ = π/a0 (a0 = 6.5 Å is a lattice constant of CdTe). The
dispersion of the LO-phonon energy does not considerably change in the vicinity of the Γ
point, up to the wave vectors of the order of ≈ k1.BZ/5, see Fig. 5.3. Therefore at least the
first 10 (k1.BZ/5kz,min ≈ 10) confined LO-phonons have the energy, which is very close to
the energy of bulk LO-phonons.

 ! " "! # #!

 $ 

 $!

"$ 

"$!

#$ 

#$!

%$ 

 

 

!
"

#
$
%

&
 
'
(

#
)

*

!"#$%&'( )'%*+ ,-.

 

!

 / ,012343103.

Figure 5.4: Magnetic field dependence of the energy of the electron spin flip excitation up to 28 T
in 20 nm wide QW, measured at the temperature T = 4.2 K, excitation power Pexc = 32 µW (laser
spot size 200 − 600 µm). Energy of the excitation laser was tuned always from 1 to 5 meV above
main PL emission energy. Electron spin flip was induced by σ+ circular polarization and Raman
signal was detected in σ− circular polarization. The extracted electron g-factor is ge = (1.70±0.10).
Two blue lines depict the high and low energy uncertainty bounds.

Beside vibrational excitations (LO, TO, LA phonons), which we have discussed so far,
our main goal was to study electronic excitations. However, the only electronic excitation
we were able to observe was the spin flip of electrons. We have measured the energy of the
electron spin flip as a function of magnetic field in the range from 0 to 28 T for 20 nm wide
QW (see Fig. 5.4) and 30 nm wide QW (see Fig. 5.5). Within a simple model, the energy
of the electron spin flip excitation is given at k = 0 by the Zeeman energy geµBB, where

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Basic characterization of the samples 28

 ! " "! # #!

 

"

#

$

 

 

!
"

#
$
%

&
 
'
(

#
)

*

!"#$%&'( )'%*+ ,-.

 

!

 / ,012345105.

Figure 5.5: The same as in Fig. 5.4, but the data correspond to 30 nm wide QW and the excitation
power was Pexc = 220 µW. The electron g-factor is ge = (1.65± 0.10).

ge is g-factor of electrons and µB is Bohr magneton (µB = 57.9 µeVT−1). Fitting the
field dependence of the energy of the spin flip excitation gives the electronic g-factor ge =
(1.70± 0.10) and ge = (1.65± 0.10) in 20 and 30 nm wide QW, respectively. Both values
are equal within an experimental error and they well agree with values in the literature,
e.g. Refs. [26, 27]. In the works [26, 27], the authors investigated CdTe/Cd0.75Mg0.25Te
undoped QWs. The two samples of their interest had also similar widths 21 and 28.8 nm
and corresponding electron g-factors were |ge| = 1.56 and 1.602, respectively. Although an
experimental error in our case is larger, our mean value of the g-factor in the narrower QW
is larger than the mean value of the g-factor in the wider QW. This is in contrast to the
results in Refs. [26, 27]. The reason of this discrepancy is probably due to the presence of
the 2DEG in our QWs. Presence of the 2DEG causes that electronic spin flip excitations
are not probed at the Γ point (center of the 1st Brillouin zone at k = 0), but they are
probed at k 6= 0. It is well known that the spin gap of the electronic Landau levels can be
influenced by electron-electron interaction at non-zero wave vectors [28] and therefore the
scaling of the electronic g-factor with the width of the QW need not to be necessarily the
same as in the undoped QWs. Since the experimental error of the g-factor determination
in our samples is quite large and the mean values are not too distinct from the values of
the electronic g-factor in the literature, we will use throughout this work the g-factor of
electrons |ge| = 1.6. This value is inside the 95% confidence interval of our experimentally
measured electronic g-factors and is in agreement with the works of other authors [26, 27].
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Figure 5.6: Transmission spectrum of 20 nm wide QW at 10 T and at the temperature of 2 K.
Spectral resolution 0.25 cm−1. Black curve is a data and red curve is a fit of the data with the
Lorentz function. Width of the absorption peak was deduced directly from the experimental data.

5.2 Far infrared studies

Far infrared (FIR) spectroscopy deals with the part of the electromagnetic spectrum which
ranges from energies of 10 to 1000 cm−1. The magneto-spectroscopy in the FIR region is
widely applied to 2DEG structures. It allows to probe the cyclotron resonance excitation,
or in other words, inter-Landau level transitions of electrons in the vicinity of the Fermi
energy. In the single particle picture, the energy of the cyclotron resonance in 2D system
is given by the formula 5.1.

ECR = h̄ωc =
h̄eB

me
(5.1)

We have focused on the energy range from 50 to 170 cm−1 in the magnetic fields from
≈2 to 28 T, which corresponds to the spectral range, where cyclotron resonance of CdTe
appears. All experiments were done in the transmission configuration, at the temperature
of pumped helium (T ≈ 2 K). In order to avoid an interference of the light between the two
plan-parallel surfaces of the samples, the substrate of the sample was polished under small
angle, less than 5◦. In Fig. 5.6 we show the spectrum of a cyclotron resonance measured
at 10 T and at very high spectral resolution of 0.25 cm−1. The width of the cyclotron
resonance is here 1.80 cm−1, which is roughly by an order of magnitude higher than the
spectral resolution. Hence, we believe, that this is a real width of cyclotron resonance
which is not influenced by the instrumental function of Far Infrared (FIR) spectrometer.
For the sake of the time demands on the experiment, the rest of our FIR experiments was
performed with much smaller spectral resolution of about 2 or 2.5 cm−1, and measured
width of cyclotron resonance was always of about ≈ 2.3 cm−1. This value of the cyclotron
resonance broadening does not correspond to the real value of broadening because its width
is comparable to the spectral resolution of 2 cm−1. Therefore, the difference between both
widths 1.80 and 2.3 cm−1 measured with the spectral resolution of 0.25 and 2.0 cm−1 can
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Figure 5.7: Energy position of the cyclotron resonance as a function of magnetic field at the tem-
perature of 2 K for 20 nm wide QW. Black points are maxima of the absorption and red curve is a
fit of the data with the expected single particle behavior given by the formula 5.1. The blue shift
of the data with respect to the expected linear field dependence is labelled too.

be attributed to the instrumental function of the FIR spectrometer. For this reason, we
have focused only on the analysis of the position of the cyclotron resonance absorption
and not on the width neither on the intensity (intensity of the absorption also changes as
a function of the spectral resolution - the worse spectral resolution the smallest intensity
of the absorption). Detailed analysis of the cyclotron resonance absorption line shape
(width and intensity) should thus contain a deconvolution of the experimental data by the
instrumental function.

The main goal of our FIR study was to determine the effective mass of electrons. For
this reason, we have measured cyclotron resonance absorption as a function of the magnetic
field in the range from 2 to 14 T for both 20 and 30 nm wide QWs. An example of the
magnetic field dependence of the energy of a cyclotron resonance absorption is depicted
in Fig. 5.7 for 20 nm wide QW measured at the temperature of pumped helium T = 2 K.
Effective mass of electrons was measured to be 0.10m0 in both QWs. This value is in
agreement with the values published in literature, see for example [29].

More detailed inspection of the data of a cyclotron resonance in Fig. 5.7 reveals slight
disagreement with strictly linear field dependence in the low-field limit with respect to the
expected behavior given by the equation 5.1. The interpretation of this low-field blue shift
is not clear so far.

In Fig. 5.8, we show the data of cyclotron resonance measured in 20 nm wide QW up
to 28 T. The step-like structure of the data is caused by the step of the magnetic field
0.5-1 T used to measure the field dependence of the FIR absorption. Field dependence of
the cyclotron resonance above Restrahlenband consists of two principal contributions. A
pinned mode (see Fig. 5.8), which only slowly grows in the energy and becomes pinned
to the energy of LO-phonon at magnetic fields higher than 22 T. The second contribution
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Basic characterization of the samples 31

Figure 5.8: Far infrared spectra of 20 nm wide QW at the temperature of 2 K. Green and yellow
marked features in the color scale correspond to the absorption of the cyclotron resonance. Pinned
mode and blue shifted cyclotron resonance above Restrhalen band are marked by arrows.

in the energy range above Restrahlenband is the linearly growing energy of the cyclotron
resonance absorption. This part of the cyclotron resonance is blue shifted with respect
to the cyclotron resonance below Restrhalenband. We attribute all these effects above
Resthralenband to be of the coupled magneto-polaron and magneto-plasmon modes [30,
31, 32, 33, 34]. FIR magneto-absorption data measured in 30 nm wide QW do not show
the pinned mode and the blue shift of a cyclotron resonance above Restrahlenband was
not so large as in 20 nm wide QW. More detailed analysis of this phenomenon is beyond
the scope of this thesis and will be presented elsewhere.
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Chapter 6

Magneto-transport

6.1 Low-field magneto-transport in CdTe QW

Magneto-transport deals with a study of transport of an electrical charge in a magnetic
field. We will study magneto-transport properties of 2DEG via magneto-resistance and
magneto-conductivity. The approach based on magneto-resistance is usually easier from
the experimental point of view, however, the approach based on magneto-conductivity is
better accessible from the theoretical point of view. Unfortunately, a connection between
these two approaches is sometimes difficult due to unknown and/or complex geometrical
factors. However, when assuming the homogeneous current distribution in the sample,
the geometrical factors are quite easy to handle, as will be shown. The low field magneto-
transport in 20 nm wide CdTe QW has been used to study such phenomena as, for example,
weak localization, Shubnikov-de Haas oscillations, Landau level broadening, transport
scattering time, quantum life-time and character of a dominant scattering mechanism.

We have measured both longitudinal (Rxx) and Hall (Rxy) magneto-resistance. An
example of data measured at base temperature of 91 mK is shown in Fig. 6.1. The high
quality of the studied 2DEG is reflected in the low field onset of Shubnikov-de Haas os-
cillations (B1 = 94 mT) and the low field onset of spin splitting (B2 = 0.51 T). The local
minima in Hall resistance are caused by the contribution of longitudinal resistance Rxx.
Hall resistivity is not influenced by Rxx at integer filling factors, because Rxx = 0 Ω at
enough high magnetic fields (≈ 1 T and more). Hall resistivity can be influenced by lon-
gitudinal resistance only if Rxx is non-zero, hence in the plateaux-to-plateaux transition
only. Because the plateaux-to-plateaux transitions correspond to the local minima of Hall
resistivity, these minima are then caused by the contribution of Rxx. Another manifesta-
tion of Rxx in a data of Rxy is a shift of magnetic field, at which Hall resistance Rxy is
zero. In an ideal case, Rxy should be zero at B = 0 T. However, adding some contribu-
tion of Rxx shifts the Hall resistance and thus causing, that experimentally measured Hall
resistance is zero at non-zero magnetic field. The shift of the field, where Rxy = 0 Ω is in
our experiment caused also by the remanent field ≈ 26 mT of the superconduction coil,
in which the experiment was performed. The field, at which we have observed Rxy = 0 Ω
was 32 mT. The real Hall resistance R̃xy was found using an empirical formula (6.1),

R̃xy = Rxy + γ1Rxx (6.1)

where the parameter γ1 represents the geometry of the electrical contacts on the sample.

32
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Figure 6.1: Longitudinal (black curve) and Hall (red curve) resistivity of 20 nm wide CdTe/CdMgTe
QW at base temperature of 91 mK. Sample was illuminated by laser light at the energy Eexc =
2.41 eV (Ar+), power on the sample Pillum = 1.0 µW and laser spot size ≈ 2 mm. Arrows at 94 mT
and 0.54 T show magnetic fields at which Shubnikov-de Haas oscillations (B1) and spin splitting
(B2) appear.

The deduced contribution of Rxx was of about γ1 = 16 %. Such a correction well reduces
the observed local minima in Rxy and at the same time it shifts the zero Hall resistance
to the magnetic field of 25.8 mT, which is in good agreement with a remanent field of the
superconduction coil used in these experiments.

The second geometrical factor is the ratio of distances between electrical contacts
used for measuring Rxx and Rxy given by γ2 = lx/ly = 1.07, where lx (ly) is a distance
between longitudinal (Hall) contacts. Having these two geometrical factors (γ1 and γ2)
and assumption of a homogeneous current in the sample, one can derive formulas (6.2)
and (6.3) to calculate longitudinal (σxx) and Hall (σxy) conductivity.

σxx
σ0

=
RxxRxx,0

R2xx + γ22R̃
2
xy

(6.2)

σxy
σ0

=
R̃xyRxx,0

R2xx
γ2

+ γ2R̃2xy
(6.3)

The parameter σ0 is the zero field conductivity given by equation (6.4),

σ0 =
nee

2τtr
me

(6.4)

where ne is the concentration of 2DEG, e is an elementary charge, τtr is a transport
life-time and me is an effective mass of electron.

6.1.1 Analysis of the conductivity

The conductivity calculated according to the formulas (6.2) and (6.3) is plotted in Fig. 6.2 (a).
The data, normalized by conductivity σ0, Eq. (6.4), were fitted by the semi-classical Drude

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Magneto-transport 34

model (Eq. (6.5) and (6.6)) normalized by the same parameter σ0.

σDrude
xx =

σ0
1 + (ωeτtr)2

(6.5)

σDrude
xy =

σ0ωeτtr
1 + (ωeτtr)2

(6.6)

Other two parameters in Eq. (6.5) and (6.6) are cyclotron angular frequency of electrons
ωe and transport lifetime τtr.

Fair agreement with the experimental data has been obtained. The transport life time
is the only fitting parameter here, τtr = 15 ps. The corresponding zero field conductivity
is σ0 = 18.7 mS/m and mobility

µ =
e

me
τtr (6.7)

µ = 260000 cm2V−1s−1. Subtracting the data and the Drude model, one can see systematic
deviations from Drude model, Fig. 6.2 (b). These contributions are of the order of 0.5 % of
the total conductivity. They are not taken into account in Boltzmann transport equation
and they are usually of purely quantum mechanical origin. We suggest the interpretation
of a dip in the conductivity in the vicinity of zero magnetic field as due to a contribution
of a weak localization. Weak localization, suggested first by Abrahams at the end of
1970’s [35], is caused by destructive interference of electrons in disordered media and thus
reduces conductivity at zero magnetic field. It occurs at low temperatures, at which the
phase of electrons is maintained for enough long time, so as they can interfere with each
other. It is weaker in high quality samples, it strengthens in more disordered materials.
When disorder is too extensive, the localization turn into strong Anderson localization [36].
Another typical feature of weak localization is that it rapidly disappears with increasing
magnetic field, which is of the order of mT in high quality samples. There can be found
an extensive amount of both theoretical and experimental works [37, 38, 39, 40, 41, 42, 43]
dealing with this phenomenon. Review paper comparing various approaches of the weak
localization description is provided by McPhail [40]. Our data exhibit qualitatively similar
behavior as the one reported in several other works [44, 45, 40]. However, we have not been
able to reach the satisfactory description of our data by any approximative description of
weak localization, thus leaving the final conclusion open.

The second contribution to the total conductivity is usually explained in terms of
electron-electron interaction. It is often called negative magneto-resistance in the lit-
erature [46, 47] and there had been long discussion, whether it can influence also field
dependence of the conductivity. It has been shown recently, that it does [48, 49, 50]. Al-
though principally correct approach, the data description by electron-electron interaction
is not very transparent and hard to visualize. Instead, we prefer an alternative approach
based on semi-classical picture, where many-body phenomena are described in a picture
of non-interacting (or weakly interacting) single-particles. This is similar to quasi-particle
approach1. The idea has been sketched already at the end of 1970’s [51], but we will
follow the recent work of Dmitriev [52]. Although semi-classical, it goes beyond the frame

1An extraordinary example of quasi-particle approach in a physics of interacting many-body systems is
a description of Fractional quantum Hall effect, where complex electron-electron interactions are simplified
by introducing single-particle picture of composite fermions, which do not, or very weakly, interact with
each other.
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Figure 6.2: (a) Longitudinal (σxx) and Hall (σxy) electrical conductivity at base temperature of
T = 91 mK, normalized by zero-field value σ0. Data (black points) are compared with Drude model,
which is depicted by red (σxx) and green (σxy) curves. (b) Difference between data of longitudinal
conductivity σxx and their fit by Drude model, normalized by σ0. Possible interpretation of (i) a
dip in the vicinity of zero magnetic field as a weak localization effect and (ii) decrease of the conduc-
tivity as a contribution of either electron-electron interaction or localization of circling electrons.
Blue curve is a fit using model of the localization of circling electrons. (iii) Schubnikov-de Haas
oscillations.

of Boltzmann transport equation. The idea is based on classical picture of the electron
motion in magnetic field. Such an electron moves on circular trajectories with a radius
R = v/ωe, where v is velocity of the electron (Fermi velocity). The higher magnetic field
is, the smaller is the radius R, and the more probable is the localization of such an elec-
tron. These electrons are called circling electrons, because since they are localized, they
only circle around given scattering center or potential fluctuation and do not contribute
to the conductivity. It has been shown [53], that the fraction of such electrons is given by
Eq. (6.8)

P = e
− 2π

ωeτtr (6.8)

and their negative contribution to the conductivity is given by Eq. (6.9).

∆σcirc = −σ0
P

1 + (ωeτtr)2
(6.9)
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Magneto-transport 36

Equation (6.9) is valid, if number of scatterers within one cyclotron orbit is much smaller
than one. The comparison of the presented theory of circling electrons with a data is
shown in Fig. 6.2 (b). The model is plotted by blue line. Although an agreement with
data is satisfactory, we had to use time τ = 10 ps in formula (6.8) instead of τtr = 15 ps,
as should be when following strictly Eq. (6.9). The reason is probably due to the fact that
the assumption of the negligible concentration of scatterers per one cyclotron orbit is not
fulfilled. Hence numerical modelling of the data following [52] could give more accurate
results.

We inverted conductivity tensor considering Drude model and the model of circling
electrons in order to deduce an influence of the circling electrons on the resistivity. The
experimentally measured resistance was calculated with respect to the geometry of our
sample as described above. The comparison is presented in Fig. 6.3. Drude model gives
constant field dependence of resistance Rxx and its field dependence in Fig. 6.3 is thus a
manifestation of circling electrons.
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Figure 6.3: (a) Measured resistance Rxx (black points) compared with a background of the resistance
given by the semi-classical contribution of localized circling electrons (blue curve). (b) Difference of
data and the theory shown in part (a) gives the contributions of weak localization and Shubnikov-de
Haas oscillations to the resistance Rxx.
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Magneto-transport 37

Subtracting Drude and circling contribution to the resistivity from the data (subtract-
ing black and blue curves in Fig. 6.3), one obtains the influence of a weak localization
and Shubnikov-de Haas oscillations on the measured resistance. Weak localization is neg-
ligibly small and SdH oscillations are well-separated from all other contributions. Such a
separation simplifies an analysis of particular phenomena, especially in the case of SdH
oscillations it simplifies the processing of Fourier transform. Fourier transform of SdH
oscillations is presented in Fig. 6.4. It clearly shows two pivotal frequencies. The stronger
(weaker) one, at the frequency of Bν=1/2 (Bν=1) originates in spin unresolved (resolved)
Landau levels. Field Bν=1 is a field at the filling factor ν = 1. More detailed analysis of
SdH oscillations will be provided in the following text, analyzing resistance Rxx.
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Figure 6.4: Normalized power spectrum of Fast Fourier Transform of the data presented in
Fig. 6.3 (b). Data are plotted as a function of the magnetic field normalized by magnetic field
at filling factor ν = 1 (Bν=1 = 17.94 T).

6.1.2 Analysis of the resistivity

Basic theory

Here, we focus on the analysis of SdH oscillations measured in the temperatures from
91 mK to 1200 mK. Data at these two limiting temperatures are shown for illustration in
Fig. 6.5. Clear dumping of the amplitude of SdH oscillations is observed.

In order to model such an experimental observation, we have used two standard models.
The two models, which differ in the type of the broadening of electronic Landau levels,
Gaussian or Lorentzian. The density of states in 2-dimensional systems will be then
described by equation (6.10) for Lorentzian broadening and by equation (6.11) for Gaussian
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Figure 6.5: Longitudinal resistance Rxx at the lowest (black curve) and highest (red curve) temperature.

broadening. Normalization is done by zero-field density of states me/πh̄
2.

g1(E,B) =
h̄ωe

πΓe

∞
∑

N=0

1

1 +
(

E−EN
Γe

)2 (6.10)

g2(E,B) =
h̄ωe√
2πΓe

∞
∑

N=0

e
− (E−EN )2

2Γ2e (6.11)

The resulting normalized conductivity at arbitrary temperature is calculated according to
formula (6.12) (for example [54, 55])

σxx
σ0

=

∫ ∞

−∞
gl(E,B)

(

−∂nFD

∂E

)

dE (6.12)

and the conclusion follows Fourier series (6.13). The results for both Gaussian and
Lorentzian broadening differ in fact only in the exponent l, see Eq. (6.13), where l = 1 for
Lorentzian broadening and l = 2 for Gaussian broadening.

∣

∣

∣

∣

σxx(B)− σ0
σ0

∣

∣

∣

∣

= 2

∞
∑

s=1

(−1)s exp
[

−2
(

πΓes

h̄ωe

)l
]

s2π2kBT/h̄ωe

sinh(s2π2kBT/h̄ωe)
cos

(

2πEF s

h̄ωe

)

(6.13)
Usually, for the sake of simplicity, only the first term in the Fourier series (6.13) is

taken, hence the expression used to describe the oscillatory part of conductivity is (6.14).

∣

∣

∣

∣

σxx(B)− σ0
σ0

∣

∣

∣

∣

= 2 exp

[

−2
(

πΓe

h̄ωe

)l
]

2π2kBT/h̄ωe

sinh(2π2kBT/h̄ωe)
cos

(

2πEF

h̄ωe

)

(6.14)

The condition, which validates an approximation by the first term in Fourier series, is
not always fulfilled. It assumes very small modulation of the density of states, hence very
small magnetic fields. The approximation of Eq. (6.14) by the first term alone is applicable
in our samples roughly up to 0.5 T as was deduced by modelling of DOS (Eq. (6.10), (6.11))
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Magneto-transport 39

and comparing it with its Fourier series expansion. Though the Fast Fourier Transform
of data in Fig. 6.4 clearly shows small contributions of higher order terms, these higher
order terms are negligibly small. The applicability of this approximation will be revised
also later in the text.

Another important assumption, used in the derivation of Eq. (6.13), is introduced by
neglecting spin splitting of Landau levels. We have shown in the data, that spin splitting
appears at the base temperature (91 mK) at about 0.5 T, what is the same limitation as
given by assuming only the first term in Fourier expansion.

The relation between conductivity and resistivity is in the literature usually done by
approximative equation:

∆σxx
σ0

≈ ∆ρxx
ρ0

≈ ∆Rxx

Rxx,0
(6.15)

We are aware of limits of this approximative formula, however, we have tried to analyze
SdH by both conductivity and resistivity and both approaches provided the same results,
hence, we will analyze preferably the directly measured data of Rxx.

In order to eliminate all possible background contributions to the resistance, for ex-
ample, the discussed contribution of circling electrons, we analyze the amplitude of SdH
oscillations ∆Rxx = |Rxx,max − Rxx,min|. In order to subtract Rxx,max and Rxx,min, the
maximal values Rxx,max at fields of the minimal values Rxx,min were determined by the
nearest-neighbor interpolation method. Amplitudes of SdH oscillations obtained with such
a procedure are presented in Fig. 6.6, for a complete set of temperatures from 91 mK to
1200 mK. The manifestation of spin splitting is marked by dashed line. This is the part
of the data, which is not taken into account in our analysis.

Approximative expressions

According to formulas (6.14) and (6.15) the amplitude of the resistance is given by
Eq. (6.16), where cosine was replace by a factor 2 in order to account for its maximum-to-
minimum amplitude. We compare two approaches of analyzing data using the expression

|Rmax −Rmin| = 4Rxx,0 exp

[

−2
(

πΓe

h̄ωe

)l
]

2π2kBT/h̄ωe

sinh(2π2kBT/h̄ωe)
. (6.16)

The first approach approximates the term x/ sinh(x) by 2xe−x and the second one
treats the whole expression (6.16) without any approximations. In the literature, some-
times also an approximation x/ sinh(x) ≈ 1 is used. It is valid at low temperatures and
high magnetic fields when x ≪ 1. Although it could be concluded at the first sight, that
this approximation could be valid in our data, since the data looks temperature insensi-
tive at low temperatures, the condition of its validity is not fulfilled; x ∼= 1.5T (K)/B(T )
in CdTe. Hence the region of validity extends into the region of spin splitting already at
the base temperature of 91 mK. A misleading conclusion of temperature independent data
comes from the fact, that the low temperature data were measured with much smaller step
in temperature than high temperature data. Hence, the data look temperature insensitive.

The approximation x/ sinh(x) ≈ 2xe−x is valid in the limit x≫ 1 and it will be applied
only for the case of Lorentzian Landau level broadening. We have found, comparing both
expressions x/ sinh(x) and 2xe−x, that the condition x > 2.5 is sufficient to keep an error
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Figure 6.6: (Points) Natural logarithm of the amplitude of SdH oscillations plotted versus
4π2me0/heB in the range of temperatures 91-1200 mK. Horizontal dashed line show the region
of the data where influence of the spin splitting occurs. Vertical solid lines of a given color assign
the maximal field where approximation x/ sinh(x) = 2xe−x holds for a given temperature (data
plotted with the same color). Units of the x-axis are given by the prefactor of a parameter γ in
Eq. (6.17).

of the approximation in the order of few percent. Intervals of the validity x > 2.5 are
shown in Fig. 6.6 by vertical lines and the red arrow denotes the half-plane where the
approximation holds. Multiplying the data by magnetic field and taking their natural
logarithm leads to the final formula (6.17).

ln(∆RxxB) = ln
(

16R0π
2kBTme/h̄e

)

+
4π2

heB
(−πkBTme − Γeme) (6.17)

The slope of ln((Rxx,max − Rxx,min)B) versus 4π
2m0/heB is described by parameter γ,

Eq. (6.18), which is given by effective mass of electrons and broadening of Landau levels.

γ = −πkBTme − Γeme (6.18)

The slope γ is plotted in Fig. 6.7 together with two possible fits of its linear temperature
dependence in the high temperature limit. The two fits are shown to underline the uncer-
tainty of parameters me and Γe, obtained in this approximation. In the first case (blue
fit in Fig. 6.7), the effective mass of electrons is twice larger than expected and Landau
level broadening is too small. In the second case (red fit in Fig. 6.7), the effective mass is
closer to the expected value of 0.1 and the broadening is also more realistic. However the
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interval of data which was used to obtain these parameters is difficult to find unless we
know the result.

 !  "  #$  #%  

&% 

&' 

&! 

&( 

&$ 

&# 

 ! "# $%

&

'$(

 ! )*+,-

 ./01$ 02 /3445

&67

85

&93

:;: <.* - &

$)

=>;

 
!

"
#

$

?$&1$'6@A'$ 4&B:

 ! +) $%

&

'$(

 ! )*,

Figure 6.7: Slope γ = −πkBTme −meΓe of the ln((Rxx,max −Rxx,min)B) versus 4π
2m0/heB as a

function of temperature. Two possible fits of γ = γ(T ) (red and blue curve) are compared.

Another problem of this approximation is how well these parameters reproduce the
absolute value of the SdH oscillations. The comparison is done in Fig. 6.8 by using
formula (6.16) and parameters Γe = 95 µeV and me = 0.124m0. One can see, that even
though the slopes of the model well reproduce the slopes of the data, the discrepancy in
the absolute values is too big.

We have shown here that the approximation x/ sinh(x) ≈ 2xe−x of the formula (6.16)
and using two fitting parameters (me,Γe) does not work well. Although the enhanced
effective mass determined from SdH oscillations has been reported in the literature [56] p.
550, we will show in the following approach, that such a conclusion from the analysis of
the slope of SdH oscillations alone might be wrong.

Temperature properties

In the second approach, we have used directly the formula (6.16) to fit the amplitudes
of SdH oscillations. The unperturbed electron mass me = 0.1me0 was used and only
the broadening Γe was treated as a fitting parameter. The result for Lorentzian and
Gaussian broadening of electronic Landau levels are shown in Fig. 6.9 (a) and Fig. 6.10 (a),
respectively.

Very good agreement with data has been obtained in the case of Lorentzian broadening.
The good agreement with a model is in fact at the expense of introducing a term of
temperature dependent broadening, see Fig. 6.9 (b) and Fig. 6.10 (b). Broadening is
in the range from 70 to 80 µeV for Gaussian and from 105 to 120 µeV for Lorentzian
broadening. Even though one could conclude from temperature dependence of broadening
on some tendency in the data (minimum of Γe at about 300 mK), the uncertainty of the
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Figure 6.8: Comparison of the data (points) and model (lines) of the amplitude of SdH oscillations
for temperatures 91-1200 mK. The values of fitting parameters are Γe = 95 µeV, me = 0.124m0,
as obtained by analyzing slopes of diminishing amplitude of SdH oscillations alone, without taking
into account their absolute values.

fitting parameter of about 10 µeV makes it difficult to do further conclusion. Both types of
broadening differ also in the zero field resistance Rxx,0, which is a scaling parameter of the
amplitude of SdH oscillations, see Eq. (6.16). Its value is Rxx,0 = 25 Ω and Rxx,0 = 65 Ω
in the case of Gaussian and Lorentzian broadening, respectively. The experimentally
measured value is 58 Ω in the Hall bar and 53 Ω in the van der Pauw configurations.
Comparing these values and the quality of the fit, we conclude, that the electronic Landau
level have mainly Lorentzian line shape with small contribution of Gaussian broadening.

We have tried to improve the description of SdH oscillations in the case of Gaussian
broadening taking into account more than the first term in the Fourier series expansion
in Eq. (6.13). The result is shown in Fig. 6.11 where we have taken into account first 50
terms of the fourier expansion of conductivity. The result is not very distinct with respect
to the one-term case presented in Fig. 6.10. The difference occurs in the high field region,
where the data are better described by 50 terms. This is a natural conclusion, because at
high fields the modulation of the density of states is no longer small. Landau levels can not
be any more described simply by harmonic modulation, and therefore higher harmonics
appear in the case of high-field deep density of states modulation.

Although the data has been successfully described, the question remains, why the
fitting parameter Γe exhibits certain degree of the variation around the value Γe ≈ 110 µeV.
Because the temperature of electrons need not to correspond to the bath temperature, we
fitted the data once more, using a constant Lorentzian broadening Γe = 110 µeV and
an effective mass of electron as in the first set of data analysis me = 0.1m0 and the
temperature was used as a fitting parameter. Another reason for using the temperature
as a fitting parameter is that the temperature determined in the experiment is burdened
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Figure 6.9: (a) Amplitude of SdH oscillations (black points) fitted by formula (6.16). Lorentzian
broadening was assumed (l=1) and Γe was used as a fitting parameter. Fitted curves are plotted
by red lines. Regions of the data which were used in fitting procedure are marked by green curves.
(b) Fitting parameter Γe as a function of temperature.

by an experimental error2, which can be, in principle, corrected by using temperature
as a fitting parameter. The fitted temperature, see Fig. 6.12, which we call the carrier
temperature, is roughly the same as the bath temperature (measured in experiment) at

2A cernox thermometer was used to measure the temperature of the sample. The distance between the
thermometer and the sample was ≈ 3-5 mm.
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Figure 6.10: The same as in Fig. 6.9 but Gaussian broadening (l=2) used.

high temperatures above 200 mK. Slight deviations from the measured values are assigned
to the experimental error of the temperature determination. However, the low temperature
limit shows quite big discrepancy between both values. The carrier temperature saturates
at the value of about 200 mK.

We exclude too large current used in the magneto-resistivity measurements as a reason
for such a saturation, because the data were measured twice, using the current 20 and
100 nA and the amplitude of the SdH oscillations was the same in both cases. The reason
of the saturation can be that we illuminate sample by the laser light, and thus we increase
the carrier temperature with respect to the lattice temperature. If the cooling power is
less efficient below 200 mK than the heating by the laser beam, the temperature saturates
in such a case.
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Figure 6.11: The same as in Fig. 6.10 but first 50 terms in Fourier expansion of the density of states
used. The improvement with respect to one-term Fourier expansion in high field regime is marked
by blue circle.

Field properties

So far, we have been studying the broadening and effective mass of electrons as a function
of temperature. Here, we plot the data as a function of temperature for all magnetic fields,
thus obtaining field dependence of broadening and electron effective mass. The same data
as in Fig. 6.6 are plotted here versus temperature and shown in Fig. 6.13.

In contrast to the previous section, the analysis here can be done independently on the
shape of the Landau level broadening. As follows from the full expression of the electrical
conductivity, Eq. (6.13), the shape of the broadening enters only as an exponent l in the
temperature independent part of Eq. (6.13). Hence, one can use a whole temperature
independent part as a single fitting parameter which has a meaning of amplitude of SdH
oscillations A at zero-temperature, Eq. (6.19).

A = 4R0e
−2

(

πΓe
h̄ωe

)l

(6.19)

Thus, we use the formula (6.20) with two free parameters - amplitude A and electron
effective mass me.

|Rmax −Rmin| = A
2π2kBmeT/h̄eB

sinh(2π2kBmeT/h̄eB)
(6.20)

The result of fitting is compared with data in Fig. 6.13 and field dependence of the
amplitude and effective mass are depicted in Fig. 6.14 (a) and (c). The corresponding
broadening of the Lorentzian or Gaussian line shape can be calculated according to the
equation (6.19), and the field dependence of Lorentzian and Gaussian broadening Γe is
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Figure 6.12: The same as in Fig. 6.9 but temperature of carriers was used as a fitting parameter.
Lorentzian broadening with Γe = 110 µeV used constant for all bath temperatures. Effective mass
of electron me = 0.1m0.

shown in Fig. 6.14 (b). The values for both types of broadening are consistent with val-
ues obtained by previous analysis, where data were plotted versus magnetic field and the
broadening was obtained as a function of temperature.

Since neither broadening nor effective mass manifest significant changes in magnetic
field up to the 0.5 T (high field limit of the validity of used approximations), we have
reduced the number of fitting parameters, and only the field dependence of broadening was
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Figure 6.13: Amplitude of SdH oscillations plotted versus temperature for several magnetic fields,
distinguished by color. Points are experimental data and curves their fits by formula (6.16).

calculated, as shown in Fig. 6.15. Effective mass of electron was taken to be me = 0.1me0,
which is in agreement with fitted value and also with the value obtained by far infrared
absorption measurements of cyclotron resonance. Again, as in the previous case when
using two fitting parameters, also here the field-dependent analysis is consistent with the
temperature-dependent analysis.

We comment on a field dependence of the broadening above 0.5 T, thus, beyond the
limits of a validity of approximations under which the formula (6.16) for longitudinal
conductivity was derived. The broadening exhibits clear maximum at the field of 0.6 T,
Fig. 6.15. The spin-splitting appears roughly at this field, but the expression for conduc-
tivity (6.16) has been derived without considering the spin splitting. One can expect that
at a very small spin splitting, the two spin Landau levels are nearly, but not yet completely
separated. Hence, one can describe them still as a one Landau level, but with effectively
larger broadening. This is why we believe, that the maximum in broadening is caused by
the fact, that spin splitting is not taken into account, what effectively broadens Landau
levels.

We conclude, that there is neither significant temperature nor field dependence of
both the broadening and the electron effective mass in the range of the fields up to 0.5 T
and temperatures from 91 mK to 1200 mK. We have found, that Landau levels are well
described by Lorentzian broadening with parameter Γe = 110 µeV, what corresponds to
the quantum lifetime τq = h̄/2Γe = (3.0 ± 0.3) ps. We also underline the importance of
using the full expression (6.16) instead of approximative formula (6.17).
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Figure 6.14: Amplitude of SdH oscillations (a) and effective mass of electron (in units of m0) (c) as
a function of magnetic field as obtained by fitting the temperature dependence of SdH oscillations.
Fitting parameters (a) and (c) are results of the fitting procedure presented in Fig. 6.13. (b)
Broadening Γe calculated from the amplitude (a) using formula (6.19) taking Lorentzian (green
circles) and Gaussian (orange squares) broadening into account.

6.1.3 Comments on various formulas of SdH oscillations

Finally, we would like to comment on various formulas for SdH oscillations, which are
commonly used in the literature. Since 1950’s there have been a number of theoretical
studies of SdH effect [57, 58, 59, 60] both in 3D and 2D systems. We have already
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Figure 6.15: Broadening of the Lorentzian-shape Landau levels as a function of magnetic field.
Parameter Γe obtained by fitting data presented in Fig. 6.13.

considered two possible types of broadening which are usually used [61] and now we look
on the origin of two possible numerical prefactors in the conductivity formula. In this thesis
we follow the work of Ando [62, 56, 63], who uses the formula (6.14) with a prefactor 2.
However, the prefactor 4 is also sometimes used [64, 65, 66]. It was shown [55, 67], that
the difference comes from the type of scattering in studied system. The prefactor is equal
to 2 (4) if the scattering is of the long-(short-)range type.

Drude conductivity σxx is given in the diffusion regime (ωeτtr ≫ 1) by

σxx =
e2neff
meτtrωe

, (6.21)

where an effective concentration of carriers neff contributing to the conductivity is pro-
portional to the density of states ge(EF , B)

neff ∝ ge(EF , B). (6.22)

Hence we have a linear proportionality between conductivity and the density of states

σxx ∝ ge(EF , B). (6.23)

If also 1/τtr is proportional to the density of states

1

τtr
∝ ge(EF , B), (6.24)

then conductivity is proportional to the square of the density of states

σxx ∝ g2e(EF , B). (6.25)

Taking into account the fact that ge can be written as ge = 1 + δge, where δge is a small
modulation (δge ≪ 1), than neglecting the second order term δ2ge,

g2e(EF , B) = (1 + δge)
2 ≃ 1 + 2δge, (6.26)
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we obtain the additional prefactor 2. The probability 1/τtr is proportional to the density
of states if the scattering is of the short-range origin. Because our data fit better with
the prefactor 2, we guess that there is a dominant role of the long-range scattering. This
conclusion can be done also comparing transport (τtr = 15 ps) and quantum lifetime
(τq = 3 ps). If the short-range scattering dominates, these times are expected to be
equal [65, 68].

The absence of the short-range scattering is another sign of the high quality of our
samples, as has been already concluded from the low field onset of SdH oscillations and
the spin-splitting in Rxx.

A last comment is devoted to the field dependence of the Gaussian and Lorentzian
broadening. Comparing expressions for the conductivity (6.14) in the case of Lorentzian
(ΓL) and Gaussian broadening (ΓG), one gets the relation between these two types of
broadening

ΓL =
π

h̄ωe
Γ2G. (6.27)

Consequently, the field independent Lorentzian broadening is equivalent to the square-root
(
√
B) field dependence of the Gaussian broadening. Hence, having no further information

on the shape of LLs, we can not deduce the field dependence of the broadening. The
determination of the LL shape could be done comparing zero field value of resistance Rxx0

with the experiment. However, without information on the nature of the scattering in the
sample (long or short range), this factor would vary by a factor of two and the comparison
would be difficult. It seems to us that the best way is to compare the quality of the fit
to data plotted versus 1/B, as done in Fig. 6.9 and Fig. 6.10. If the analysis independent
on the shape of Landau levels is required, than plotting data versus temperature is a
preferable option.

6.2 Low-field magneto-resistance in CdMnTe QW

For the sake of comparison with the non-magnetic 20 nm wide CdTe QW, we present also
low field magneto-resistance measurements in 21.1 nm wide CdMnTe QW. Both QWs
contain 2DEG of the similar concentration (4.5 and 4.0×1011 cm−2 in CdTe and CdMnTe
QW, respectively). The main difference with respect to the non-magnetic CdTe QW is a
presence of manganese.

6.2.1 Base temperature measurements

Longitudinal magneto-resistance Rxx measured in CdMnTe QW at the base temperature
T = 90 mK is shown in Fig. 6.16. For better readability, we plot the data as a function of
the inverse value of the magnetic field. The same data are also plotted in Fig. 6.19 in linear
x-scale (B-dependence). The resistance Rxx in CdMnTe QW exhibits SdH oscillations, as
well as the resistance Rxx in the non-magnetic CdTe QW. The beating pattern of the SdH
oscillations is a fingerprint of manganese. The beating has well defined nodes (black ar-
rows in Fig. 6.16) and maxima (red arrows in Fig. 6.16) and the nodes at sufficiently high
magnetic fields exhibit doubled frequency of SdH oscillations (see nodes n = {0, 1, 2, 3, 4}
in Fig. 6.16). The beating is due to manganese induced Giant Zeeman Splitting (GZS) and
the character of nodes (zero/non-zero amplitude or doubled frequency of SdH oscillations)
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Figure 6.16: Longitudinal magneto-resistance Rxx as a function of the inverse value of magnetic field.
Measured in 21.1 nm wide CdMnTe QW at the base temperature of 90 mK. Sample was illuminated
by laser light at the energy Eexc = 2.41 eV (Ar+), power on the sample Pillum = 1.0 µW and the
laser spot size was ≈ 2 mm. Black (red) vertical arrows show positions of the nodes (maxima
of beating) in the beating pattern of Rxx, when the condition ∆s = h̄ωe(n +

1
2
) (∆s = nh̄ωe) is

fulfilled.

is governed by the ratio of the broadening of electronic Landau levels Γe and the cyclotron
energy h̄ωe. An electronic configuration of manganese is [Ar]4s

23d5, hence in the equilib-
rium there are 5 electrons with the same spin in the last partially occupied electronic shell.
These 5 electrons described by d-wave functions (spherical harmonics Yl,m = Y2,m) give
rise to the intrinsic magnetic moment SMn = 5/2. The interaction of these d-electrons
with s-electrons from the conduction band is generally called the s-d exchange interaction.
The s-d exchange interaction manifests as Giant Zeeman Splitting (GZS). GZS can be
understood as a consequence of local magnetic field produced by alignment of magnetic
moments of manganese in the direction of the external magnetic field. The stronger ex-
ternal magnetic field is, the more manganese atoms are aligned parallel with each other
giving rise to stronger local magnetic field. Such an enhancement of the local magnetic
field with respect to the external field leads to a non-linear field dependence of the energy
of electrons in the conduction band3 and also to the non-linear increase of the spin splitting
which becomes enormously large with respect to the bare Zeeman splitting. This is why
such a splitting is called GZS. GZS vanishes at zero magnetic field and it is more than 6×
larger than the cyclotron energy h̄ωe already at magnetic field of ≈ 0.25 T in our sample.
In order to explain the beating pattern of the SdH oscillations, we follow the work of

3Energy levels of holes are also influenced by the presence of manganese, in this case by p-d exchange
interaction, as will be shown in the chapter 7.2.2.
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Magneto-transport 52

Figure 6.17: Scheme of the relative energy positions of the density of states (G) of electrons with
the spin up (G↑) and down (G↓) (grey filled curves). Total, spin unresolved density of states
Gtot is depicted by the solid red curve. Fermi energy EF moves in the part of the DOS shown by
horizontal dashed line. Part (a) describes the situation when the energy of the total spin splitting of
the electronic Landau levels ∆s is an integer multiple of the cyclotron resonance energy (∆s = nh̄ωe,
n = {0, 1, 2, ...}). When situation (a) occurs, maxima in the beating pattern of the longitudinal
magneto-resistance Rxx are observed. Parts (b) and (c) describe the situation, when the condition
∆s = h̄ωe(n +

1
2
), n = {0, 1, 2, ...} is fulfilled and the nodes are observed in the beating pattern

of Rxx versus B. Parts (b) and (c) correspond to the situation, when the width of the electronic
Landau levels Γe is (b) smaller (c) larger than the energy of the cyclotron resonance h̄ωe. In the
case (b), the total spin unresolved DOS is still modulated (frequency of the modulation is twice
higher than the modulation of the spin resolved DOS) and in the case (c) the modulation of the
total DOS is smoothed out due to the fulfilled condition Γe > h̄ωe.

Teran [69]. The maxima of the density of states (DOS) of the electrons with spin up (G↑)
and down (G↓) become alternatively in- and out- of phase when increasing magnetic field.
If the two DOS are in-phase (out-of-phase), maxima (nodes) in the beating pattern are
observed. This is because the in-phase alignment of the two DOS keeps the gap between
two adjacent Landau levels open, see Fig. 6.17 (a), for this reason the oscillations are
observed. Moreover, it maximizes number of states, into which the electrons can scatter,
and for this reason maxima in the beating are observed. This situation occurs when the
spin gap of the electronic Landau levels ∆s is an integer (n) multiple of the cyclotron
energy h̄ωe

∆s = nh̄ωe. (6.28)

If the DOS G↑ and G↓ are out-of-phase, it means the condition

∆s = h̄ωe(n+
1

2
) (6.29)

is fulfilled, the nodes in the beating pattern are observed. The amplitude of SdH oscil-
lations behaves in this case differently, if the broadening of electronic Landau levels Γe

is larger/smaller than the cyclotron energy h̄ωe. If the Γe is much larger than h̄ωe, the
total, spin unresolved DOS Gtot = G↑ + G↓ is not modulated, it is gapless and it can be
approximated by the constant DOS. In such a case, instead of the oscillations, nodes are
observed in the beating, see scheme in Fig. 6.17 (c). However, at sufficiently high magnetic
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Magneto-transport 53

field, when the cyclotron energy is much larger than the LL broadening (h̄ωe ≫ Γe), the
gap in the total DOS remains open and SdH oscillations are observed. The frequency
of the SdH oscillations is twice the frequency at the maxima of the beating, because the
spin resolved DOS are out-of-phase and for this reason the total DOS Gtot is modulated at
twice higher frequency than the spin resolved DOS G↑ and G↓, see scheme in Fig. 6.17 (b).
The possibility to observe these nodes is due to better sample quality with respect to the
samples used in the study of Teran [69], where no such nodes have been observed.

More quantitative analysis of the SdH oscillations is presented in Fig. 6.18. We plot
the filling factor versus inverse value of the magnetic field positions of the Rxx minima in
order to determine the concentration of the 2DEG, ne = 4.0× 1011 cm−2. The minima of
the Rxx do not correspond alternatively to odd and even filling factors at low magnetic
fields, as is usual in non-magnetic QWs. Here, due to the GZS, minima tend to belong
to the same parity of the filling factors within the interval of two adjacent nodes and the
parity changes at the nodes. If the double frequency of the SdH oscillations is observed in
the vicinity of the nodes, then the alternating odd and even filling factors are recovered, as
has been shown, and as can be seen in Fig. 6.18. Taking zero field resistance Rxx,0 = 132 Ω
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Figure 6.18: Filling factor versus inverse value of the magnetic field to determine concentration of
2DEG. The analysis of the data presented in Fig. 6.16. The fitting of the slope gives magnetic
field at the filling factor ν = 1, Bν=1 = 16.45 T and the corresponding electron sheet concentration
ne = 4.0 × 1011 cm−2. Black (red) points correspond to the minima of the longitudinal resistance
Rxx at odd (even) integer filling factors. Vertical arrows show positions of the nodes in magnetic
field and the numbers are indices n in the condition ∆s = h̄ωe(n +

1
2
), which has to be fulfilled if

nodes are observed.

and the concentration of 2DEG ne = 4.0 × 1011 cm−2, one can estimate mobility of 2D
electrons µ = 120000 cm2V−1s−1, which is twice smaller than the value established in
our non-magnetic CdTe QW. The analysis of the damping of SdH oscillations gives the
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Magneto-transport 54

broadening of electronic Landau levels Γe = 130− 140 µeV, which is by 20-30 µeV larger
than in the CdTe QW. Both the smaller value of the electron mobility and the larger
broadening of LLs (shorter scattering time) lead us to the conclusion that the quality of
CdMnTe QW is worse than the quality of CdTe QW. Such a conclusion is obvious, when
we assume that the in-plane randomly distributed manganese atoms act as additional
scattering centers, thus contributing to the shorter scattering time and smaller mobility.

6.2.2 Temperature dependence

In the following paragraph, the temperature dependence of the longitudinal resistance Rxx

is presented and qualitatively analyzed. Since the detailed analysis of the damping of SdH
oscillations as a function of temperature have been presented in the case of CdTe QW,
here we focus on the temperature dependence of the beating pattern. The temperature
dependence of Rxx is shown in Fig. 6.19 in the range of temperatures from 90 mK to
1230 mK. The increasing temperature damps the amplitude of SdH oscillations, as in the
case of CdTe QW, and the positions of nodes shift to lower magnetic field. In order to
explain such a behavior, we present more quantitative description of GZS and we model
the observed temperature dependence of nodes. It can be shown [70, 71] that electron
energy levels EC,↑(↓) can be described by the formula (6.30),

EC,↑(↓) = ±
1

2
N0αx〈Sz〉 (6.30)

where the ± signs correspond to the two electronic spin states, N0 is the number of unit
cells per unit volume, α is the exchange integral of the interaction of s-electrons in a con-
duction band and d-electrons of Mn2+ atom, x is the averaged mole fraction of manganese
and 〈Sz〉 is the thermal average of zth component of Mn2+ spin [70, 72]. The value 〈Sz〉
is governed, in magnetic field and non-zero temperature, at the first approximation, by
Brillouin function, as shown in equation (6.31).

〈Sz〉 = S0B5/2

(

5
2gMnµBB

kB(T + T0)

)

(6.31)

The Brillouin function is generally defined [73] as

BJ(y) =
2J + 1

2J
coth

(

2J + 1

2J
y

)

− 1

2J
coth

( y

2J

)

. (6.32)

Following the pioneering work of Gaj [70], the parameter S0 expresses the saturation
value of the thermal average of zth spin component 〈Sz〉, gMn is the g-factor of manganese
(g = 2 [70, 74, 75]), T is the lattice temperature and T + T0 is an effective temperature
of manganese atoms. The temperature T0 takes into account anti-ferromagnetic coupling
between two manganese atoms. Parameters S0 and T0 depend on the concentration of
manganese. Mean concentration of manganese is in our QW of about 0.3%, hence the
expected values (in bulk CdMnTe) are S0 = 2.4 and T0 = 0.09 K [76]. Exchange interaction
parameter N0α = +0.22 eV does not depend on the concentration of manganese, but it
can slightly depend on the quantum confinement [75]. However, quantum confinement
changes this parameter of about few percents, therefore we neglect this effect. Within this
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Figure 6.19: Longitudinal magneto-resistance Rxx as a function of the magnetic field. Measured
in 21.1 nm wide CdMnTe QW in the range of temperatures from 90 mK to 1230 mK. Sample was
illuminated by laser light at the energy Eexc = 2.41 eV (Ar+), power on the sample Pillum = 1.0 µW
and the laser spot size was ≈ 2 mm. For the sake of clarity, the curves are shifted with respect to
each other in the y-direction. The double arrow in the top-left corner denotes 500 Ω unit of the
y-scale.

simple model of GZS, one can write for the total spin splitting ∆s of the electronic Landau
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levels

∆s = geµBB +∆exchB5/2

(

5
2gMnµBB

kB(T + T0)

)

, (6.33)

where ∆exch = N0αxS0. We note that the contribution of the bare Zeeman splitting has a
negative sign with respect to the contribution of the polarization of manganese and it tends
to close the electronic spin gap at high magnetic field. Taking Eq. (6.33) and the condition
for the nodes given by Eq. (6.29), we have calculated the temperature dependence of the
field position of the nodes by fitting temperature independent parameters ∆exch and T0.
In Fig. 6.20, the model (solid red curve), using fitted values ∆exch = (1.67 ± 0.05) meV
and T0 = (60± 10) mK, is compared with the experimental data (circles). The agreement
between the data and the model is more qualitative than quantitative. The model predicts
a shift of the nodes to lower fields with increasing temperature, however, the predicted
decrease is too fast.

For this reason, following the work of Teran [77], we have tried to improve the presented
model of the GZS by including many-body electron-electron interactions in 2DEG and we
have included also an influence of the polarization of the 2DEG on the polarization of
manganese. Energy contribution of the electron-electron interaction ∆E↑↓ to the spin
splitting ∆s is in the low field limit proportional to the polarization of 2DEG and it can
be described [78] as ∆E↑↓ = ∆0P , where ∆0 = 2.1 meV in CdTe and P is the polarization
of 2DEG. The polarization can be in the presence of GZS approximated as P ≃ ∆s

2EF
, where

EF = 9.5 meV is the Fermi energy in our CdMnTe QW. An influence of the polarization
of 2DEG on the magnetization of manganese can be included by replacing energy of
manganese EMn = gMnµBB by EMn = gMnµBB + 1

2αn
3D
e P. The 3D concentration of

2DEG can be approximated by 2D concentration n2De and an effective width of the QW
d∗QW , n3De ≈ n2De /d∗QW . The effective width of the QW is calculated from the real width
dQW = 21.1 nm as d∗QW ≈ dQW /2. As a result, the total spin spin splitting of electronic
LLs ∆s reads

∆s = geµBB +∆0
∆s

2EF
+∆exchB5/2

[

5
2

(

gMnµBB + 1
2αn

3D
e P

)

kB(T + T0)

]

. (6.34)

Because the Eq. (6.34) is an implicit function of ∆s, we have solved it self-consistently. The
model, using ∆exch = (1.50± 0.05) meV and T0 = (64± 10) mK as fitting parameters, is
plotted in Fig. 6.20 by red dotted line. As can be seen, these two many-body contributions
play negligible role on the shape of the observed temperature dependence of the nodes.
Although the quality of the fit did not change, many-body effects reduce the exchange
energy ∆exch from 1.7 to 1.5 meV, with respect to the first, the simplest model.

In the third model, we take into account more precisely anti-ferromagnetic (AF) ex-
change interaction between two manganese atoms. The formula (6.31) is derived in the
mean-field approximation and takes into account especially the weak, but long-range, car-
rier mediated exchange interaction between manganese atoms. The direct, stronger, but
short-range, anti-ferromagnetic (AF) exchange interaction is considered only phenomeno-
logically by introducing the parameter T0 [80, 77]. The direct exchange is usually weak in
the diluted magnetic semiconductors with very low manganese concentration, because only
few of manganese atoms are so close to each other that the direct short-range exchange
interaction is efficient. In such a case, the approximation of the direct AF interaction by
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Figure 6.20: Magnetic field position of the nodes in Rxx = Rxx(B) as a function of the temperature.
Circles are experimentally determined positions of nodes. Red solid curve is the expected temper-
ature dependence of the nodes within the most simple model (following the work of Gaj [70]), in
which the mean value 〈Sz〉 is described only by the Brillouin function (direct anti-ferromagnetic
Mn-Mn exchange interaction is not taken properly into account). Black solid curve is the model,
which properly includes direct anti-ferromagnetic Mn-Mn exchange interaction. In this model, we
follow the work of Aggarwal [79]. The dotted curves are the two former models extended by the
many-body electron-electron interaction and an influence of the polarization of the 2DEG on the
polarization of manganese, as suggested by Teran [77].

the phenomenological parameter T0 is sufficient. However, although there is enough small
average concentration of manganese in our QW (≈ 0.3%), the local manganese concentra-
tion is due to the digital doping much higher4. Digital doping means that manganese is
not homogenously distributed across the QW, but it resides in only 7 mono-layers out of
65 mono-layers, which compose the whole QW. Therefore, even though the average man-
ganese concentration is low (≈ 0.3%), locally it is much higher (0.3% × 65/7 = 2.8%)56.
At such a concentration, there is already high probability that manganese atoms are gath-
ered into small clusters [81, 82, 76] like pairs, open and closed triangles. For the sake of
simplicity, we consider only clustering into the pairs. Following the work of Aggarwal [79],

4For details on the structure of our samples, see chapter 3
5The local manganese concentration xloc = 2.8% is only rough estimate, because we do not take into

account diffusion of manganese into the neighboring mono-layers. The real concentration is probably still
slightly lower

6The importance of the local manganese concentration in the heterostructures has been pointed out
also by Grieshaber [76]
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the average zth component of the Mn spin 〈Sz〉 is given by the formula

〈Sz〉 = S0B5/2

(

5
2gMnµBB

kB(T + T0)

)

+
1

2
Pp

5
∑

n=1

1

exp
(

2nJNN−gMnµBB
kBT

)

+ 1
(6.35)

and the spin splitting of the electronic LLs reads

∆s = geµBB +∆exchB5/2

(

5
2gMnµBB

kB(T + T0)

)

+
∆exchPp

2S0

5
∑

n=1

1

exp
(

2nJNN−gMnµBB
kBT

)

+ 1
.

(6.36)
The parameters Pp and JNN , which describe the magnetization of manganese in the pairs,
are the probability of the single manganese to be part of the pair cluster and the short-
range exchange energy, respectively. Comparison of this model with the data is shown in
Fig. 6.20 (model is plotted by solid black curve). Very good agreement with the experi-
mentally observed temperature dependence of the positions of nodes has been obtained.
The probability that manganese is part of the pair cluster is Pp = (25±5)% and the short-
range exchange energy JNN = (10± 5) µeV. The expected probability Pp is in the single
monolayer at xloc = 2.8% roughly Pp = 10% [76]. However, it has been shown [81] that the
number of pairs can be more than doubled at similar manganese concentrations (xloc = 5%)
than statistically predicted within the model of random manganese distribution. On the
basis of the work of Galazka [81] we also conclude that part of manganese atoms is not
distributed randomly in our QW. The short-range exchange energy JNN = (10 ± 5) µeV
is roughly 4× smaller than reported in bulk CdMnTe [81] of similar local manganese con-
centration (xloc = 5%). We believe that this difference is given by the digital doping of
manganese in separate mono-layers, in contrast to the result obtained in bulk CdMnTe [81].
The parameters ∆exch = (1.45 ± 0.05) meV and T0 = (45 ± 10) mK do not differ signif-
icantly from those obtained in the first two simpler models. Including electron-electron
interaction and influence of the polarization of 2DEG on the magnetization of manganese
again does not change the quality of the fit (see black dotted curve in Fig. 6.20). However,
it changes the value of ∆exch, which is then ∆exch = (1.30 ± 0.05) meV. Corresponding
average concentration of manganese is x = (0.25±0.4)%, which is in good agreement with
the expected value 0.3%. The twice smaller value of T0 than expected is believed to be
due to the quantum confinement and digital doping of manganese, because the expected
T0 = 90 mK has been reported for bulk CdMnTe. The second reason could be that the
AF coupling of manganese in pair clusters is now considered separately. Before, the pairs
have been considered effectively only in the temperature T0. However, now, we consider
pairs separately and therefore the T0 can be smaller.

To conclude, we have found that both CdMnTe and CdTe QWs exhibit SdH oscilla-
tions in the longitudinal resistance. Analysis of the damping of SdH oscillations at base
temperature shows that the quality of CdMnTe QW is worse than the quality of CdTe
QW. We have assigned the worse quality to the manganese dopants, which play a role of
additional scattering centers. The most pronounced manifestation of manganese in the
CdMnTe QW is the beating pattern in SdH oscillations. The analysis of the beating pat-
tern has shown the importance of the short-range (also called nearest-neighbor) Mn-Mn
anti-ferromagnetic interaction and the presence of non-randomly distributed manganese.
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Magneto-transport 59

We have shown that the contribution of many-body electron-electron interaction as well
as the influence of the polarization of 2DEG on the magnetization of manganese do not
improve the quality of the modelling of the temperature dependence of the nodes observed
in SdH oscillations. Nevertheless these contributions affect the amplitude of the exchange
energy ∆exch.

6.3 High-field magneto-resistivity in CdTe QW

6.3.1 Magneto-resistivity in perpendicular field

In the following section, we present measurements of the high-field longitudinal (Rxx,
Fig. 6.21) and Hall (Rxy, Fig. 6.22) magneto-resistivity in 20 nm wide CdTe QW in order
to investigate both integer and possibly fractional quantum Hall states. We have observed
well developed integer quantum Hall states (QHS) up to the filling factor ν ≈ 20 and two
well developed fractional QHS 5/3 and 4/3. Among others, also a signature of fractional
QHS at higher Landau level N = 1 has been observed, namely fractions 8/3 and 7/3.
Around fractional states 5/3 and 4/3 we have observed metal-insulator transition7, which
is extraordinarily stable up to the highest temperatures achievable (1410 mK). Similar
stability of the metal-insulator transition is observed also in the the vicinity of the filling
factor 8/3, which represents in fact the same filling factor as 5/3, but at higher Landau
level.

The Hall resistivity, which was measured simultaneously with the longitudinal resis-
tivity Rxx, is plotted in the Fig. 6.22. Well developed plateaux have been observed for all
integer filling factors up to ν ≈ 20 and fractional states 4/3 and 5/3. Although plateau
corresponding to the fractional state 5/3 is well developed, its resistivity is not exactly
equal to (3/5)(h/e2). The expected resistivity (3/5)(h/e2) is shown in Fig. 6.22 by black
dashed horizontal line labelled ν(R5/3). Solid red horizontal line shows the expected
Hall resistivity according to the position of the minimum in Rxx (filling factor labelled
ν(Rmin)). Surprisingly, the resistivity of this Hall plateau best corresponds to the filling
factor ν(RMIT ), which corresponds in Rxx to the magnetic field of metal-insulator transi-
tions (this is why we use the label MIT). The detail of the vicinity of the fractional filling
factor 5/3 in the longitudinal resistivity is shown in Fig. 6.23. However, an explanation
of such striking observation has not yet been found.

In the temperature dependence of longitudinal resistivity Rxx, Fig. 6.21, one can see a
gradual disappearance of integer QHS. This is given by thermal activation of the carriers
within the Zeeman spin gap for odd filling factors, or within cyclotron gap for even filling
factors. We have used the simplest method to describe observed thermal activation by
assuming that the resistivity Rxx ∝ ne, where ne is a concentration of thermally activated
carriers which is given by Fermi-Dirac distribution nFD = 1/(exp((E − EF )/kBT ) + 1)
approximated by nFD ≈ exp(−(E − EF )/kBT ). Since Fermi energy is located at integer

7Metal-insulator transition is distinguished in the data by minimal temperature dependence of the re-
sistivity Rxx. Resistivity of the insulator decreases with increasing temperature, because localized carriers
which do not contribute to the conductivity can achieve enough thermal energy to escape their localiz-
ing potentials, hence the higher temperature the more carriers can contribute to the conductivity, thus
decreasing resistivity. In metals, the presence of free carriers is inherited from the definition of metal.
However, at higher temperatures, the influence of scattering of the carriers by lattice vibrations grows, and
thus the conductivity decreases (resistivity increases) with growing temperature.
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Figure 6.21: Longitudinal resistivity Rxx as a function of magnetic field from 0 to 16 T measured in
20 nm wide CdTe/CdMgTe QW in the temperature range from 70 to 1410 mK. The lowest and the
highest temperatures are marked by arrows. Sample was illuminated by laser light at the energy
Eexc = 2.41 eV (Ar+); power on the sample Pillum = 1.0 µW and the laser spot size ≈ 2 mm.
Integer filling factors 2, 3, 4 and 5 together with fractional filling factors 4/3, 5/3, 7/3 and 8/3 are
marked by vertical arrows. The two red circles show the position of metal-insulator transition.

filling factor exactly in the middle of the gap ∆, the energy difference E −EF = ∆/2 is a
half of the measured gap. The resulting expression for the thermal gap activation ∆ is

Rxx ∝ e
− ∆
2kBT ⇔ ln(Rxx) ∝ −

∆

2kBT
. (6.37)

The analysis of the thermal activation of the spin gap is plotted in the Fig. 6.24 and of
the cyclotron gap in Fig. 6.25. The data in figures 6.24 and 6.25 are extended by the data
measured at temperatures from 1.9 K to 20.6 K. Using equation (6.37) for the thermal
activation, one can obtain the size of the spin gap at odd filling factors ν = 3, 5, 7, ..., 19
and the cyclotron gap at even filling factors 4, 6 and 8. The gap at filling factor 2 can not
be properly analyzed, because it is not yet thermally activated at as high temperature as
20.6 K.

The field dependence of the energy gap at both odd and even filling factors is plot-
ted in Fig. 6.26. The data are compared with the field dependence of the energy gap
∆ as expected from the single-particle model of the electron motion in magnetic field.
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Figure 6.22: Hall resistivity Rxy measured simultaneously with longitudinal resistivity Rxx pre-
sented in Fig. 6.21. Vertical lines mark integer and fractional filling factors. Expected Hall resis-
tivity at Hall plateaux for filling factors ν(Rmin), ν(R5/3) and ν(RMIT ) are also marked. Field
dependence of the Hall resistivity Rxy in the vicinity of ν = 5/3 is depicted in the inset.

The expected single-particle gaps at odd (∆odd(B) = geµBB) and at even (∆even(B) =
h̄ωe − geµBB) filling factors are shown by black (∆odd(B)) and red (∆even(B)) straight
line in Fig. 6.26, respectively. The higher absolute values of the spin gap (odd ν) are
due to the spin gap enhancement at the Fermi energy and the details of this phenomenon
will be discussed in the chapter 7.3. The lower values of the cyclotron gap are usually
explained either in terms of the, so called, mobility gap, or this discrepancy is explained
by not fulfilled assumptions, under which is the formula (6.37) for the thermally activated
gap derived. We guess that the mobility gap can not explain the observed disagreement
between the data and the experiment, because the mobility gap is driven by the spectral
width of the Landau levels, which has been determined in the low-field regime from the
damping of the amplitude of the SdH oscillations (Γ = 110 µeV for the Lorentzian broad-
ening). We have found that the LL width is constant up to 0.5 T. In order to explain the
observed disagreement, this broadening would have to be ≈ 5× larger already at 2 T. We
guess that such a field dependence of the LL broadening is quite unlikely.

The second approach [83] is based on description of the thermal activation of the
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Figure 6.23: Inset of the Fig. 6.21 around fractional filling factor 5/3. The filling factors ν(Rmin),
ν(R5/3) and ν(RMIT ) are marked by vertical arrows.

longitudinal resistance using the formula

Rmax −Rmin

Rmax
=

AT

∆sinh(2π
2kBT
∆ )

. (6.38)

Here, Rmin is the minimal resistance at the given integer filling factor ν (Fig. 6.21). The
parameter Rmax is the local maximum of the Rxx in the vicinity of the filling factor ν in the
field dependence of Rxx. The difference Rmax −Rmin therefore determines the amplitude
of the oscillations of the longitudinal resistance Rxx at the filling factor ν. Parameter A
scales the amplitude of the oscillations of Rxx and ∆ is the unknown energy of the gap.
The formula (6.38) is derived on the basis of the relation (6.16), where the density of states
is replaced by the harmonic modulation (the first term in the expansion of the DOS into
the Fourier series). The cyclotron gap determined using the relation (6.38) agrees well
with the expected, single-particle cyclotron gap (reduced by the spin gap), as is shown in
Fig. 6.26 by red circles.

6.4 Magneto-resistivity in tilted field

Interacting carriers in certain FQH ground states can have opposite spins provided the
Zeeman energy is sufficiently small. This is typically observed in GaAs-based 2D elec-
tron gases (2DEGs), where an increase in the Zeeman energy induces a change in the
spin polarization of the ground state from unpolarized to fully spin-polarized one. This
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Figure 6.24: Arrhenius plot of the minimal longitudinal resistivity Rxx at odd filling factors. Minima
analyzed from the data in Fig. 6.21 and from high temperature data up to 20.6 K. Only well
developed integer quantum Hall states has been taken into account. Slopes corresponding to certain
gaps ∆ are plotted by solid black lines and labelled by the gap size in Kelvins.
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Figure 6.25: The same as Fig. 6.24 but for even filling factors.
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Figure 6.26: Activation energy ∆odd analyzed from the Arrhenius plot in Fig. 6.24 for odd filling
factors (black points) and activation energy ∆even analyzed from the Arrhenius plot in Fig. 6.25
for even filling factors (red points). Relation (6.37) was used to analyze the thermal activation of
the gaps. Expected single-particle field dependence of the activation energy at odd and even filling
factors is plotted by black and red straight line, respectively. Gap at even filling factors determined
using formula (6.38) is plotted by red circles.

transition has been reported for the FQH states at filling factors ν=4/3, ν=8/5, ν=2/3,
or ν=2/5, [84, 85, 86, 87] as well as in a GaAs 2D hole gas. [88] Subsequently, this be-
havior was elegantly interpreted within the composite fermions (CF) model [89] for the
FQH effect by invoking Zeeman energy-induced crossings between spin-split composite
fermion Landau levels, leading to possible changes of the spin configuration of the ground
state [90]. More recently, the ν=4/3 FQH state was investigated in a strained Si quantum
well, [91] where the associated resistance minimum was found to maintain its strength with
increasing Zeeman energy, which was interpreted as the consequence of a spin-polarized
ground state. The latter work addresses the interesting question of how the FQH effect
manifests itself in a 2D system with an intrinsically larger Zeeman energy than in GaAs.
However, the influence of the valley degeneracy inherent in Si is another degree of freedom
that may also interfere with the FQH physics.

Here, we study the evolution of FQH states under relatively high intrinsic Zeeman
energy in a single valley electron system. This is made possible by investigating the FQH
effect in a high quality 2D electron gas in CdTe, a single valley direct gap semiconductor in
which the bare electronic g-factor is about four times larger than in GaAs. The transport
measurements performed at mK temperature reveal fully-developed FQH states (i.e. zero
longitudinal resistance and exact quantization of the Hall resistance) in the upper spin
branch of the lowest (N=0) Landau level (LL), which constitutes to our knowledge the first
observation of the FQH effect in II-VI semiconductor. Tilted magnetic fields experiments
up to 28 Tesla show no significant changes of the FQH gap both at filling factor 4/3 and
5/3, which is a behavior typical of spin-polarized ground states for which the lowest energy
excitation is not a spin-flip. This can be accounted for by the relatively high intrinsic
Zeeman energy which wins over the Coulomb energy to force the spins to align with the
magnetic field. This can also be seen as the consequence of energy level crossings in the
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Figure 6.27: Hall resistance Rxy and longitudinal resistance Rxx versus perpendicular magnetic
field for different temperatures.

composite fermion approach for the FQH effect. Significantly, emerging FQH minima
at filling factors 7/3 and 8/3 are also observed at intermediate temperatures in the first
excited (N=1) LL, demonstrating the high quality of the 2DEG that it is now possible to
achieve in this material. Intriguingly, there is no sign of the ν=5/2 FQH effect down to
T ∼ 10 mK. Future studies of the ν=5/2 FQH state in this high Zeeman energy system
could be of great importance to shed light on the long-standing question regarding the
spin polarization of this state.

The sample studied here is a 20 nm wide CdTe quantum well, as described in chap-
ter 3. It was cooled down in a 3He/4He dilution fridge to mK temperature in a num-
ber of different ways: under continuous illumination with a green laser or a green light
emitting diode (LED), under continuous illumination with a yellow LED, and, in the
darkness. These types of cooldowns will be referred to as cooldown A, B and C respec-
tively. The resulting electron density for cooldown A, B, and C, are ns = 4.50, 4.53 and
3.80× 1011 cm−2 respectively, and the electron mobility at T∼ 600 mK for cooldown A is
around µ = 260000cm2/V s. Transport measurements were performed with a standard low
frequency lock-in technique for temperatures between 40 mK and 1.4 K under magnetic
fields up to 28 T.

In Fig. 6.27, we plot the longitudinal resistance Rxx for cooldown A as a function of
the perpendicular magnetic field for different temperatures. Pronounced FQH states are
observed at low temperature at filling factor ν=4/3, and ν=5/3, with the resistance falling
to zero, together with well defined quantized Hall resistance. The role of illumination in
improving the sample quality is critical, as the quantum lifetime τq extracted from the
low field Shubnikov de Haas (SdH) oscillations is found to increase more than five times,
from 0.6 ps in the dark to 3 ± 0.3 ps after illumination. This value of τq is comparable
to the one which can be observed in GaAs samples with a mobility of the order of 106 −
107 cm2V−1s−1, despite our moderate measured mobility of 260000 cm2/V s.8

8This apparent contradiction is due to the fact that in such high mobility GaAs samples, the long-range
scattering by remote donors is even more predominant and leads to a higher mobility, for comparable τq.
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Nevertheless, at low temperature, an important number of electronic states are lo-
calized, leading to wide zero resistance states in the integer quantum Hall effect, which
prevent the observation of any signs of the FQH effect in the first excited (N=1) LL. As the
temperature is increased, the fraction of localized states is reduced and weak FQH minima
become visible in the N=1 LL. These features persist up to relatively high temperature,
demonstrating again the quality of the sample.

In Fig. 6.28 we focus on the FQH effect in the N=0 Landau level. Fig. 6.28 (a) shows
the temperature dependance of the longitudinal resistance at ν=5/3 and 4/3, for cooldown
A and B as a function of the inverse temperature. The difference in sample quality between
cooldowns appears clearly when comparing the low temperature behavior of the initially
similar resistance at filling factor 4/3. Arrhenius plots are generally used to extract an
activation gap or mobility gap, corresponding to the energy difference between the edge
of the delocalized states of the ground and excited states. However, a simple extraction
of this activation gap ∆ requires the observation of an expanded linear region (typically
at least one order of magnitude) where Rxx ∼ e−∆/2kBT , whereas such a region is rather
absent in our data. This none thermally-activated behavior is actually expected when a
Gaussian or Lorentzian level shape is taken into account, for which one expects the linear
behavior in an activation plot to deviate at low temperature in the presence of a broadening
which reduces the mobility gap. This effect becomes important when the particles level
broadening is non-negligible compared to the total (spectral) gap. To analyze our data, we
therefore use the model proposed in Ref. [92] which includes a disorder-induced Gaussian
broadening to calculate the temperature dependence of the resistance. The LL broadening
is imposed by the one extracted for electrons via SdH measurements. The results of these
simulations are plotted as dotted-lines in Fig. 6.28 (a) and show very good agreement with
the experimental behavior. From this model we estimate the total FQH gap in cooldown
B to be 3.15 K and 3.0K for ν=4/3 and ν=5/3, respectively. In units of Coulomb energy,
e2/4πǫ0ǫrlB, where ǫr=10 is the relative dielectric constant in CdTe and lB =

√

h/eB the
magnetic length, the total FQH gap corresponds to 0.013 and 0.014, respectively.

Activation data was also collected when tilting the 2DEG plane in the total magnetic
field with an in-situ rotation stage at an angle of θ = 55◦. This data, also plotted in
Fig. 6.28 (a), is very similar to the θ = 0◦ behavior for ν=4/3 and ν=5/3. The small
difference can be well reproduced for both fractions either by introducing a small increase
(∼ 10 %) in the level width, while the total gap remains constant, or by using a constant
level width and a slightly reduced gap (∼ 10 % also). The total gaps extracted from our
analysis at θ = 0◦ and θ = 55◦ are plotted in the inset of Fig. 6.28 (a) as a function of the
total field at fixed perpendicular field (filling factor), the vertical error bar representing the
possible gap decrease at θ = 55◦. Starting with the measured gap value for θ = 0◦, we show
how the gap should evolve as a function of total magnetic field (Zeeman energy) in three
different configurations: a spin-polarized ground state with single particle spin-reversed
excitation (∆S = −1, where ∆S is the spin change during the excitation), a spin-polarized
ground state without spin flip excitations (∆S = 0), and a spin-unpolarized ground state
(∆S = +1). The bare g-factor g∗ = −1.6 is taken from Raman scattering measurements
performed on the same sample.

The fact that the ν=5/3 gap remains nearly constant at θ = 55◦ suggests, as observed
in GaAs, a spin-polarized ground state with a lowest energy excitation which is not a spin-
flip, since no increase is observed despite of a significant variation (nearly a factor of 2) of
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Figure 6.28: (a) Longitudinal resistance Rxx at ν=4/3 as a function of inverse temperature for
cooldown A (stars) and for cooldown B at θ = 0◦ (circles) and θ = 55.6◦ (triangles). The same
data for cooldown B at ν=5/3 (open symbols). Simulations of the thermally activated resistance
(dashed lines) (see text). Inset: Corresponding total FQH gaps at ν=4/3 and ν=5/3 as a function
of the total field Btotal. Expected evolution of the gaps for different ground states (dotted lines) (see
text). (b) Angular dependence of the longitudinal magneto-resistivity Rxx in the upper spin branch
of the N=0 LL at fixed temperature T ∼ 390 mK. Data plotted as a function of the component
B⊥ of the total field Btot; B⊥ = Btot cos(θ). Increasing tilting angle θ indicated by the arrow. (c)
Schematic representation of the CF fan diagram at fixed CF cyclotron energy, as a function of the
Zeeman energy (see text). ECF (N) is the energy of the Nth CF level. The arrows depict the spin
orientation of each sub-band. (d) Position of the CF level crossings in the (|B∗CF |,Btotal) plane (see
text). The arrows depict the spin polarization of the ground state in different region.
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Magneto-transport 68

the Zeeman energy. If the ν=4/3 state was to be unpolarised, one would expect a sharp
decrease of the gap or even its disappearance, here around Btotal =16T , before reentrance
at higher fields due to a change in the ground state polarization. This transition has been
observed in GaAs 2DEG at low electron density, [84, 90] and also for higher densities
close to the one of our CdTe sample. In Refs. [84, 93], the ν=4/3 FQH gap for sample
G71 with initial electron density ∼ 2.7× 1011cm−2 decreases as the density (total field) is
increased and is close to vanishing for magnetic fields of about 12 T. Our observation of
a quasi-unchanged gap at θ = 55◦ shows the ν=4/3 FQH state is spin-polarized in CdTe.
The fact that this gap is not increasing further suggests that the lowest energy excitations
in this state do not involve spin flip excitation.

The qualitative behavior of the gap at different tilt angles between θ = 0◦ and θ = 55◦

can be inferred from a detailed angular dependence of Rxx measured for a fixed interme-
diate temperature of T ∼ 390 mK. At this temperature the gap variation can efficiently
be probed as observed when comparing the resistance values at ν=4/3 and ν=5/3 for
cooldown A and B (Fig. 6.28 (a)). This angular dependence plotted in Fig. 6.28 (b).
shows only a very weak variation of the resistance at ν=5/3 and ν=4/3 over the entire θ
range studied (0 < θ < 55◦). This demonstrates that no significant changes in the ν=4/3
and ν=5/3 FQH gaps are observed upon tilting, as expected for a spin-polarized state
with no spin-flip excitation.

This behavior can actually be understood more quantitatively using the CF theory for
FQH effect, where FQH for electron is mapped onto the integer quantum Hall effect for
composite fermions. In the upper spin branch of the N = 0 LL, around ν=3/2, these CF
see an effective magnetic field B∗CF = 3(B⊥ − B⊥3/2), where B⊥3/2 is the magnetic field
corresponding to ν=3/2.[94, 90] In this case the ν=4/3 (5/3) FQH effect for electrons is
the ν∗CF = 2(1) integer quantum Hall effect for CF. The scale of the CF cyclotron gap
between two CF levels is then given by h̄e|B∗CF |/m∗CF , where m∗CF is the CF effective
mass. When the Zeeman energy is added to this simple picture, which is schematically
depicted in Fig.6.28.c, the lower spin branch of the N=1 CF level ((1, ↑)) may have a
lower energy than the upper spin branch of the N=0 CF level ((0, ↓)). In this situation
the ground state at ν∗CF = 2, initially formed by (0, ↑) and (0, ↓) CF levels for small
Zeeman energies, is now formed by the (1, ↑) and (0, ↑) CF levels and therefore spin-
polarized. This picture can be applied to our 2DEG in CdTe, with a g-factor of g∗ = −1.6
and the composite fermions effective mass experimentally determined in Ref. [95] as a
function of B∗CF (m∗CF = 0.51 + 0.074|B∗CF |) 9. In Fig.6.28.c, we plot in a (|B∗CF |,Btotal)
plane the position of the crossing points of the (0, ↓) CF level with the (1, ↑) and (2, ↑)
levels. For ν = 4/3(ν∗CF = 2), these crossings occur for Btotal ∼ 3.4 T and Btotal ∼ 6.8 T
respectively, explaining why the ν=4/3 FQH ground state is spin-polarized with no spin-
reversed excitations for the total magnetic field range investigated (14 < Btotal < 25 T).
The excitation gap in this domain corresponds to a CF cyclotron gap (referred to as
“cyclotron-like” in Fig. 6.28 (c)). The same conclusions are drawn for the ν = 5/3(ν∗CF =
1) FQH state, provided Btotal > 3 T. We note that the CF cyclotron gap used in these
calculations is larger than the experimentally measured FQH gap discussed above, meaning
that the transition to “cyclotron-like” excitations should occur at even smaller magnetic
field.

9The CF effective mass in our sample may differ from the one extracted in Ref. [95], because of different
ǫr, LL mixing and finite thickness of the QW.
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Figure 6.29: Magneto resistance Rxx in the lower spin branch of the N=1 LL at T = 534 mK.
Corresponding filling factors are indicated on top. Inset: angular dependance of the ν=7/3 minimum
at T = 600 mK.

Finally, we turn to the description of the emerging FQH effect in the N =1 LL which
can be observed in our sample at intermediate temperatures. As can be seen in Fig. 6.27,
weak minima are emerging at filling factors ν=7/3 and ν=8/3 for temperatures above
400-500 mK. At lower temperatures, the increasing number of localized states leads to
the FQH effect being masked by the integer quantum Hall effect. The T = 534 mK
perpendicular field data of Fig. 6.27 are inserted for clarity in Fig. 6.29. In the inset of
Fig. 6.29, we focus on the evolution of the local minimum at ν=7/3 and T = 600 mK for
different tilt angles. The minimum maintains its strength at low angles, before starting
to weaken around θ = 24◦ and finally disappearing for θ > 42◦. The relative initial
stability with respect to tilt angle is similar to the one observed in the N = 0 LL, and
suggests that, as for ν=5/3 and ν=4/3, the ν=7/3 state is already in a regime where
the ground state is spin-polarized with a lowest energy excitation which is not a spin flip.
However, the observation of a ν=7/3 state at lower temperatures (not possible because of
localization) would be necessary to validate this hypothesis. At higher angles however, the
minimum clearly disappears and the resistance at the broad maximum in Rxx associated
with the N = 1 LL starts to increase. Depending on the orientation between the parallel
magnetic field and the current flow, the transport was found to be anisotropic, somewhat
reminiscent of the anisotropy observed at low temperature in high mobility GaAs-based
2DEG. [96, 97]

In contrast to FQH states ν=7/3 and ν=8/3, no minimum is observed at filling factor
ν=5/2. This remains true at ultra-low temperature (T∼ 10 mK), where we still have
delocalized electrons around ν=5/2. The absence of a ν=5/2 FQH minimum could pri-
marily be attributed to insufficient sample quality. However, it is also possible that the
high Zeeman energy in CdTe plays a particular role in the formation of the 5/2 FQH state.
Despite of a great deal of theoretical evidence for the ν=5/2 FQH state, there is still no
direct experimental observation of the full spin polarization of ν = 5/2 FQH state, as
expected [98]. Instead, recent optical measurements [99] point toward a spin unpolarized
state. In our samples (ge = −1.6), ν=5/2 occurs at B = 7.6 T, thus the Zeeman energy
is about ∼ 8 K, which is more than one order of magnitude larger than the very weak
energy gap usually associated with the 5/2 FQH state (even in the highest mobility GaAs
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Magneto-transport 70

samples). Under such conditions, the stabilization of an unpolarized ground state is very
unlikely. Whether this is the reason or not for the“missing” minimum at ν=5/2 in our
CdTe sample is a fundamental question which could only be decisively answered by further
significant improvement of sample quality.

In conclusion, we have shown that the 2DEG in a CdTe quantum well can have a high
quality, leading to the observation of pronounced FQH states in the upper spin branch
of the N = 0 LL, as well as emergent FQH minima in the N = 1 LL. The physics of
these FQH states is strongly influenced by the intrinsic Zeeman energy, resulting in the
complete spin polarization of the FQH ground states 4/3 and 5/3, in agreement with a CF
approach for FQH effect and the low energy excitations of composite fermions at ν = 4/3
and ν = 5/3 do not undergo the spin-flip.
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Chapter 7

Magneto-photoluminescence

7.1 Spectral properties of zero filed PL

7.1.1 Introduction

An experimental investigation of photoluminescence (PL) and magneto-photoluminescence
was one of our main techniques to explore the properties of 2DEG. Therefore it is impor-
tant to know, what are the main contributions to the spectral line shape of PL. Among
other things, the spectral line shape provides wide range of quantitative and qualitative
information on different properties of investigated QWs such as a type of the radiative
recombination (excitonic, free-electron-free-hole, donor-acceptor, etc.), shape and spec-
tral width of broadening of energy levels, effective temperature of holes and electrons or
spectral position of the forbidden gap [100].

We will start the description of the PL line shape from the simplest model based on
Fermi golden rule and an ideal band structure. As a second step, we introduce broadening
of energy levels. Two types of broadening will be investigated, Gaussian and Lorentzian.
Further on, we compare our simplified model with experimental data of PL at zero mag-
netic field. At the end, we will discuss contributions of the broadening of valence and
conduction band to the total broadening determined in the PL line shape analysis. Be-
cause in the whole presented work, we have paid special attention to the 20 nm wide QW
(for the reasons which will be shown in chapter 7.3), we will focus also here on this sample.

Electron concentration in 20 nm wide QW reaches value of 4.5× 1011 cm−2, which is
high enough with respect to metal-insulation transition (MIT), above which the excitonic
effects should be negligibly weak1. The electron concentration in our samples corresponds
to the dimensionless parameter rs =1.6 2. Such a small value of the parameter rs implies
also negligible binding energy of excitons [102]. The recombination is not even of the
acceptor- or donor-related origin, because in such a case, as will be shown in following
chapters, field dependence of the energy of PL emission (Landau level quantization) would
not exhibit contributions of both free electrons and free holes. Therefore we assume
that the radiative recombination is due to free-electron-free-hole recombination process.
The electrons of a 2DEG occupy the lowest electronic subband up to the Fermi energy

1MIT occurs at ≈ 2× 1011 cm−2 in 10 nm wide single-side doped CdTe QWs, see [101]
2Parameter rs describes an average distance between electrons. The average distance is measured in

the units of an effective Bohr radius a∗0, for definitions of rs and a∗0, see chapter 4

71

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Magneto-photoluminescence 72

EF = 10.8 meV from the bottom of the conduction band. The corresponding Fermi wave
vector kF =

√
2meEF /h̄ = 168 × 106 m−1 determines the range of wave vectors around

Γ point, in which the electron-hole recombination takes place. The largest wave vector of
emitted photon kγ ≈ 8× 106 m−1 is roughly 20 times smaller than kF . Hence, we neglect
wave vector of emitted photon with respect to kF and thus we consider that wave vector
is conserved during the radiative recombination process.

7.1.2 Description of the PL spectrum

Intensity of PL is given in the first order of the perturbation theory (dipole approximation),
by Fermi golden rule (7.1),

IPL(hν) ∝ JCV n
e
FDn

h
FD|M |2 (7.1)

where JCV is a joint density of states of conduction electrons and valence band holes,
neFD and nhFD are Fermi-Dirac distributions of electrons and holes and |M |2 is a matrix
element of the optical transition, also called the oscillator strength. Joint density of states
of electrons and holes is given in an ideal 2DEG by step-like function (7.2)

JCV =
1

πh̄2
memh

me +mh
θ(E − Eg) (7.2)

whereme andmh are effective masses of electrons and holes and Eg is the band gap energy.
One of the procedures to describe the non-ideal 2DEG is to consider that band gap

energy Eg changes across the sample. These variations are caused by an inhomogeneous
width of the quantum well, interface roughness, non-homogeneous internal electric field
and other effects which can generally shift the band gap energy. We can write then, that
Eg is a random variable with a statistical distribution given by a function fg = fg(Γg),
where Γg accounts for the variation of the band gap Eg across the sample. The two
experimentally most often considered situations are, if the distribution function posses
Lorentzian, Eq. (7.3), or Gaussian line shape, Eq. (7.4).

fg =
1

πΓ

1

1 +
(

E
Γ

)2 (7.3)

fg =
1√
2πΓ

e
E2

2Γ2 (7.4)

The probability that the gap occurs in the interval (Eg, Eg + dEg) is fg(E − Eg)dEg.
States inside this interval contribute to the broadened joint density of states JCV,Γ by
fg(E − Eg)dEgθ(E). Total broadened joint density of states JCV,Γ is then simply a sum
of all such contributions over all possible values of band gap energy Eg, see Eq. (7.5).

JCV,Γ =

∫ ∞

−∞
fg(E − Eg)

1

πh̄2
memh

me +mh
θ(E), dE (7.5)

Formula (7.5) is from a mathematical point of view a convolution of the distribution
function fg and ideal joint density of states JCV , JCV,Γ = fg ∗ JCV .
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Magneto-photoluminescence 73

The resulting expression of the spectral line shape of a free-electron-free-hole recombi-
nation is given by formula (7.6).

IPL(hν) ∝ JCV,Γ
mr

πh̄2
neFDn

h
FD|M |2 (7.6)

For the sake of simplicity, we consider matrix element |M |2 to be independent on the
energy. Under these particular assumptions we can write the analytical expression for the
PL line shape of free-electron-free-hole recombination, considering wave vector conserva-
tion and Gaussian (7.7), resp. Lorentzian (7.8) broadening of both conduction and valence
band.

IPL(hν) =
I0
2

[

1 + erf

(

hν − Eg√
2Γg

)]

1

exp
(

Ee−EF,e

kBTe

)

+ 1



1− 1

exp
(

Eh−EF,h

kBTh

)

+ 1



 (7.7)

IPL(hν) =
I0
2

[

1 +
2

π
arctan

(

hν − Eg

Γg

)]

1

exp
(

Ee−EF,e

kBTe

)

+ 1



1− 1

exp
(

Eh−EF,h

kBTh

)

+ 1





(7.8)
EF,e, EF,h, Te and Th are Fermi energies and temperatures of electrons in the conduction
band and photo-excited holes in the valence band. Energies Ee and Eh stand for single
particle energies of electron and hole, which participate in the recombination process of
the emission of hν photon. In our situation of the parabolic band structure, the electron
and hole energies Ee and Eh are given by the relations (7.9) and (7.10).

Ee = Eg +
mh

me +mh
(hν − Eg) (7.9)

Eh = −
me

me +mh
(hν − Eg) (7.10)

Figure 7.1: Schematic band structure (left panel) and density of states of electrons and holes
together with occupation factors on the right side.

The parameter I0 scales the amplitude of PL intensity. In Fig. 7.1, we sketch schemat-
ically Fermi-Dirac distributions of electrons and holes. Joint density of states is a two-
particle property and it cannot be plotted in this single particle scheme. Therefore we
sketch only single-particle density of states of electrons and holes. Roughly speaking,
broadening Γg determines the width of the low energy tail of PL spectrum. Temperature
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Magneto-photoluminescence 74

of holes is reflected in the width of the high energy tail from the maximum of PL to
approximately Fermi energy. Band gap energy Eg defines the position of PL emission in
the spectrum. Temperature of electrons Te is responsible for how quickly intensity of PL
emission decreases in the vicinity of the Fermi energy.

7.1.3 Fitting procedure

We used formulas (7.7) and (7.8) to fit PL spectrum of the 20 nm wide QW measured at
five selected temperatures 0.08, 2.66, 7.90, 16.0 and 20.6 K. One set of parameters required
by the model of PL line shape has been obtained from other experiments than zero-field
PL [effective mass of electrons me = 0.1m0 (Far infrared absorption), effective mass of
holes mh = 0.5m0 (field dependence of PL), Fermi energy of electrons Ee

F = 10.8 meV
(magneto-resistance and photoluminescence-excitation)]. Temperature of electrons was
difficult to extract from our PL spectra due to very weak PL intensity at high energy tail
of PL spectra even at high temperatures. This is due to small concentration of holes, which
could recombine with electrons from the vicinity of Fermi energy. Therefore temperature
of electrons was assumed to be the same as a lattice temperature. The set of other five
parameters was unknown: band gap energy Eg, total broadening of joint density of states
Γg, temperature of holes Th, Fermi energy of holes EF,h and scaling parameter I0. These
parameters should be used as fitting parameters.

In order to reduce number of fitting parameters, we have eliminated the scaling ampli-
tude I0 by normalizing both measured PL spectra and functions (7.7) and (7.8) per unite
amplitude. Fermi energy of holes EF,h was eliminated by two methods. The first possibil-
ity is based on the fact that the concentration of photo-excited holes is very small, hence,
we assume that Fermi energy EF,h lies deeply in the forbidden gap. Therefore it is possible
to replace Fermi-Dirac distribution of holes by Boltzmann distribution. This approxima-
tion is suitable for the case of Gaussian broadening, however fails in the case of Lorentzian
broadening. The reason is that we replace Fermi-Dirac distribution of holes, which has
finite limit at high energies, by the Boltzmann distribution, which grows at high energies
exponentially, as eE/kBT . If considering Gaussian broadening, then density of states in the
forbidden gap decreases as e−E

2/2Γ2 , thus number of occupied states decreases exponen-
tially as e−E

2/2Γ2eE/kBT ∝ e−E . However, when we do the same approximation for the
Lorentzian broadening, a number of states in the forbidden gap diminishes only as 1/E2

and thus a number of occupied states states in the forbidden gap increases as eE/E2. This
non-physical behavior is caused by the fact that Lorentzian function decreases much slower
than exponentially growing Boltzmann distribution. Hence, by this first method, fitting
parameter EF was excluded only in the case of Gaussian broadening. This approximation
tends more likely to fail in the case of Lorentzian broadening.

The second method of excluding Fermi energy of holes from the set of fitting parameters
is to find the relation between EF,h and one of the remaining parameters Eg and(or) Γg.
A good candidate to do this is a broadening Γg of joint density of states JCV,Γ. We will
discuss here only the case of Gaussian broadening, because, as will be explained later, this
method again fails for the case of Lorentzian line shape. Broadening Γg is given by the
convolution of distribution functions describing broadening of a valence and conduction
band. If one finds the relation between Γg and broadening of the valence band ΓV , it is
possible to calculate Fermi energy EF,h from the known concentration of photo-excited
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Magneto-photoluminescence 75

holes (nph ≈ 108 cm−2). For the sake of simplicity, we will assume that valence and
conduction bands possess the same type of (Gaussian) broadening. Moreover, as we have
shown in the analysis of low-field magneto-resistance, although Lorentzian broadening is
more suitable for conduction band, Gaussian broadening is, in the first approximation,
also good description of low-field broadening of electronic Landau levels and will be a
sufficient approximation for the moment. We have concluded in chapter 6.1 that in such a
case, the broadening of electronic Landau levels is Γe = 0.07 meV and we have shown that
it does not depend neither on temperature (from 91 mK to 1.2 K) nor on magnetic field
(from 0.12 to 0.5 T). We extrapolate this value to the zero magnetic field, and assume that
the width ΓC of a distribution function describing broadening of the electronic conduction
band is ΓC = Γe = 0.07 meV. It follows from the properties of a convolution of two
gaussian functions that the relation between Γg, ΓC and ΓV is given as:

Γ2g = Γ2V + Γ2C (7.11)

Thus, having parameter Γg from the fitting of the spectral line shape of PL, having ΓC

from the analysis of low-field magneto-resistance and concentration of holes as a parameter
given by the concentration of photo-excited carriers nh = nph = 108 cm−2, we can calculate
Fermi energy of holes from the equation for their concentration nh.

nh =

∫ ∞

−∞

mh

πh̄2
1

2

[

1 + erf

(

E√
2ΓV

)]

nhFD(E,EF,h, Th)dE (7.12)

Equation (7.12) is an integral of zero-field density of states and Fermi-Dirac distribution
of holes nhFD given by Fermi energy EF,h and temperature of holes Th. Hence, the fitting
of the PL spectrum has to be done self-consistently by fitting expression (7.7) and solving
equation (7.12) at the same time.

This method is not applicable to the case, when broadening of energy levels is de-
scribed by a Lorentzian line shape. It is again due to slowly vanishing high-energy tails of
Lorentzian distribution, which gives infinite number of hole states above top of the valence
band (e.g. towards forbidden gap). Infinite number of states above the top of the valence
band causes non-physical shift of the Fermi energy of holes to the infinitely high energies
and makes it impossible to treat such a problem numerically. There are two ways, how to
eliminate this divergency. The first is to cut the density of states at certain, arbitrarily
chosen energy, or to fix Fermi energy at a given level. We have chosen the second method,
and fixed the Fermi energy of holes at the top of the valence band. The expressions (7.7)
and (7.8) which we are using to fit the spectral line shape of zero-field PL are non-linear
functions of all three remaining fitting parameters Eg, Γg and Th. As a consequence, the
result of fitting depends on initial values of fitting parameters, which are used as a starting
points for the method of least squares. In order to stabilize the solution and make it less
dependent on the initial values of Eg, Γg and Th, we have solved the minimization problem
self-consistently. Good convergence was achieved usually after 3-5 iterations and such a
solution was much more robust with respect to the change of the initial fitting parameters.

The results of the fitting procedure are compared with a data in the figure 7.2 and
obtained parameters Eg, Γg and Th are shown for both types of energy level broadening
and selected lattice temperatures in the table 7.1.3.
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Figure 7.2: Measured PL spectra (black points) compared with the models of PL line shape using
Gaussian broadening (green curve) and Lorentzian broadening (red curve) for the temperatures (a)
80 mK, (b) 2.66 K, (c) 7.90 K, (d) 16.0 K and (e) 20.6 K. Grey curves are continuations of both
models in the range of the experimental data, which was not used in the fitting procedure. PL was
excited by green Argon laser (Eexc = 2.41 eV), excitation power was of about 0.5 µW/cm2 and a
diameter of an area illuminated by laser was ≈ 2 mm. Positions of the band gap edge is shown
by red (green) vertical dashed lines for energy levels described by lorentzian (gaussian) distribution
function.

7.1.4 Discussion

For the case of gaussian energy level broadening, we have compared both methods of
excluding Fermi energy of holes from the set of fitting parameters and concluded that
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Magneto-photoluminescence 77

Tbath Gaussian broadening Lorentzian broadening
(K) kBT (meV) Eg (meV) ΓV (meV) Th (K) Eg (meV) ΓV (meV) Th (K)

0.08 0.007 1588.1 0.8 3.2 1587.8 0.3 2.9
2.66 0.2 1587.3 1.1 3.5 1586.9 0.5 3.3
7.90 0.7 1587.3 1.2 6.7 1587.0 0.4 5.8
16.0 1.4 1586.7 1.4 21.5 1586.8 0.6 13.8
20.6 1.8 1586.4 1.5 38.0 1586.5 0.6 21.6

Table 7.1: Parameters of band gap energy Eg, broadening of joint density of states Γg and tem-
perature of holes Th as obtained by fitting the zero-field PL spectrum using model of broadened
energy levels by gaussian and lorentzian distribution functions. The results of the spectral line
shape analysis at five selected lattice temperatures T are presented. For the sake of comparison,
also corresponding energy kBT is shown.

both methods lead to the same values of Eg, Γg and Th within uncertainty smaller than
±0.3 meV, ±0.1 meV and ±1 K, respectively. In the case of Lorentzian broadening, as has
been already mentioned, the Fermi energy of holes was fixed at the top of valence band.

The values of the band gap energy are equal within an error ±0.3 meV for both types
of broadening and they are depicted by vertical dashed lines in Fig. 7.2. The band gap
energy has a decreasing tendency as a function of growing temperature. Such a behavior is
in agreement with theoretically expected band gap temperature dependence in CdTe [103].

The width of the broadening Γg is systematically larger for Gaussian broadening.
The reason is that Gaussian function has exponentially diminishing high-energy tails in
comparison to the Lorentizian energy level broadening, which diminishes only as 1/E2.
Hence, in order to spread Gaussian density of states in roughly the same interval of energies
as in the case of similar Lorentz distribution, larger Gaussian broadening is needed.

Broadening Γg tends to increase with increasing temperature and its amplitude scales
with kBT at high temperatures above 8 K. As has been already mentioned, when assum-
ing the same type of broadening for both conduction and valence band, we can calculate
broadening of the energy levels of the valence band ΓV . The relation between Γg (broad-
ening of joint density of states JCV,Γ, obtained by the analysis of the PL spectrum), ΓC

and ΓV (broadening of the conduction band and valence band, respectively) is,

Γl
g = Γl

C + Γl
V (7.13)

where index l = 1 (l = 2) stands for Lorentzian (Gaussian) shape of energy levels. Due to
the small value of ΓC = 0.07 meV with respect to Γg in the case of Gaussian broadening,
one can write ΓV ≈ Γg. In the case of Lorentzian broadening, ΓV = Γg − 0.11 meV3, see
Tab. 7.1.3 for temperature dependence of Γg.

Temperature of holes Th tends to saturate at low bath temperatures Tbath → 0. This
is common behavior with the temperature of electrons, as concluded from the analysis of
Shubnikov-de Haas oscillations (see chapter 6.1, page 44). In contrast to the electronic
temperature Te, which gets saturated at 200 mK, temperature of holes saturates at much
higher temperature of 3 K (measured at the lattice temperature 80 mK).

3Parameter ΓC = 0.11 meV was analyzed from the low field Shubnikov-de Haas oscillations using
Lorentzian line shape of Landau levels, and parameter ΓC=0.07 meV using Gaussian line shape. See
chapter 6.1 for more details.

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Magneto-photoluminescence 78

We interpret the higher temperature of holes Th at low bath temperatures to be due
to the fact that holes recombine before they establish thermal equilibrium. In order to get
thermalized, every hole has to cover an average distance in 2D plane lth = 1/

√
nph ≈ 1µm,

where nph is a concentration of photo-excited carriers, which is the same as a concentration
of holes. This is an average distance between two tail states in the hole DOS, which are
supposed to be occupied in thermal equilibrium. The mean path covered by holes during
their lifetime is in average lrec ≈ 4 µm (PL decay time is in CdTe QWs τPL ≈ 0.3 ns [104]
at 2 K, which is in the same time as lifetime of holes. Thermal speed of holes is vth =
√

2kBTh/mh ≈ 13 km/s (Th = 3 K), therefore lrec = vthτPL = 4 µm). This seems to be
enough in order to find thermal equilibrium for every hole. However, we are talking here
in average values. Hence, although majority of holes will find their thermalized position
in disordered potential during their lifetime, some part of holes will not and these could
contribute to the higher effective temperature Th.

We are aware that high temperature of holes Th at the limit Tbath → 0 could be also
due to partial localization of holes. The influence of the localization should be weakened
at higher temperatures, therefore one would expect narrowing of the PL spectrum in the
range of bath temperature from 0 K to the Tbath = Th,sat ∼=3 K. Narrowing of PL spectrum
should be reflected in the lower value of Th. The only temperature at which we could
observe such a narrowing is Tbath = 2.66 K. However, we have observed rather increasing
Th (Th = 3.3− 3.5 K), therefore we guess that holes are rather free than localized.

Last comment will be devoted to the behavior of Th at the limit of high lattice tem-
peratures Tbath. Fast increase of Th above Tbath = 16 K (Th > Tbath in this limit) is caused
by thermal occupation of the first light hole subband lh1. Subband lh1 is 4.7 meV below
ground heavy hole state hh1 at k = 0, hence it starts to get populated at temperatures
Tlh1 ≥ 4.7 meV/5kB = 11 K. Light hole band lh1 is mixed with heavy hole band hh1
at k 6= 0, hence we can expect, that transition e1 − lh1 is also radiative. However, it
contributes to the PL spectrum at energies 4.7 meV and higher above band gap (band gap
position depicted in Fig. 7.2 by vertical lines). Because we have taken into account only
first heavy hole subband in our analysis, enhanced intensity of PL at high energy tail of
PL spectrum will be reflected in higher temperature of holes Th. The same considerations
can be done for the case of second heavy hole subband hh2, which is at the energy 8.5 meV
below ground heavy hole subband at k = 0 and thus it gets thermally populated at the
temperatures Thh2 ≥ 20 K. The fitting parameter Th is therefore hassled by the systematic
error for lattice temperatures higher than 11 K.
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Magneto-photoluminescence 79

7.2 An overview of the experimental results in magnetic field

The major part of this thesis was devoted to the experimental study of the magneto-
photoluminescence. Here, we introduce the typical magneto-PL data of both CdTe and
CdMnTe QWs measured at low temperatures of about 80-90 mK and basic analysis of
the spectra is presented here. Magneto-photoluminescence studies were performed using
an experimental set-up based on optical fibers. The photoluminescence was excited by
continuous wave green Ar+ ion laser line at the energy Eexc = 2.41 eV, which is high
enough above the band gap energy of the Cd0.74Mg0.26Te barrier. PL signal was detected
always in one given circular polarization (σ+ or σ−) and the detected polarization was
changed by changing the polarity of magnetic field. Left-handed circular polarization σ+

correspond to the recombination of electrons with spin s = −1/2 and heavy holes with
an angular momentum jz = +3/2 and right-handed circular polarization σ− correspond
to the recombination of electrons s = +1/2 and holes jz = −3/2 (we follow convention of
Born and Wolf [7]). Signal was guided by the optical fiber into the grating spectrometer
with a spectral resolution of about 100 µeV and the signal was detected by nitrogen cooled
CCD camera.

7.2.1 CdTe QWs

In the first part of this introduction, we present the data of the magneto-photoluminescence
of CdTe QWs measured at the temperature of 80 mK. The data measured for 20 nm
(30 nm) wide QW are shown in the Fig. 7.3 (Fig. 7.4). The parts (a) of the Fig. 7.3 and
Fig. 7.4 correspond to the magneto-PL measured in σ+ circular polarization and parts (b)
to the polarization σ−. The main difference between these two samples is, beside the
width of QW, the concentration of the 2DEG. The smaller the electron concentration is,
the narrower band of the PL emission is observed in the spectrum. The emission band in
the 20 nm wide QW spreads over the interval ≈ 11 meV (at B = 0 T from ≈ 1.585 to
≈ 1.596 eV). This range is in a good agreement with the Fermi energy 10.8 meV deduced
from the analysis of the magneto-transport experiments. In the case of the 30 nm wide
QW, the width of the emission band is ≈ 7 meV (it spreads from ≈ 1.590 to ≈ 1.597 eV
at B = 0 T), what is also in agreement with the expected electron concentration in this
QW. At first sight, the magnetic field evolution of the PL emission exhibits linearly B-
dependent transitions. Linear B-dependence is caused by the Landau level quantization of
both conduction and valence band free-electron and free-hole states. The optically allowed
transitions can be described in a single-particle approximation by energies EN,s

ENs = E0 + h̄eB

(

1

me
+

1

mh

)(

N +
1

2

)

+ s(|ge| − |gh|)µBB, (7.14)

where N is a quantum number of the Landau levels between which the transitions occur,
E0 is the energy of the PL emission at zero magnetic field, s = +1/2 (s = −1/2) stands
for the circular polarization σ+ (σ−), me, mh, ge and gh are effective masses of electrons,
holes and g-factors of electrons and holes, respectively. The origin of these transitions are
depicted in a Fig. 7.5 by vertical arrows.

It can be seen, in the case of a field evolution of the PL in the 20 nm wide CdTe
QW, that there is a duplet and triplet structure of the optical transitions corresponding
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Magneto-photoluminescence 80

Figure 7.3: Magneto-photoluminescence of 20 nm wide CdTe QW measured at T = 80 mK in (a)
σ+ and (b) σ− circular polarization. Blue (red) color corresponds to the low (high) PL intensity.
Concentration of the 2DEG corresponds to the filling factor ν = 1 at magnetic field Bν=1 = 18.74 T.

to Landau levels N = 1 and N = 2. This doublet and triplet structure is also shown in
the PL spectrum measured at the filling factor ν = 6 in the Fig. 7.6. At the same time,
we have observed no such a duplet or triplet structure of the recombination spectrum
in the 30 nm wide QW. Although both QWs are asymmetrically doped, the internal
electric field is smaller in the wider QW, as has been also shown by the calculations of
the band structure in chapter 4. Therefore, we suggest that the internal electric field
allows transitions between electron and hole LLs with the quantum numbers Nh = Ne−1,
Nh = Ne − 2, etc. These are additional transitions, beside the only allowed transitions
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Magneto-photoluminescence 81

Figure 7.4: The same as Fig. 7.3, but for 30 nm wide CdTe QW. Concentration of the 2DEG
corresponds to the filling factor ν = 1 at magnetic field Bν=1 = 12.0 T.

Ne = Nh in the QWs with zero internal electric field (see chapter 2 for more details). This
is also reason, why we have observed only single transition for each LL in the wider (30 nm
wide) QW, in which the internal electric field is weaker, QW is more symmetrical, and in
which only transitions Ne = Nh are allowed. Therefore, we interpret the doublet structure
in the 20 nm wide QW at the LL Ne = 1 as the recombination between electronic and hole
LLs Nh = Ne and Nh = Ne − 1. The triplet structure at the LL Ne = 2 is due to the set
of transitions Nh = Ne, Nh = Ne − 1 and Nh = Ne − 2. These transitions are depicted in
the inset in the Fig. 7.6. The energy distance between the neighbor components of these
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Figure 7.5: Magnetic field evolution of the Landau levels in the conduction band (CB) and in the
valence band (VB) in CdTe QWs. Electronic Landau levels Ne = {0, 1, 2, 3} (upper part) and
hole Landau levels Ne = {0, 1, 2, 3} (lower part) depicted by black, red, green and blue colors,
respectively. Allowed optical interband transitions sketched by vertical arrows. The polarization
of emitted photons is marked. Every Landau level is spin split. For the sake of clarity, the spin
splitting was taken 2× larger than the real spin splitting in both conduction and valence band.

doublets and triplets correspond to the cyclotron energy of holes with an effective mass
mh ≈ 0.2−0.3m0. This interpretation is consistent with the experimental observation that
the transition from the LL Ne = 0 consists of only one single line because there is no hole
LL with negative quantum number Nh. Analogically, we expect, however much weaker,
quadruplet, quintuplet etc. radiative transitions corresponding to the LLs Ne = {3, 4, ...}.
Although the presented interpretation can explain the experimental data, the mechanism,
why parallel electric and magnetic fields couple is not clear. Therefore, more detailed
experimental and theoretical study is needed in order to justify the presented explanation.

We focus now only on the main transitions Ne = Nh. The energy of the PL emis-
sion exhibits, especially in the 20 nm wide QW, the oscillatory field dependence, which
correlates with the integer filling factor. Electron-electron interactions, combined with
different perturbations induced by the presence of the valence band hole, are almost cer-
tainly at the origin of these features [105]. The understanding these features is far from
universal [106, 107, 105, 108] and a detailed analysis of the energy of each individual
magneto-PL transitions is not in the scope of this thesis. However, we have found simple
description of the difference of these energies measured in the two circular polarizations
and the details will be discussed in the following chapter 7.3.
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Figure 7.6: Photoluminescence spectra measured in 20 nm wide CdTe QW at T = 80 K and at
the filling factor ν = 6 (Bν=1 = 18.74 T) in σ+ (black curve) and σ− (red curve) polarization.
Excitation by Ar+ laser at Eexc = 2.41 eV. Inset depicts electronic (Ne = {0, 1, 2}) and hole
(Nh = {0, 1, 2}) Landau levels. The transitions are labelled by black (σ+) and red (σ−) numbers
and arrows. The transitions Nh = Ne, Nh = Ne− 1 and Nh = Ne− 2 are depicted by solid, dashed
and dotted arrows, respectively.

Analysis of the effective mass of holes

Field evolution of the energy position of the PL emission described in a single-particle
model by the formula (7.14) allows to extract the effective mass of holes. There are few
possible approaches. The first is to analyze directly the field evolution of the energy of PL
in a certain polarization (σ+ or σ−). This approach is principally correct, however, one
has to take into account also effective g-factor of electrons and holes geff = |ge| − |gh|,
what is another fitting parameter, which increases uncertainty of the obtained effective
mass of holes. We have chosen another method, which is based on the fact, that in the
single particle model, the spin splitting contributes in the σ+ (σ−) polarization by a factor
of ±geffµBB. Therefore it is possible to eliminate the effective g-factor geff as a fitting
parameter by taking the average Eave = 1/2(EN,+1/2 + EN,−1/2) of the energy positions
in both circular polarizations. The average energy Eave,N for the PL emission from the
Landau level N

Eave,N = E0 + h̄eB

(

1

me
+

1

mh

)(

N +
1

2

)

(7.15)

consists of only two fitting parameters, E0 and mh. The effective mass of electrons was
determined in the FIR measurements. The average positions of PL emission Eave,N to-
gether with their description by the single particle model, Eq. (7.15) are shown in Fig. 7.7.
We have obtained zero field energy of PL emission E0 = (1588.4± 0.3) meV and effective
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Figure 7.7: The average energy position of σ+ and σ− of PL emission from CdTe QW at T =
80 mK. Experimental data (black points) are compared with the fitting by the single-particle model,
Eq. (7.15).

mass of holes mh = (0.3± 0.1)m0. The mean value of E0 is within an experimental error
0.3 meV the same as a value of the band gap energy Eg, which was determined from the
analysis of the zero field shape of the PL emission. The effective mass of holes is slightly
smaller than the mass assumed in the analysis of the zero-field PL spectra, however, it
well agrees with our calculations of the valence band structure, which show that the in-
plane effective mass of heavy holes is in the near vicinity of the Γ point ≈ 0.3m0. The
disagreement between the single-particle model (red curves in Fig. 7.7) and the data at
higher energies is explained in terms of the increasing role of excitonic effects in partially
occupied Landau levels.

7.2.2 CdMnTe QWs

In the following we deal with 21.1 nm wide QW based on diluted magnetic semiconductor,
CdMnTe. The magneto-PL data measured in CdMnTe QW at the temperature T = 90 mK
are shown in Fig. 7.8. The PL transitions exhibit again Landau level quantization of the
energy levels and Landau levels N = {1, 2} show similar doublet and triplet structure
as has been observed in 20 nm wide CdTe QWs. In chapter 6.2, we have shown, how
manganese influences electronic energy levels. Energy levels of holes EV,↑(↓) are given in
the presence of manganese by

EV,↑(↓) = ±
1

2
N0βx〈Sz〉, (7.16)

where β is an exchange integral between p-holes in a valence band and d-electrons of Mn2+

atoms (N0β = −0.88 eV). For the sake of simplicity, we neglect the nearest neighbor Mn-
Mn anti-ferromagnetic interaction and we describe the average zth component 〈Sz〉 of the
manganese spin by the simplest model given by Eq. (6.31). As a result of sp-d electron-
hole-manganese exchange interaction4, we have GZS of the conduction and valence band

4Because the inter-band recombination concerns both conduction band s-electrons and valence band
p-holes, it is common to discuss influence of manganese in terms of s-pd exchange interaction, which takes
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Figure 7.8: Magneto-photoluminescence of 21.1 nm wide CdMnTe QW measured at T = 90 mK in
(a) σ+ and (b) σ− circular polarization. Blue (red) color corresponds to the low (high) PL intensity.
Concentration of the 2DEG corresponds to the filling factor ν = 1 at magnetic field Bν=1 = 17.2 T.

∆EC and ∆EV , respectively. Since the exchange integral β is 4-times bigger than α,
GZS of the valence band will be 4-times larger than the GZS of the conduction band
(∆EV = 4∆EC). Because we focus on the magneto-optical studies of our heterostructures,
the selection rules are essential to understand the radiative recombination processes. It is
well known that due to the presence of manganese, the g-factor of electrons changes sign
with respect to the sign in non-magnetic CdTe. This leads to the selection rules similar to

into account both s-d and p-d interactions together.
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Figure 7.9: Magnetic field evolution of first five electronic (upper curves) and hole (lower curves)
Landau levels. Black, red, green, blue and magenta colors correspond to the indices of Landau
levels 0, 1, 2, 3 and 4. Arrows depict allowed optical transitions, dotted lines integer filling factors
2, 3, 4, 5, 6 and 7, dark yellow dashed line is a Fermi energy at T = 0 K and red circles show the
maximum field up to which the PL emission from a given Landau level was observed.

those in GaAs. Selection rules in CdMnTe are depicted in Fig. 2.2 and Fig. 7.9 where the
GZS is also considered, hence the spin-resolved Landau levels do not scale linearly with
magnetic field, but they follow field dependence given by Brillouin function (6.32). As a
consequence, it is expected to observe Giant Zeeman splitting of the amplitude ∆EPL

∆EPL = 5∆EC = 5N0αxS0B5/2

(

5
2gµBB

kB(T + T0)

)

. (7.17)

Field dependence of the energy of PL emission from the Landau level N = 0 in CdMnTe
QW measured up to 16 T at the temperature of 90 mK is shown in Fig. 7.10. The
data show clear evidence of GZS, which is a fingerprint of the presence of manganese.
The energy position of PL emission exhibits blue shifts, which are of the same origin as
in CdTe QW. Since these well-defined shifts of the PL energy correlate with the integer
filling factor, see vertical lines in Fig. 7.10, we have used them to determine magnetic field
at the filling factor ν = 1. The inverse values of magnetic fields at which PL energies
show discontinuities are plotted in Fig. 7.11 as a function of an integer (filling factor).
The slope of this dependence gives a concentration of a two-dimensional electron gas in
CdMnTe QW, ne = 4.2× 1011 cm−2.
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Figure 7.10: Energy position of magneto-PL emission in σ+ (red dots) and σ− (black dots) circular
polarization. PL excited by the Ar+ laser at the energy of Eexc = 2.41 eV, excitation power was
Pexc ≈ 1.4 µW and laser spot size of about 0.5-1 mm. Measured at the temperature T = 90 mK.
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Figure 7.11: Inverse value of the magnetic field versus filling factor to determine concentration of
2DEG. Fitting the slope gives magnetic field at the filling factor ν = 1, Bν=1 = 17.2 T and the
corresponding electron sheet concentration ne = 4.2× 1011 cm−2.

As can be seen in the magneto-PL data in Fig. 7.10, the energy of the PL emis-
sion is not given only by GZS, but also other phenomena contribute. These are Landau
level quantization, bare Zeeman splitting of CdTe and electron-electron interaction. In
the framework of the single particle picture, average Eave of PL energies in σ+ and σ−

polarization (Eave = (Eσ+ + Eσ−)/2) should be spin independent and given simply by
Eave = E0 + h̄ωc/2, as has been already shown in the analysis of the CdTe magneto-PL
data. E0 is the energy of PL emission at zero magnetic field and h̄ωc = eB/µr, where
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Figure 7.12: Average Eave of the energy positions of PL emission in σ+ and σ− polarization (Eave =
(Eσ++Eσ−)/2). In the framework of a single particle picture, value Eave is spin independent and the
slope of its field dependence is given by h̄ωc/2. Fitting procedure gives h̄ωc/2 = (0.7± 0.1) meV/T
and the corresponding effective mass of holes is mh = (0.5 ± 0.1)m0 (using an effective mass of
electrons me = 0.1m0).

µr stands for reduced mass µ−1r = m−1e + m−1h . Field dependence of Eave is plotted in
Fig. 7.12 and the fitting parameters we have obtained are h̄ωc = (1.4 ± 0.2) meV/T and
E0 = (1.5908± 0.0003) eV. Assuming effective mass of electrons me = 0.1m0 leads to the
effective mass of holes mh = (0.5 ± 0.1)m0, which is in a good agreement with values in
non-magnetic CdTe QWs.

Spin dependent contributions are convenient to analyze by taking difference of the
emission energies Ediff = Eσ− − Eσ+ , because such a quantity do not involve spin in-
dependent part given by the Landau level quantization h̄ωc(n + 1/2) and thus such an
operation reduces one fitting parameter. Difference Ediff is plotted in Fig. 7.13. The
three spin-dependent contributions are apparent. The oscillations of the spin gap are due
to electron-electron interactions, which will be discussed in the case of CdTe QWs in the
chapter 7.3. The second contribution is the bare Zeeman splitting, giving rise to the neg-
ative slope of total spin splitting at high magnetic fields. The bare Zeeman splitting is
fitted taking into account only the local minima of the spin gap, because only these minima
are not influenced by the electron-electron interaction. The slope (−0.08± 0.03) meV/T
reproduces an effective electron-hole g-factor |geh| = |ge| − |gh| = (1.4± 0.5), which agrees
with reported values of an effective g-factor of electrons and holes [27]. Third, we discuss
the strongest contribution to the Giant Zeeman Splitting, given by the saturation of the
magnetization of manganese atoms, which is saturated at low magnetic field of about 1 T
and it reaches value of (6.8 ± 0.2) meV. From the saturation at (6.8 ± 0.2) meV one can
deduce concentration of manganese in the sample. Saturation value is given according to
the equation (7.17) by Esat = 5N0αxS0 = 1.1 eV×xS0. Parameter S0 depends also on
the manganese concentration x. However, we expect manganese concentration of about
0.3% and in this low concentration regime S0 can be approximated by constant [70, 76],
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Figure 7.13: Spin gap Ediff = Eσ− − Eσ+ of Landau level N = 0 in CdMnTe/CdMgTe QW.
Concentration of electron gas ne = 4.2×1011 cm−2, manganese concentration 0.3%. Blue horizontal
line depicts the saturated contribution to the Giant Zeeman Splitting (6.8 meV) given by the
saturation of the magnetization of manganese atoms at low (≈ 1 T) magnetic field. The red
curve denotes the total spin slitting including bare Zeeman splitting of CdTe and saturation of the
magnetization of Mn atoms. The electron-electron interaction is not taken into account as well as
low field regime for magnetic fields B < 1 T. The slope of the red line denotes the bare g-factor of
CdTe (|ge| = 1.6).

S0 = 2.4. The resulting manganese concentration is then x = 0.25 %, which is also in
agreement with the value obtained from the low-field magneto-resistance data analysis.

Taking into account all the former discussed single or two-particle contributions5 to the
energy position of PL emission Eσ+ and Eσ− in both circular polarizations as a function
of magnetic field, one can write single-particle expression

Eσ± = E0 + h̄ωc(N + 1/2)∓ 1

2
gehµBB ±

1

2
N0(β − α)xS0B5/2

(

5
2gµBB

kB(T + T0)

)

(7.18)

for the transition energies Eσ+ and Eσ− from the Landau levelN = 0. A comparison of this
expression with the data is shown in the Fig. 7.14. The parameters used to describe data
are summarized in Tab. 7.2. One can see a fairly good agreement with the experimental
data. Both data and the model show an important feature of CdMnTe-based QWs. It can
be seen at high magnetic fields that the spin gap has a tendency to close, see Fig. 7.13.
The observed gap closing is caused by interplay of the saturated giant Zeeman splitting
and the bare Zeeman splitting of CdTe (not influenced by the presence of manganese) and
it is the manifestation of the fact that electronic g-factor in CdMnTe has an opposite sign
with respect to the sign in non-magnetic CdTe. The expected magnetic field at which the
energy of the spin gap should be zero is of about 14 T.

5The two-particle contributions are the electron-hole effective g-factor and s-d manganese-electron and
p-d manganese-hole interaction. The many-body term responsible for the oscillations of the spin gap is
omitted and discussed in the chapter 7.3 in the simpler case of non-magnetic CdTe QWs.
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Figure 7.14: Energies of the PL emission from CdMgTe/CdMnTe QW measured as a function of
magnetic field up to 16 T. Black points are data in both circular polarizations and red curves show
theoretical fit to the data. The parameters used to model the data are following: zero-field energy
of PL E0 = 1.5908 eV, effective mass of electron me = 0.1me0, electron-hole g-factor geh = −1.6,
strength of the electron-manganese interaction N0α = +220 meV, strength of hole-manganese
N0α = −880 meV, manganese concentration x = 0.3%, lattice temperature T = 88 mK, effective
manganese temperature T + T0 = 378 mK and manganese g-factor g = 2.0

Parameter Value

Energy of zero-field PL emission E0 = (1.5908± 0.0003) eV
Effective mass of electron me = 0.1me,0

Effective mass of hole mh = (0.5± 0.1)m0

Index of the Landau level N = 0
Electron-hole g-factor geh = (−1.4± 0.5)

Strength of electron-manganese interaction N0α = 220 meV
Strength of hole-manganese interaction N0β = −880 meV

Manganese concentration x = 0.25%
Saturation value of manganese spin projection into z-axis S0 = 2.4

Effective g-factor of manganese g = 2.0
Lattice temperature T = 90 mK

Effective manganese temperature T + T0 = 380 mK

Table 7.2: Table of parameters used to fit the energy of PL emission from CdMgTe/CdMnTe QW,
data shown in Fig. 7.10 and compared with the model in Fig. 7.14.

7.3 Spin gap enhancement

7.3.1 Introduction

In the following chapter, we present the study of magnetic field and temperature depen-
dence of the energy of spin splitting in fully populated electronic Landau levels. Spin
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splitting ∆E can be calculated in a single-particle band structure model to be equal to
Zeeman splitting ∆EZ = geµBB, where ge is effective g-factor of electrons, µB is Bohr
magneton and B is magnetic field. Zeeman splitting thus grows linearly with magnetic
field. However, a number of experimental [109, 92, 110, 111] and theoretical [112, 113, 114]
works show that the spin splitting can be much larger at certain filling factors in a 2DEG,
than would be the expected single particle energy ∆EZ . This phenomenon, referred to in
the literature as g factor or spin gap enhancement (SGE), is here in the scope of our inter-
est. Spin gap enhancement is usually observed at odd integer filling factors (ν), hence it is
thought to be driven by the spin polarization of a 2DEG and is a primary manifestation
of the interactions between two-dimensional electrons in the integer quantum Hall effect
(QHE) regime. It is a result of the specific character of the spin-excitation spectra of a
2DEG at odd integer ν-QHE states [115, 28]. More simplified approach can be also used,
where SGE can be seen as arising from the contribution of Coulomb interactions (including
exchange terms) to the energy which is required to remove, or inject, an electron from, or
to, a given spin resolved Landau level (LL). We use this simplified approach to describe
SGE and we discuss conditions under which such an approach is justified.

The experimental study of the spin-gap enhancement has been generally limited to ex-
periments which probe the spin splitting at the Fermi level [109, 92, 111, 116, 117, 118], for
QHE states at exactly odd filling factors. This limitation has been thought to be overcome
with spectroscopic methods such as, for example, interband optics [119, 120, 121] or tun-
nelling experiments [122], which, within their trivial description, permit to investigate the
processes of removing/adding an electron from/to a 2DEG, at arbitrary energy, filling fac-
tor and temperature. Among the different spectroscopic methods, magneto-luminescence
measurements has been widely invoked to investigate electron-electron correlation in the
QHE regime, however, measurements to probe the spin-gap enhancement are rather spo-
radic [119, 122].

Here, we show that the enhancement of the spin splitting is not only a property of
spin excitations at the Fermi level, but that it is also relevant for fully occupied spin
Landau levels, located well below the Fermi energy. We have measured the many body
contribution to the spin gap for fully populated spin Landau levels over a wide range
of filling factors and temperatures, and show that it is driven by Coulomb interaction,
apparent via the spin polarization of the investigated 2DEG with its relatively large bare
Zeeman splitting.

In the following paragraph, we first point out the main advantages of a 2DEG embedded
in CdTe-based heterostructures with respect to the most studied heterostructures based
on III-V semiconductor, GaAs. The increasingly high quality of GaAs/GaAlAs structures
has been driving advances in the physics of interacting 2D electrons last three decades.
Notably, 2D electrons in a GaAs matrix are characterized by a relatively small bare g
factor (-0.44) and therefore by a small value of the interaction parameter η = Ez/D, where
Ez = gµBB, D = e2/ǫlB, and, lB =

√

h̄/eB is the magnetic length. The small value of
η is responsible for the rich physics exhibited by interacting 2D electrons in the QHE
regime, for example the occurrence of competing spin polarized/unpolarized many body
ground states [84] or Skyrmion-type spin texture excitations [123, 124, 125]. However, this
complex physics often masks the appearance of simpler and basic many body effects, which
should emerge more clearly when η is sufficiently large. Disorder is an additional source of
complications in ascertaining the spin polarization in systems with small g factors. While
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high electron mobilities are obviously advantageous, GaAs-based structures are also rather
fragile, displaying, for example, metastable effects upon illumination, with an associated
decrease in mobility and homogeneity, which frequently prevents the simultaneous basic
characterization of such structures using magneto-optics and magneto-transport. A 2DEG
in a CdTe matrix [126], used in our experiments, is characterized by relatively large (bare)
g factor (-1.6) and the η-parameter in this system exceeds by a factor of ≈ 3 its value in
GaAs structures (the dielectric screening ǫ = 9 is slightly less efficient in CdTe). CdTe,
which has a conduction band as simple as the one in GaAs, appears at the present time to
be an almost ideal model system to study the QHE physics of the primary spin-polarized
states.

7.3.2 Samples

In order to have a comparison of the spin gap enhancement obtained by means of magneto-
PL with the one derived from usually employed techniques of activated magneto-transport,
it was crucial to measure both magneto-PL and magneto-transport simultaneously. How-
ever, this was difficult in the case of 30 nm wide CdTe QW, where the correlation between
both experiments was very poor. Therefore we have focused our interest on the 20 nm
wide CdTe QW, for which the magneto-PL and magneto-transport data were well corre-
lated. Experiments have been carried out using either a 3He/4He dilution refrigerator or
a variable temperature 4He cryostat, in magnetic fields supplied by a resistive (28 T) or
superconducting (11 T) magnets. A standard, low frequency (≈ 10 Hz) lock-in technique
has been applied for the resistance measurements. Polarization resolved, σ+ and σ− pho-
toluminescence (PL) spectra have been measured using a single 600 µm-diameter optical
fiber to transmit the excitation beam (514 nm-line of Ar+ laser) and to collect the pho-
toluminescence signal for the spectrometer equipped with a nitrogen cooled CCD camera.
Special attention has been paid to assure a low level of laser excitation (≈ 50 µW/cm2), to
precisely calibrate the magnetic field, and to measure the spectra at small intervals (down
to 5 mT) of the magnetic field. Under our experimental conditions (continuous laser illu-
mination), the 2DEG density of ≈ 4.5× 1011 cm−2 and mobility of µ = 2.6× 105 cm2/Vs
were well reproduced in different experimental runs.

7.3.3 Experimental results

The characteristic result of simultaneous magneto-PL and magneto-resistivity measure-
ments of our sample are shown in Fig. 7.15. Magneto-PL spectra reflect typical Landau
level fan chart in both circular polarizations and energy positions of PL emission exhibit
commonly observed abrupt blue shifts at every integer filling factor, as has been already
discussed in the introduction of this chapter. In transport, Fig. 7.15(b), the investigated
2DEG shows all typical attributes of the QHE in a system with fairly high mobility and rel-
atively high electron concentration; well developed integer QHE states and the appearance
of 5/3, 4/3 and 2/3 fractional states, which are discussed in chapter 6.1. Good correlation
between abrupt changes in energy positions of PL emission, plateaux in Hall resistance
and minima in longitudinal resistance can be clearly seen in Fig. 7.15. In the chapter 6.1
we have presented the detailed quantitative analysis of low-field magneto-transport (also
shown in Fig. 7.15 (e)) and a Dingle analysis of the SdH oscillations gave a quantum lifetime
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Magneto-photoluminescence 93

Figure 7.15: (a) and (c) Color plot of σ+ and σ− magneto-PL of a 2DEG in a 20 nm wide CdTe
QW, measured at 80 mK, under low power (≈ 0.5W/m2), λ = 514 nm-Ar+ excitation. Black points
indicate the energy of the main peaks. Inset (d) shows the the optical selection rules. (b) Results of
the simultaneous magneto-transport measurements showing the longitudinal (Rxx) and Hall (Rxy)
resistance. Vertical lines indicate the Landau level filling factor. Inset (e) shows an expanded view
of Rxx at low magnetic fields.

τq = h̄/2Γ = (3.0±0.3) ps (broadening of Lorentzian Landau levels Γ ≈ 110 µeV) as com-
pared to the transport lifetime ττ ≈ 15 ps (derived from the measured mobility). From the
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field at which the Shubnikov de Haas (SdH) oscillations (B1 ≈ 94 mT), and spin-splitting
appears (B2 ≈ 0.51 T), we obtain a first estimate of the enhanced g factor, g∗ ≈ 3.7
using the condition (h̄eB1/m

∗ ≈ g∗µBB2) where the electron effective mass m
∗ = 0.1me

was derived from cyclotron resonance absorption measured on a parent sample. As has
been already mentioned, although the description of the absolute energy position of PL
emission in a given polarization is far from being universal [106, 107, 105, 108], we have
found, however, that information on the effects of electron-electron interactions can be
relatively simply extracted from the relative positions of polarization-resolved PL peaks
arising from different LL spin components.
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Figure 7.16: Normalized σ+ (black curves) and σ− (red curves) PL spectra at magnetic fields
corresponding to filling factors ν = 4 (a) and ν = 5 (b) (T = 80 mK, Eexc = 2.41 eV, Pexc =
0.5 W/m2). (c) Field evolution of the energy of PL emission in σ+ (solid black curve) and σ−

(dashed red curve) circular polarization. Difference is shown by blue curve and contribution of
the bare Zeeman splitting is depicted by black dashed dotted line with the label |gef | = 1.1 of an
effective g-factor of electrons and holes.
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Magneto-photoluminescence 95

7.3.4 Spin splitting of fully populated Landau levels

We concentrate on the energy positions of σ+ and σ− magneto-PL transitions (Fig. 7.15)
which are, beside 3 − 5× smaller contribution of holes6, mainly due to electrons, with
different spins, recombining from the fully populated lowest lying LLs (L0, L1, L2, L3).
While the energy of each of these peaks displays a non-trivial dependence on the magnetic
field, here we analyze the evolution of the energy separation ∆E between the σ+ and
σ− transitions. The effect of SGE is apparent already in a raw data, as can be seen in
Fig. 7.16 (a) and (b). Total spin splitting at LL L0 is bigger at smaller magnetic field
(3.70 T) than at higher magnetic field (4.63 T). The field evolution of both energy of PL
emission from LL L0 in σ+ polarization Eσ+ (solid black curve) and in σ− polarization
Eσ− (red dashed curve) are plotted in Fig. 7.16 (c). The difference of these two quantities
(Eσ+−Eσ−) gives the total spin gap as a function of magnetic field at T = 80 K as is shown
in Fig. 7.16 (c) (blue curve). Two contributions to the field dependence of spin gap ∆E
are apparent. Linear background (dashed dotted black line in Fig. 7.16 (c)) is attributed
to the single particle Zeeman energy (∆EZ) and non-monotonic oscillatory part (∆E↑↓) is
assigned to the many body effects. Many-body oscillatory part has maxima at odd integer
filling factors ν and zeros at even integer filling factors. The linear term can be extracted
from the splitting at even integer ν and it is in agreement with the ordinary Zeeman effect
expected in our structure. Taking into account the selection rules depicted in inset (d) of a
Fig. 7.15, the splitting ∆EZ = (|g|−|gh|)µBB = geffµBB, which requires geff = 1.1 to fit
the data in agreement with the reported values of g = −1.6 and gh ≈ 0.5, for electronic and
valence hole g factors in CdTe QWs [127]. Temperature dependence in Fig. 7.17 further
shows, that bare Zeeman splitting does not change considerably with temperature. On the
other hand, the enhanced part ∆E↑↓ totally disappears at high temperatures. Moreover,
disappearing of spin gap enhancement is faster at lower magnetic fields. So far, we have
discussed the behavior of SGE in the lowest lying LL, L0. The analysis of energy positions
of PL emission from higher LLs (L1, L2, L3) allows us to determine the dependence of
the SGE on the index N of LL, see Fig. 7.18. Spin gap enhanced part is plotted as a
function of the filling factor. We note, that filling factor was changed by magnetic field in
our samples. Electron sheet concentration was determined using simultaneous magneto-
resistance measurements and it was found to be constant during all experiments presented
here (ne = 4.5 × 1011 cm−2). Filling factor ν and magnetic field B are then in direct
relation; ν = Bν=1/B, where Bν=1 = 18.5 T is the magnetic field at the filling factor
ν = 1. In Fig. 7.18 we present only many-body contribution ∆E↑↓ to the total spin
spin splitting for four lowest lying Landau levels (L0, L1, L2 and L3). The data has been
measured at base temperature of 80 mK and they clearly show, that spin gap enhancement
∆E↑↓ is of the same amplitude for all experimentally attainable Landau levels.

7.3.5 Data modelling

Results presented in Fig. 7.17 and Fig. 7.18 suggest that ∆E↑↓ is ruled by the spin polariza-

tion P =
n↓−n↑
n↓+n↑

of the 2DEG. The same assumption comes from first-principle calculations

of SGE [112, 113, 114]. Many-body contribution is then given by ∆E↑↓ = E∆
n↓−n↑
n↓+n↑

. Pre-

6Ratio of the effective mass of holes and electrons mh/me ≈ 3− 5, therefore the energy position of the
PL emission is driven mainly by the electrons.
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Magneto-photoluminescence 96

Figure 7.17: Total spin gap as a function of magnetic field for several temperatures. The lowest
(80 mK) and the highest (20 K) temperatures are marked by arrows and labels.
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Figure 7.18: Enhanced (many-body) part of the total spin splitting as a function of the filling factor.
Enhanced part was extracted from the PL emission of LLs N = 0, 1, 2, 3 (black, red, green and blue
curve) at base temperature of 80 mK.

factor E∆ is expected to depend on magnetic field as
√
B in high field limit and it should

be constant when field approaches zero 7. Both low- and high-field limits of the pre-factor
E∆ are plotted in Fig. 7.19. Since our data are in wide range of magnetic fields, we con-
sider, that E∆ depends on magnetic field as 4

√

B2 +B2
0 . This semi-phenomenological field

7Coulomb interaction scales with the inverse value of the magnetic length at high fields [114, 115, 28]
but rather with the inverse of the mean inter-electron distance when B tends to zero [113, 110, 114].
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Figure 7.19: Low-field (green curve) and high-field (red curve) limit of magnetic field dependence of
the pre-factor φ(B). Black curve given by field dependence φ(B) = 4

√

B2 +B2
0 phenomenologically

joins both low- and high-field limits.

dependence is plotted in Fig. 7.19 as a black curve and it joins both low- and high-field
limits of E∆ behavior. The last element to describe the total spin gap is the scaling of
many-body contribution ∆E↑↓ and its possible dependence on the index N of LL. As
shown in a data, see Fig. 7.18, SGE is of the same amplitude for 4 lowest lying LLs,
therefore we assume/extrapolate, that SGE is of the same amplitude for all LLs up to the
LL in the vicinity of the Fermi energy. To sum up, we can write the resulting expression
for total spin splitting ∆E as:

∆E = |g|µBB + ∆E↑↓ = |g|µBB + ∆′
0ϕ(B) · n↓ − n↑

n↓ + n↑
. (7.19)

In the equation (7.19), the parameter ∆′
0 is the scaling of the SGE amplitude and the

function ϕ(B) = 4
√

B2 +B2
0 denotes phenomenologically the field dependence of the pre-

factor E∆. To compare the suggested model with the experiment, we need to calculate
concentration of electrons with spin up (n↑) and down (n↓). These quantities are generally
given by integral of density of states G(E,B) and Fermi-Dirac distribution nFD(E,EF ),
n↓(↑) =

∫

G↓(↑)(E,B)nFD(E,EF )dE. Since broadening of LLs (Γ ≈ 110 µeV, from low-
field magneto-transport analysis) is smaller than spin gap even at the lowest magnetic
field of 2 T (geµBB|2 T = 190 µeV), we neglect overlap of LLs and density of states can
be replaced in such a case by a sum of δ-functions. This leads to set of equations (7.20)
and (7.21),

n↓(↑) =
eB

h

∞
∑

N=0

nFD(EN,s=↓(↑), EF ) (7.20)

ne = n↓ + n↑ (7.21)

where equation (7.21) is to preserve constant electron concentration ne = 4.5× 1011 cm−2
and EN,s=↓(↑) = h̄ωc(N + 1/2) + s|g|µBB + s∆′0

4
√

B2 +B2
0 ·

n↓−n↑
n↓+n↑

is the energy position
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Magneto-photoluminescence 98

of the Landau level LN with a spin s. Finally, we self-consistently calculate ∆E↑↓ (and P)
and obtain agreement with the data, see Fig. 7.20 and 7.21, by adjusting the two fitting
parameters, ∆0 = ∆′0

√
B0 = 2.1 meV and B0 = 3.7 T.

7.3.6 Discussion

In spite of the fact that we have assumed many approximations, our model describes ex-
perimental data fairly well in wide range of magnetic fields (2-10 T) and temperatures
(80 mK-20 K), see Fig. 7.20 and Fig. 7.21. Temperature range covers two important lim-
its; a) low-temperature limit, when temperature has no influence on the polarization of
2DEG (kBT ≪ ∆E) and b) high-temperature limit, when polarization (and SGE) tends
to zero (kBT ≫ ∆E). The discrepancy at the filling factors ν = 3 (and ν = 1) is due to
more complex [105] recombination processes, which cannot be explained by our simplified
model of looking at the electron-hole recombination as a process of adding/removing elec-
tron into/out from the 2DEG. Proper treatment of these filling factors should consider
finale-state interactions, final-state excitations and their dispersion relations. However this
approach is more correct, such calculations are neither disposable these days for arbitrary
filling factor, magnetic field and temperature nor they are in the scope of our simplified
approach. We guess that our simplification might be well justified in the limit of low
magnetic fields, when β = h̄ωc

e2/ǫlB
< 1 (in CdTe QWs: β = 1 at B ≈ 30 T) and at high

electron concentrations (high filling factors). On the other hand, for the dilute systems
and at high magnetic fields, a more appropriate picture of the PL process consists of con-
sidering the recombination between the interband magneto-excitons in the initial state and
spin or charge excitation of a 2DEG in the final state [128, 107, 129, 130, 131, 105, 132].
Considering this approximation, we expect the same behavior at even filling factors, when
polarization of 2DEG vanishes. But, the analysis of σ+ and σ− PL will be more complex
in the vicinity of low odd filling factors (e.g., ν = 1, 3). This alternative approach might
be more appropriate for GaAs-based structures, for which the high field limit is reached
at lower magnetic fields (in GaAs QWs β = 1 at B = 8 T). It should be emphasized, that
in this sense CdTe-based QWs are quite unique and more suitable for SGE studies rather
than GaAs-based QWs. In this study, we are in the regime of the field-strength parameter
β = (0.36− 0.57) T1/2. To reach the same field regime in GaAs heterostructures, one has
to work in the magnetic fields from 1 to 3 T and electron sheet concentration has to be
of about 1× 1011 cm−2 (to study the same range of filling factors from 2 to 10 as in this
presented work). Although the quality of GaAs QWs is high these days, it will be still
very difficult to observe well separated LLs in magnetic fields as low as 1 T.

The assumption that SGE does not depend on the index N of LL is based on three dis-
tinct findings.(a) We have already discussed experimental data (Fig. 7.18) and the analysis
of SGE at high LLs. (b) Supplementary measurements of the activation energy deduced
from thermally activated magneto-resistance show (within an experimental error) the same
values of the total spin splitting at odd filling factors ν = 5, 7, 9 as the values obtained from
our magneto-optical data, see Fig. 7.17 and Fig. 7.22. Since magneto-transport probes
vicinity of the Fermi energy and magneto-PL probes lowest lying LLs, we conclude on the
constant SGE within all LLs. (c) Our model, even though we analyse only lowest lying
LLs, depends on the total spin splitting of LLs in the vicinity of the Fermi energy. The
smaller spin splitting at the Fermi energy EF is, the faster and sooner it disappears with
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Figure 7.20: Enhanced part of the total spin gap as a function of the filling factor for temperatures
a) 80 mK, b) 1.89 K, c) 2.66 K, d) 4.16 K, e) 5.90 K, f) 7.00 K, g) 7.90 K, h) 11.4 K and i) 20.6 K.
Experimental data are plotted by black points and self-consistent model of SGE is plotted by red
curves. Data correspond to spin gap enhancement extracted from PL emission from N = 0 Landau
level. Spin gap enhanced part was obtained from total spin splitting substructing temperature
independent Zeeman splitting with effective g-factor 1.1.

increasing temperature. We have tested various scenarios of SGE dependence on the LL
index N , but the constant dependence was found to be the most suitable. We should note
here, that this conclusion, even though according to us correct, is in disagreement with a
work of Dial [122], who has found that SGE has decreasing amplitude with increasing N .
We speculate about physical meaning of such a conclusion and about explanation given
by Dial [122]. We guess this tendency is given mainly by incorrect energy calibration in
tunnelling or scanning tunnelling spectroscopy (STS) experiments. Many of the spectrally
resolved data obtained by these experiments exhibit similar effect of energy spectra distor-
tion, see for example [133, 134, 135], and therefore we guess that tunnelling spectroscopy
can give wrong energy dependence of SGE in 2DEG or, also for example, different Fermi
velocity in graphene samples [136, 137].

Physical meaning of the two fitting parameters ∆0 and B0 is the following. The
parameter ∆0 = 2.1 meV scales the amplitude of SGE and it takes into account effectively
all the phenomena which reduce many-body electron-electron interaction (finite quantum
well width, disorder, etc.). Magnetic field B0 = 3.7 T denotes the intermediate region of
magnetic fields where low-field limit of the pre-factor E∆, see equation (7.19), switches into
the high-field limit, see also Fig. 7.19. There is, according to our estimates, a non-trivial
connection between magnetic field (B0) and Landau level broadening Γ.

We discuss also two limiting cases of our model. Low field limit (B→0) and magnetic
fields around filling factor ν = 1. When magnetic field tends to zero (in the limit of
T = 0 K), equation (7.19) for total spin gap becomes linear in field; E∆ = |g|µBB+∆0/ν =
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Figure 7.21: The same as Fig. 7.20, but the SGE corresponds to N = 1 Landau level.

(|g| + ∆0/µBBν=1)µBB = g∗µBB, where Bν=1 is the magnetic field for ν = 1. With
Bν=1 = 18.5 T (n = 4.5 × 1011 cm−2) and ∆0 = 2.1 meV we extract g∗ = 3.6 for the
enhanced g factor in good agreement with the estimation of g∗ ∼ 3.7 from the low field
onset of spin splitting in the SdH oscillations in magneto-resistivity measurements. Limit
around filling factor ν = 1 is more discussible and difficulties at this low filling factor were
already sketched. However, a quantitative comparison with GaAs will be carried out here.
At the filling factor ν = 1, the polarization of the 2DEG is P = 1 and we can extrapolate
in Eq. (7.19) E∆ = |g|µBB +∆0

4
√

1 +B2
ν=1/B

2
0 and calculate E∆ = 6.4 meV. This value

is ∼ 4× smaller than its limit of
√

π/2e2/ǫlB [115, 28] but in good agreement with the
reported values in GaAs structures from optical and capacitance measurements [120, 116].

Final note will be dedicated to the magneto-optical experimental method itself. We
would like to emphasize here, that in contrast to usually employed thermodynamical
probes, method of magneto-PL is capable to directly measure spin gap at arbitrary mag-
netic field (filling factor) and temperature. This is in contrast to, for example, magneto-
transport activation energy experiments, where spin gap determination is restricted to
only integer filling factors and wide range of temperatures necessary to deduce spin gap
automatically embarrasses spin gap determination as a function of temperature, hence,
assumptions about temperature independent spin gap are usually considered. This as-
sumption need not to be necessarily fulfilled, as has been shown in the presented study.

7.3.7 Conclusions

To conclude, we have employed spectroscopic polarization-resolved magneto-PL technique
to study two-dimensional electron gas confined in CdTe quantum well. Clear many-body
electron-electron contributions to the spin splitting of the fully occupied two-dimensional
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Figure 7.22: Arrhenius plot to extract activation gap at odd filling factors ν = 5, 7, 9 (black, red
and green curve). Corresponding slopes and extracted activation energies are 0.95 meV, 0.63 meV
and 0.36 meV.

Landau levels are revealed. These many-body contributions, which express themselves as
a spin gap enhancement at odd filling factors, are mainly driven by the spin polarization of
the two-dimensional gas, since it is maximized at odd filling factors and vanishes at even
filling factors and high temperatures. We conclude, that at every odd filling factor (and
its surroundings), a whole ladder of fully occupied Landau levels undergoes rigid shift up-
or downwards (depending on the electron spin state). This simple picture of the many
body spin-gap enhancement emerges from magneto-PL studies of a 2DEG with relatively
large (single particle) g-factor.

7.4 Intensity changes of PL

7.4.1 Introduction

Intensity of the photo-luminescence carries a wide spectrum of information on the proper-
ties of energy levels and on optically active transitions in semiconductor heterostructures.
In the chapter 7.1 we have shown description of the spectral properties of PL emission at
zero magnetic field. Here we focus on the modulations of the intensity of PL emission as
a function of magnetic field.

7.4.2 Relative strength of the radiative and non-radiative recombination

channel

Modulation of the PL intensity can have many reasons. As a first point, it carries an in-
formation on mutual strengths of radiative and non-radiative electron-hole recombination
channels [138]. It is convenient to define the PL efficiency ηq = pr/(pr + pnr) as a ratio of
the probability of the radiative recombination pr and the total probability of recombina-
tion. The later is given by the sum of the probability of the radiative pr and non-radiative
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Magneto-photoluminescence 102

pnr recombination. Intensity of the radiative recombination Ir is thus related to the inten-
sity of the excitation Iexc by the PL efficiency; Ir = ηqIexc. If the radiative channel is much
stronger than the non-radiative one (pr ≫ pnr), then the PL efficiency ηq → 1 is close to 1
and the intensity of the radiative recombination will be given only by the intensity of the
excitation Iexc and therefore no intensity changes of PL can be observed in such a case
(unless the intensity of the excitation Iexc changes). However, if the non-radiative recom-
bination channel is dominant over the radiative one (pnr ≫ pr), then the PL efficiency
can be approximated as ηq ≈ pr/pnr and intensity Ir is Ir = ηqIexc ≈ pr/pnrIexc. In this
case, if the probability of the radiative (pr) or non-radiative (pnr) recombination changes,
it will be reflected in the intensity of PL emission in spite of the fact that the intensity of
the excitation is constant (Iexc =const.).

We present the total intensity of PL emission in Fig. 7.23. The data clearly show the
evolution of the intensity of the PL emission as a function of magnetic field, therefore we
conclude that the non-radiative channel of recombination is dominant in our QWs.

0 5 10 15 20 25 28
0

100

200

300

400

500

Magnetic field (T)

In
te

g
ra

te
d

 P
L

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
/s

)

1234567ν =

(sc)

Figure 7.23: Integrated intensity of the PL emission in 20 nm wide CdTe QW (sum of the PL
intensity in σ+ and σ− polarization). Data measured at the temperature of 80 mK. Excitation by
Ar+ laser line at Eexc = 2.41 eV. Labels (sc) denote minima of the total intensity at integer filling
factors (effects of the oscillatory efficiency of screening). Integer filling factors depicted by dashed
vertical lines.

7.4.3 Effect of occupancy, degeneracy and selection rules

We present the polarization resolved integrated PL intensity from the Landau level N = 0
in the Fig. 7.24. The field dependence reveals the increase of the PL intensity in the
low field regime, labelled (i) for both circular polarizations in the Fig. 7.24. This is a
manifestation of increasing degeneracy of the Landau levels in magnetic field. Increasing
degeneracy in the fully occupied Landau level means linearly increasing concentration of
electrons and therefore increasing intensity of PL. However, the intensity of the PL in σ−
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Magneto-photoluminescence 103

polarization stays soon almost unchanged, interval labelled (ii). This is due to the interplay
of still increasing electron concentration in the electronic LL Ne = 0 and decreasing
concentration of holes jz = −3/2 in the hole LL Nh = 0. Decreasing concentration of
holes |Nh, jz〉 = |0,−3/2〉 is due to the small concentration of photo-excited carriers and
spin splitting of hole Landau levels. At high magnetic fields, holes tend to occupy only
the lowest energy hole level |0,+3/2〉, which is at the expense of the occupation of the
hole state |0,−3/2〉, responsible for the intensity of the PL in σ− polarization. The region
of high magnetic fields above filling factor ν = 1 (label (iii)) is a manifestation of the
selection rules in CdTe. At filling factors smaller than 1, the electronic LL |0,−1/2〉
gets empty, therefore only the PL in σ− polarization remains. The schematic drawing
of this phenomenon in CdTe is presented in Fig. 7.25. The PL intensity at intermediate
magnetic fields between filling factors ν = 2 and ν = 1 are influence by both low- and
high-field mechanisms (as discussed above) and they can not be easily separated here.
The intensity minima and maxima are in this range of filling factors probably due to the
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Figure 7.24: Integrated intensity of PL from Landau level N = 0 in σ+ (black points) and σ−

(red points) circular polarization. Data measured in 20 nm wide CdTe QW at the temperature of
80 mK. Excitation by Ar+ laser line at Eexc = 2.41 eV. Following labels denote the characteristic
field evolution of the intensity of PL discussed in the text: (i) - increase of the intensity in both σ+

and σ− polarization, label (ii) - interval of weak B-dependence of the intensity in σ− polarization
and (iii) - switching of the relative intensity of the PL in σ+ and σ− polarization. The inset depicts
the selection rules in CdTe for inter-band transitions between electron and hole LLs.
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Magneto-photoluminescence 104

FQHE. However, the detail study of this phenomenon will be presented elsewhere.

Figure 7.25: Scheme of electron and hole Landau levels for 3 gradually increasing magnetic fields
(from left to right). Black and blue colored electron levels correspond to empty and occupied states,
respectively. Concentration of holes is too small to fully occupy any hole Landau level in the range
of considered magnetic fields, therefore we only marked by red color the hole Landau level which
is the most occupied. Dipole allowed optical transitions are depicted by orange arrows and their
mutual strength is shown by the thickness of the arrow. In spite of the fact that at the filling factor
ν = 1 the transition σ+ is allowed, it is in fact very weak because there are no electrons on the LL
|0,−1/2〉.

7.4.4 Screening

Another significant feature of the integrated PL intensity are sharp minima at every integer
filling factor, labelled (sc) in Fig. 7.23 and minima in the integrated σ+ PL having origin
in the recombination from LL N = 0, black curve in Fig. 7.24.

These minima at integer filling factors are interpreted to be due to the oscillatory effi-
ciency of the screening. Effect of the screening on the efficiency of the radiative emission in
2DEG was studied both theoretically [139] and experimentally [140, 121, 138]. The effect
of screening acts differently on the various kinds of processes of electron-hole recombina-
tion. Depending on excitonic [141], acceptor related [139, 121], donor related [142, 143]
or free-electron-free-hole [138] recombination, we can find different mechanisms of PL in-
tensity modulations. Due to high electron concentration in our samples, we observe only
free-electron-free-hole recombination. It was shown [138], that this type of recombination
can be seen as a kind of acceptor-like recombination [139], where valence-band hole is
not bound to acceptors (no acceptors are presented in our QWs) but it undergoes certain
degree of localization. Such a localization can occur on, for example, quantum well width
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Magneto-photoluminescence 105

fluctuations, lattice defects or on the random fluctuations of the electrostatic potential
of positively charged donors. The fact that holes are weakly localized in magnetic field
is not in contrast with our previous conclusion, in which we have stated that holes are
free at zero magnetic field. The reason is that magnetic field squeezes hole wave function
and it can cause field induced localization of holes. In such a case, if the screening of
the electrons is efficient, the potential fluctuations are well smoothed out and hole wave
function is spread across large area. If the screening of electrons is very poor, they feel
deeper localization potential and wave function of holes is more squeezed and occupies
smaller area. Since the probability of the radiative recombination of holes is proportional
to the area over which holes are localized [138], it is apparent, that the more efficient
screening the stronger radiative recombination. The screening is very efficient, if electrons
have enough degrees of freedom to redistribute. Hence, screening is efficient when Fermi
energy lies inside Landau level and it is inefficient, when Fermi energy lies in between of
two well-separated LLs. In other words, when LLs are well separated then screening is
weak at integer filling factors (Fermi energy lies between the two LLs) and this leads to
the minima of the integrated PL intensity.

However, in the integrated intensity of σ− PL from LLN = 0 we have observed maxima
at integer filling factors, red curve in Fig. 7.24. These maxima are observed also in the
PL emission (in both polarizations) from all higher Landau levels N = {1, 2, 3, ...}, see
Fig. 7.26. Explanation can be given in terms of intra-subband scattering where holes from
Nh = 0 LL scatter due to unscreened scattering potential into higher LLs (of the same
hole subband), thus enhancing radiative recombination [144, 145] from higher LLs at the
expense of the σ+ radiative recombination from the ground LL Nh = 0. Such scattering
processes correlate with oscillations of the screening efficiency and therefore also with an
integer filling factor. The experimental evidence of the intensity minima in σ+ PL from
LL N = 0 and maxima of the PL intensity from all higher LLs at integer filling factors
reflects the presence of the strongest scattering channel of holes. The biggest amount of
holes is therefore scattered from the ground LL of holes |Nh, jz〉 = |0,+3/2〉 into all LLs
with higher energy.

7.4.5 Field-induced optical spin pumping

In the following part, we present mechanism, which manifests in a B-dependence of polar-
ization resolved PL intensity from LL N = 0. The PL exhibits decrease (increase) of the
intensity in σ+ (σ−) polarization in the intervals of filling factors labelled (I.) in Fig. 7.26.
These filling factors are characterized by the presence of the Fermi energy of electrons in
the LL s = −1/2 (the higher energy electron spin state in CdTe, see the left part of the
scheme in Fig. 7.27).

In order to explain such a behavior, we make two assumptions. The first is that
the photo-excited carriers are depolarized. Although the excitation light of the energy
Eexc = 2.41 eV passes through polarizer and quarter wave plate, these are optimized
for the energy of PL (≈ 1.6 eV ), but they work poorly at the energy Eexc. In the case
of small remaining polarization, the carriers will be efficiently depolarized during the
thermalization process. During the thermalization, every electron has to loose more than
800 meV of energy (Eexc = 2.41 eV, Eg ≈ 1.6 eV, Eexc − Eg ≈ 800 meV), which usually
goes along with an emission of acoustical and optical phonons. This energy relaxation
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Figure 7.26: Intensity of the polarization resolved PL from the 20 nm wide CdTe/CdMgTe QW
containing 2DEG of the electron sheet concentration 4.5 × 1011 cm−2. Data measured under the
same conditions as in the Fig. 7.24. PL intensities in (a) σ+ and (b) σ− polarization. Vertical
lines show positions of integer filling factors. Intensity of PL corresponding to the recombination
of electrons and holes from LLs N = 0, 1, 2, 3 are depicted gradually by black, red, green and blue
colors. Labels (I.) and (II.) denote the the intensity oscillations discussed in the text.

also tends to dissipate the initial spin polarization before the electrons relax down to the
Fermi energy in the conduction band.

The second assumption is that the major changes of PL intensity are caused by the
concentration of photo-excited holes in the valence band. This is because concentration of
photo-excited electrons nph is at least three orders of magnitude smaller than the concen-
tration of 2DEG ne, therefore any change of the electron concentration by photo-excited
electrons leads only to weak relative changes in PL intensity of the order of roughly
nph/ne ≈ 10−3. The observed increase (decrease) of the PL intensity in σ− (σ+) polariza-
tion is then interpreted as an increase (decrease) of the concentration of holes with angular
momentum jz = −3/2 (jz = +3/2). In order to explain both experimental observations,
we propose that holes undergo spin-flip jz = +3/2→ jz = −3/2.
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Magneto-photoluminescence 107

Figure 7.27: Schematic drawing illustrating mechanism of intensity modulations in the LL N = 0.
When the Fermi energy lies within the electronic LL of a spin s = −1/2 (s = +1/2) see left scheme
(right scheme), electron spin-flips |+1/2〉 → |−1/2〉 (|−1/2〉 → |+1/2〉) have to take place in order
to get photo-excited electrons thermalized. These spin-flips of electrons go along with spin-flips of
holes | + 3/2〉 → | − 3/2〉 (| − 3/2〉 → | + 3/2〉). The spin-flip processes depicted in the right part
of the scheme are weak due inefficient energy relaxation caused by small density of phonon states.
Dashed line on the left side shows photo-excitation of electrons of from the valence band high into
a conduction band. Full(empty) electronic Landau levels are depicted by blue(white) rectangles.
Partial occupation of hole levels is marked by red color. Suggested electronic transitions are shown
by thin arrows and observed radiative transition (PL) is depicted by wavy red lines according to
the selection rules in CdTe and their thickness correspond to intensity enhancement(thick line)
or reduction(thin line) caused by simultaneous electron and hole spin-flip. Quantum number nF

denotes index of the Landau level where Fermi level lies.

At the same time, all the photo-excited unpolarized electrons have to relax on the
lowest lying unoccupied or partially occupied LL. This is the LL where the Fermi energy
is located. The spin state of this LL is s = −1/2, in the considered intervals of filling
factors ν = 1 − 2, 3 − 4, 5 − 6, etc., labelled (I.) in the Fig. 7.26. Half of the unpolarized
photo-excited electrons are already in the spin state s = −1/2, but the half of them is in
the state s = +1/2. Therefore in order to get on the lowest partially occupied LL, they
have to flip the spin. We have thus electronic spin-flip s = +1/2→ s = −1/2, which goes
along with the hole spin-flip jz = +3/2→ jz = −3/2 and both are sketched schematically
in the Fig. 7.27 (left part).

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Magneto-photoluminescence 108

The mechanisms responsible for the simultaneous spin-flip of electrons and holes is
the so called Bir-Aharonov-Pikus spin relaxation mechanism (BAP). The process of the
spin flip of holes induced by the spin flip of electrons is analogy with so called Dynamical
Nuclear Polarization (DNP) [146], where electrons interact with nuclei of the atom and
the spin-flip of electrons is capable to induce spin-flip of nuclei. In our case, the spin polar-
ization of electrons is not transferred to the polarization of nuclei, but to the polarization
of holes, and thus changing intensity of magneto-PL.

7.4.6 Lattice relaxation

The presented mechanism of the simultaneous electron and holes spin-flip is active only if
the electronic Fermi energy lies in the LL s = −1/2 (the higher energy spin state in CdTe),
as we have sketched in the left part of the Fig. 7.27. The reason is the efficiency of the
energy dissipation. The electron spin-flip s = +1/2→ s = −1/2 is a relaxation across the
cyclotron gap. The cyclotron gap is in CdTe ≈ 3.5−11 meV in the range of magnetic fields
3-10 T. Such an energy can be dissipated by means of longitudinal acoustical phonons (LA-
phonons) into the lattice, because there are many available phonon states in this range of
energies, as can be seen in the density of phonon states in Fig. 7.28. On the other hand,
the electron spin flip s = −1/2→ s = +1/2 within LL N is a relaxation across the Zeeman
gap, which is only 0.3-0.9 meV in the considered range of magnetic fields. Such an energy
is difficult to dissipate by means of phonons, because there is only negligibly small density
of phonon states, see Fig. 7.28. Because an angular momentum is not conserved during
these phonon-assisted simultaneous spin-flip processes of electrons and holes, we assume
that they are allowed due to the light-hole heavy-hole valence band mixing.

Figure 7.28: Density of phonon states in CdTe, taken from [21]. Left red arrow shows energy of
Zeeman splitting at 10 T and right red arrow shows electron cyclotron gap at 3.7 T.

The small efficiency of the phonon-assisted spin-flip processe s = −1/2 → s = +1/2
across the spin gap (right part of the scheme in Fig. 7.27) is manifested also in the data.
In Fig. 7.26, we present the intensities of polarization resolved PL from all experimentally
observable LLs. According to the selection rules in CdTe, the PL in σ+ polarization
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Magneto-photoluminescence 109

from the LL N = 1 should disappear at the filling factor ν < 3. This is because at
the filling factors smaller than 3, the LL |1,−1/2〉 should be empty. However, we can
observe a residual PL from the LL |1,−1/2〉 even at filling factors ν < 3, as shown in
the Fig. 7.26 by the label (II.). This experimental observation shows that the phonon-
assisted electron spin-flip relaxation s = −1/2 → s = +1/2 across the spin gap is really
inefficient. This is why LL |1,−1/2〉 stays partially occupied and weak PL is observed from
this LL at ν < 3, although it should not be already observed in the case that electrons
were completely thermalized. In Fig. 7.29, we present analysis of the same magneto-PL
data as in Fig. 7.26, but instead of the intensities, energy positions of the PL emission
are depicted. The red circles show the expected disappearing of the σ+ polarization in
the case of thermallized electrons. Non-thermalized electrons due to non-efficient electron
relaxation s = −1/2 → s = +1/2 across the spin gap cause the observation of the σ+

polarization to the higher fields (lower filling factor) than expected in the case of efficient
thermalization.
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Figure 7.29: Energy position of PL from 20 nm wide CdTe QW, electron sheet concentration
ne = 4.5 × 1011 cm−2. PL measured in σ+ (blue dots) and σ− (green dots) circular polarization.
Red circles show, at which magnetic field the PL from σ+ polarization is expected to disappear if
electrons in the conduction band would be thermalized and the energy relaxation processes would
be always efficient.

7.4.7 Comparison with CdMnTe QWs

In order to further support our interpretation of the simultaneous electron and hole spin
spin-flip, we have measured field dependence of the PL intensities in CdMnTe QWs. CdM-
nTe QW has very similar parameters as the CdTe QW; width of the CdMnTe QW embed-
ded in CdMgTe barrier is 21.1 nm and electron concentration of about 4.2× 1011 cm−2 is
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Magneto-photoluminescence 110

almost the same as the concentration in CdTe QW (4.5×1011 cm−2). The main difference
between these two heterostructures is the presence of manganese. As we have shown in
the chapter 7.2.1, already small amount of manganese changes the sign of the electronic
g-factor due to the electron-manganese sd-interaction. Therefore the electronic LL with
the spin s = +1/2 will be at higher energy as compared to the LL with the spin s = −1/2.
This is in contrast to CdTe QW, where the ordering of the spin LLs is opposite.
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Figure 7.30: Intensity of magneto-PL emission in (a) σ+ (b) and σ− circular polarization. PL
intensities from LLs N = {0, 1, 2, 3, 4} are depicted by black, red, green, blue and light blue curves,
respectively. PL excited by green Argon laser line at the energy of Eexc = 2.41 eV, excitation
power was Pexc ≈ 1.4 µW and laser spot size was in the range 0.5-1 mm. Measured at the bath
temperature T = 90 mK. Vertical lines show positions of integer filling factors. Labels (I.) and (II.)
denote the intervals of the filling factors discussed in the text.

The polarization resolved PL intensity from the lowest LLs in CdMnTe QW is depicted
in Fig. 7.30. The data show many similar features as PL measured in CdTe QW. The
occurrence of the intensity modulations itself shows again on the dominant non-radiative
recombination channel. Due to the Giant Zeeman splitting, hole LLs jz = −3/2 are deeply
in the valence band, therefore holes occupy primarily the valence band states jz = +3/2.
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Magneto-photoluminescence 111

This is why the polarization σ+ is dominant in CdMnTe QWs. The dips in the intensity
of σ+ polarization at integer filling factors in the PL emission from Landau level N = 0
originate in the oscillatory efficiency of the screening and maxima of PL intensity from all
higher LLs show on intra-subband scattering of holes as in CdTe QWs.

The intervals of the filling factors, which are in the scope of our interest are labelled (I.)
in the Fig. 7.30 and Fig. 7.31. We directly compare the B-dependence of PL intensities in
both CdTe and CdMnTe QWs in the Fig. 7.31. In CdMnTe, the intensity of PL from LL
N = 0 in σ+ polarization increases at these intervals of filling factors. This is in contrast to
the observation in CdTe QWs, where decrease of the PL intensity was observed. However,
we will show that this is in agreement with the proposed simultaneous electron and hole
spin-flip and the only difference is the reversed ordering of the LLs with the spin s = ±1/2
in CdMnTe with respect to their ordering in CdTe QWs.

Since we observe the increase of the PL intensity in σ+ polarization, the concentration
of holes jz = +3/2 has to increase. Therefore, the hole spin flips jz = −3/2 → jz = +3/2
are expected. Because we are at such filling factors, where the Fermi energy of electrons
is located within electronic LL s = +1/2, half of the unpolarized photo-excited electrons
have to flip their spin from the state s = −1/2 to the state s = +1/2. As a matter
of fact, we observe simultaneous electron and hole spin-flip s = −1/2 → s = +1/2 for
electrons and jz = −3/2 → jz = +3/2 for holes. This process is efficient, because the
electron relaxes across the cyclotron gap, therefore having enough phonon states in order
to dissipate the released energy. However, its efficiency is limited by the concentration
of holes in the spin state jz = −3/2. Concentration of these holes is small due to Giant
Zeeman splitting, therefore considerable part of electrons remains on the electronic LL
s = −1/2 instead of relaxing on the lowest partially occupied LL s = +1/2, where Fermi
energy is located in thermal equilibrium. This gives rise, for example, to the PL emission
from LL N = 2 in σ+ polarization at filling factors ν < 4, where no PL is expected if
electrons were thermalized. Intervals of the filling factors where this hot luminescence
appears are labelled (II.) in Fig. 7.30.

When Fermi energy is located within LL s = −1/2 (the lower energy spin state in
CdMnTe), the electron spin-flip s = +1/2 → s = −1/2 is inefficient, because the released
energy of electron would be too small to be dissipated by phonons into the lattice due to
the negligible density of phonon states at these energies. Low efficiency of this electron
spin-flip process should be accompanied by the hot luminescence in σ− polarization. For
example, hot PL from LL N = 1 in σ− polarization is expected between filling factors 2
and 3, Fig. 7.30. However, we have observed no such hot PL. This is because its intensity
is expected to be much weaker with respect to the PL of themalized carriers and therefore
experimentally unavailable due to a generally weaker σ− PL in CdMnTe QWs.

Comparing the conclusions from the experiments on CdTe and CdMnTe QWs, we have
found simultaneous electron and hole spin flip relaxation. Electron spin-flip s = +1/2 →
s = −1/2 goes along with the hole spin flip jz = +3/2 → jz = −3/2 in CdTe QWs,
thus reducing(enhancing) PL intensity from the LL N = 0 in the σ+ (σ−) polarization.
In the case of CdMnTe QWs, the electron spin-flip s = −1/2 → s = +1/2 goes along
with the hole spin flip jz = −3/2 → jz = +3/2, thus reducing(enhancing) PL intensity
from the LL N = 0 in the σ− (σ+) polarization. We have found that the efficiency of
the simultaneous electron and hole spin-flip process is governed by both electrons and
holes. If the electrons relax across the Zeeman spin gap (cyclotron gap), efficiency is low
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Figure 7.31: Intensity of PL emission from LL n = 0 (black and grey curve) and n = 1 (red and
orange curve) from (a) CdTe and (b) CdMnTe QW plotted as a function of the filling factor. Data
has been measured at (a) 80 mK (b) 90 mK, excited with Argon laser line at 514 nm and excitation
power was of about 50 µW/cm2. Labels (I.) show intervals of the filling factors discussed in the
text.

(high) and it is governed by the density of phonon states, into which the released energy
can be dissipated. The holes influence the efficiency too, but in the sense that if their
concentration is too small, certain part of the electrons do not thermalize in spite of the
fact that with respect to the density of phonon states they could. Therefore we conclude
that the experimentally observed simultaneous electron and hole spin-flip processes are
not two independent events but they influence and depend on each other. We attribute
this simultaneous electron and hole spin-flip process to the phonon assisted Bir-Aharonov-
Pikus spin relaxation mechanism.
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Chapter 8

Photoluminescence excitation

8.1 Brief introduction

Photoluminescence excitation is a complementary experimental technique to the photo-
luminescence (PL). While PL probes inter-band transitions between occupied conduction
and unoccupied valence band states, PLE is sensitive to the transitions between occupied
valence and empty conduction band states. In other words, PLE is capable to probe
electronic states above Fermi energy of electrons EF , and PL below EF

1.
PLE spectrum is a dependence of PL intensity on the energy Eexc of the excitation

photon [147]. The PL intensity can be measured either at the maximum of PL emission
or taken as an average in a given spectral range around maximum or it can be taken as an
integral of whole PL spectrum. The larger is this interval, the more is noise reduced. On
the other hand, too large interval embarrasses observation of PLE spectra beyond resonant
excitation due to the presence of laser scattered light in the taken spectral window. We
use an averaging in the interval given by FWHM2 of PL emission spectrum. FWHM is
determined in such a PL spectrum, which is excited high above (40 meV and more) the
energy of PL emission. Choosing this interval was a good compromise between noise level
and possibility to observe PLE in close surroundings, beyond the resonant excitation. The
total absorbed intensity Iabs, Eq. (8.1), of the excitation laser beam

Iabs(Eexc) = I0(1− e−α(Eexc)dQW ) (8.1)

in the QW is governed according to the Lambert-Beer law by the incident intensity I0,
absorption coefficient α(Eexc) and a width of the QW dQW . The intensity I0 does not
equal to the incident intensity on the sample. Relation between these two quantities is
given by the transmission of the air-barrier, barrier-QW interface, which are given by
Fresnel relations and by the absorption in a barrier. The transmission of the air-barrier
and transmission through barrier are assumed to be spectrally independent, because ex-
citation energy Eexc is well below band gap of Cd0.74Mg0.26Te barrier. The absorption
coefficient α(Eexc) depends on the energy of the excitation photons Eexc and its value is

1Strictly speaking, we should talk about quasi-Fermi energy of electrons, which is different from the
Fermi energy of electrons in equilibrium. However, the difference is given by the concentration of photo-
excited carriers, which is in our case more than 103× smaller than the equilibrium concentration of 2DEG,
hence the difference between Fermi and quasi-Fermi energy of electrons is negligible.

2Full width at half maximum.
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Photoluminescence excitation 114

≈ 25000 cm−1 [148] in a bulk CdTe in the spectral region above the band gap energy at
a temperature of liquid helium T = 4.2 K. Since widths of our QWs are 20 and 30 nm,
α(Eexc)d ≪ 1 and expanded exponential function around zero gives a linear proportion-
ality between absorbed intensity and absorption coefficient α(Eexc), Eq. (8.2).

Iabs(Eexc) = I0α(Eexc)d (8.2)

Because the PL intensity IPL(Eexc) is proportional, via the quantum efficiency η, to the
intensity of the absorbed light Iabs(Eexc), it is possible to study absorption α(Eexc) of the
QW by means of PL intensity, α(Eexc) ∝ IPL(Eexc). Such a result is easy to understand
in a common sense, saying the more system absorbs, the more luminescence it gives. This
is also why the PLE spectra are sometimes called quasi-absorption. The other reason for
this is that the PLE spectrum is not influenced only by the absorption, but also by the
efficiency of the relaxation processes of the photo-excited carriers.

8.2 Zero field photoluminescence excitation

We have used PLE excitation technique to study both 20 and 30 nm wide QWs. First,
we focus on PLE at zero magnetic field and in the second part, we present field evolution
of PLE. The essence of PLE experiment is, as formerly mentioned, to measure PL as a
function of energy Eexc of photons used to excite PL. The result of such an experiment is
shown in Fig. 8.1 for 20 nm wide QW at T = 4.2 K and B = 0 T. The straight diagonal
line is an elastically scattered light, or also called Rayleigh resonant scattering, from the
laser excitation beam. Energy of the excitation photons Eexc was tuned from ≈ 1.575 eV
(left down corner in a map on a Fig. 8.1) up to the energy ≈ 1.7 eV. The broad horizontal
line is a PL spectrum (red color depicts high PL intensity, blue color means no signal).
Thus every vertical cut of the map of PLE is one single PL spectrum as taken by CCD
camera. Onset of the PL is expected in 2DEG when energy of the excitation is tuned
above Fermi energy (e.g. Eexc > 1.602 eV in Fig. 8.1)3. However, we have found an
absorption resonance already when exciting below Fermi energy, where no absorption and
therefore no PL emission is expected. This emission occurs at 1.594 eV in PL spectrum
and is labeled “X” in Fig. 8.1. The band-to-band recombination occurs, as expected, when
energy of the excitation is above Fermi energy (e.g. above ≈1.603 eV in PL spectrum).
In order to explain the origin of the unexpected absorption below Fermi energy, we follow
the interpretation of Teran [101], who assumes non-homogeneous spatial distribution of
2DEG, therefore coexistence of the regions where QW contains 2DEG and where QW is
almost empty. In the empty regions, PL emission is a radiative recombination of bound
electron-hole pair (exciton). Due to the absence of 2DEG, the electron-hole interaction is
not screened and thus the interaction is not weakened as compared to the regions where
2DEG is. In the regions of 2DEG, excitons are screened [149, 102] and only band-to-band
free-electron-free-hole recombination at the energy ≈ 1.588 eV takes place. The red shift of
the later recombination process with respect to the excitonic one at 1.594 eV is explained
by a band gap renormalization [101] caused by electron-electron interaction in the regions
with 2DEG.

3Fermi energy 1.602 eV is introduced here in the absolute energy scale as measured in a PL spectrum.
When we measure the Fermi energy from the bottom of the conduction band of a ground electronic state
confined in a 20 nm wide QW, then EF = 10.8 meV.
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Photoluminescence excitation 115

Figure 8.1: PL spectrum of 20 nm wide QW at T = 4.2 K and zero magnetic field as a function of
excitation energy Eexc. Red (blue) color means high (zero) intensity of detected light. Excitation
performed by σ− circularly polarized light and PL detected at the same polarization. Fermi energy
EF marked in both PL and PLE spectrum, excitonic (X) and band-to-band PL transitions marked
by horizontal dashed lines.

PLE spectra have been obtained by taking intensity profile following band-to-band PL
transition (dashed line in Fig. 8.1) averaging PL intensity in the spectral range determined
by FWHM of the PL emission peak. Absorption spectra of both 20 and 30 nm wide QWs
are plotted in Fig. 8.2 and Fig. 8.3, respectively. Two contributions to the PLE spectra
of both QWs are clearly observed. The step-like spectrum reflects the nature of the 2-
dimensional density of states and the blue-shifted onset of the absorption with respect to
the PL is determined by the presence of the electron gas which fills the conduction band up
to the Fermi energy EF and by parabolic dispersion relation of the electron and hole bands
which both together give rise to the Moss-Burstein shift ∆MB = EF (1+me/mh) ≈ 1.25EF

of the absorption onset [101]. In our case the Moss-Burstein shift is 13.5 meV and 8.8 meV
in the case of the 20 and 30 nm wide QW which contain an electron gas of the concentration
4.5 and 2.9 × 1011 cm−2, respectively. The data are compared with the calculations of
the subband energy structure presented in the chapter 4. The calculations agree well with
a data in the low energy part of the spectra. However, in higher energy part, instead
of expected increase of absorption and consequently also increase of PL intensity, the
inverse behavior is observed. We interpret this discrepancy by stronger non-radiative
channels when exciting into higher subbands. In other words, we assume that the quantum
efficiency of PL decreases at higher energies. This is an example, that even thought the
proportionality between absorption and PL intensity is usually valid, there are violations
of this rule, hence attribution of quasi-absorption instead of absorption is more correct.

The second contribution to the absorption spectra is composed of the peak-like struc-
ture, which is, except of the peak on the Fermi energy, usually explained in terms of ab-
sorption into the excitonic states bound to the higher electronic subbands. These excitons
do not undergo the metal-insulator-transition [150, 101] to the band-to-band recombina-
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Figure 8.2: PLE spectrum (black curve) of 20 nm wide QW at T = 4.2 K compared to the calculated
absorption (red curve) and photoluminescence spectrum (green filled peak). Excitation performed
by σ− circularly polarized light and PL detected at the same polarization. Energy scale was related
to the energy of PL emission. Onsets of hh1 − e1(EF ), hh1 − e2 and hh2 − e2 inter-subband
transitions marked by arrows. Absorption into the excitonic state X(hh1 − e2) bound below the
second subband is also labelled.
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Figure 8.3: The same as in Fig. 8.2, but measured for 30 nm wide QW.

tion. It has been shown by many authors, that these excitions, bound to higher unoccupied
subbands, are stable not only in empty QWs [151, 152, 153, 154], but also in the electron-
hole plasma [155] and in a hole [156, 157] and electron gas. The later was studied both
theoretically [158, 159, 160, 153] and experimentally [161, 162, 163]. We give a comment
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Photoluminescence excitation 117

on the two excitions bound to the second electronic subband e2. Because we interpret
these two excitons according to our band structure calculations as a bound state of the
electron from the second electronic subband e2 and heavy hole from the ground heavy hole
subband hh1, we labelled them X(hh1−e2) in both Figs. 8.2 and 8.3. The binding energy
of these two excitons is ≈ 3.7 and ≈ 6.0 meV in 20 and 30 nm wide QW, respectively.
There are two reasons for this. The first is the screening of the electron-hole interaction by
the 2DEG, which occupies the ground electronic subband. The concentration of a 2DEG
is lower in 30 nm wide QW, therefore the binding energy is less screened and consequently
the exciton binding energy is higher than in 20 nm wide QW. The second reason is the
strength of an internal electric field inside the QWs caused by single-side doping. As has
been already shown by our calculations in the chapter 4, the internal electric field is higher
in 20 nm wide QW, because the width of a well is smaller and moreover the concentration
of positively charged donors is higher. Both these two contributions lead to the higher
internal electric field in 20 nm wide QW. This electric field tends to separate the electron
and hole apart, thus leading to the reduction of the excition binding energy in 20, with
respect to the 30 nm wide QW.

The last comment on the zero-field PLE spectra is devoted to the quasi-absorption
resonance at the Fermi energy, labelled hh1 → e1(EF ) in both Figs. 8.2 and 8.3. This
absorption resonance has no common interpretation so far. Some authors explain it as a
band non-parabolicity in the valence band at the Fermi wave vector kF [164] in a 2DEG,
or as a non-parabolicity of light hole levels at the Γ point in a 2DHG [165]. Also an
explanation by many-body Fermi edge singularity is often accepted [166, 167, 168, 169].
We do not treat this resonance and leave the question of its origin opened.

8.3 Field evolution of PLE

We will focus now on a study of PLE in magnetic field perpendicular to the plane of
2DEG. An example of PL spectrum as a function of the energy of excitation is shown
in Fig. 8.4 for 20 nm wide QW measured at T = 4.2 K and magnetic field B = 14 T.
As in the case of PLE at zero magnetic field, the most intense straight diagonal line is a
spectrum of scattered laser light being tuned from 1.584 eV to ≈ 1.7 eV. The thick red
horizontal line in Fig. 8.4 depicts PL from the electronic Landau level N = 0. In contrast
to the map of PLE taken at zero magnetic field, set of four replicas of a laser scattered
light spectrum is observed. The energy distance between these replicas and spectrum of
scattered laser light is always integer multiple of LO-phonon energy, as depicted in Fig. 8.4
by vertical yellow double-arrow. Up to 4 LO-phonon replicas have been observed in PL
spectra, which shows on the importance of LO-phonon assisted energy relaxation channel.

Field dependences of PLE spectra for 20 and 30 nm wide QW are shown in Fig. 8.5
and Fig. 8.6, respectively. The lowest energy signal (starting at ≈1.59 eV) is a spectral
position of PL from the lowest lying Landau level (N=0). The gap between PL emission
and absorption (depicted by blue color) is due to the presence of 2DEG, thus forbidding
absorption below Fermi energy. Here, we plot PLE spectra determined from narrow spec-
tral region around the maximal PL intensity (averaged data in the range of FWHM of the
most intense PL peak), hence the absorption below Fermi level, as discussed in the section
about zero field PLE, is not visible here. The most intense peaks in PLE spectrum above
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Photoluminescence excitation 118

Figure 8.4: PL spectrum of 20 nm wide QW at T = 4.2 K and B = 14 T as a function of excitation
energy Eexc. Excitation performed by σ− circularly polarized light and PL detected at the same
polarization. Energy of LO-phonon shown by yellow arrow.

Figure 8.5: PLE of 20 nm wide QW versus magnetic field up to 28 T. Measured under the same
conditions as described in Fig. 8.1 and Fig. 8.2

Fermi energy, linearly growing with magnetic field, are caused by unoccupied electronic
Landau levels.

The nature of the anticrossing in 20 nm wide QW (Fig. 8.5) at roughly 18 T will be
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Photoluminescence excitation 119

Figure 8.6: PLE of 30 nm wide QW versus magnetic field up to 28 T. Measured under the same
conditions as described in Fig. 8.2. Blue crosses show positions of PL emission peaks.

a matter of further investigation. We suggest few possible interpretations at the moment.
First, we propose magneto-polaron effect, since such an avoided anticrossing is expected in
CdTe QW at this magnetic field and FIR cyclotron resonance absorption data show similar
behavior. On the other hand, it could be also demonstration of light-hole-heavy-hole
mixing in the valence band or some other interaction effect between e1 and e2 subbands.

For the sake of illustration, we have plotted PLE (absorption) and PL (emission)
together for the 30 nm wide QW, see Fig. 8.6. The PL is plotted by blue crosses, which
mark the positions of PL peaks. The data well illustrate the complementarity of PL
and PLE experiments. PL, as has been mentioned in the introduction of this chapter,
is sensitive to the occupied electronic Landau levels only and PLE on empty electronic
Landau levels. This is why PL is visible only in a narrow band above PL emission from
N = 0 LL. The width of a band where PL is visible is determined by the Fermi energy.
Above Fermi energy, electronic LLs are empty, thus only PLE probes these states.
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Chapter 9

Conclusions

9.1 Conclusions (English)

We have presented an experimental study of two-dimensional electron gas (2DEG) embed-
ded in a single side modulation n-doped CdTe/CdMgTe and magnetic CdMnTe/CdMgTe
quantum wells. The experimental investigation has been done by means of magneto-
photoluminescence, photoluminescence excitation, longitudinal and Hall resistance mea-
surements and complementary techniques of far infrared cyclotron resonance absorption
and Raman inelastic scattering. Experimental results have been subjected to the detailed
analysis and compared with theoretical models based on both simple single particle mod-
els, more complex models of electron-electron many-body interactions and some data has
been compared with numerical calculations of confined states in a QW.

The knowledge of the energy spectrum of confined states in our QWs was essential in
order to properly interpret the experimental data. Therefore, as a fist step, we have done
numerical calculations of the confined states and their energies. The electron-electron
interactions have been taken into account in the Local Density Approximation (LDA)
and electronic and hole wave functions have been calculated in the Envelope Function
Approximation (EFA).

Basic characterization of the samples by means of far infrared absorption and inelastic
Raman scattering helped us to determine the effective mass and effective g-factor of elec-
trons, which are the two key parameters in a single particle description of spin resolved
Landau level quantization of the energy levels of 2DEG in magnetic field.

The low-field magneto-conductivity showed that the semi-classical Drude term repre-
sents the most important contribution to the longitudinal conductivity. Weaker contri-
butions, by roughly three orders of magnitude, have been also found. They are due to
effects of weak localization, electron-electron interaction and Shubnikov-de Hass oscilla-
tions. Many-body electron-electron contribution has been also successfully explained by
semi-classical model of circling electrons. Analysis of the amplitude of Shubnikov-de Hass
oscillations in the longitudinal resistance revealed further information on the Landau level
structure, namely the shape of Landau levels and the size of their broadening. The differ-
ence between transport scattering time (τtr = 15 ps) and quantum life time (τq = 3 ps)
led us to conclude on the presence of dominant long-range scattering mechanism. In the
studied CdTe QWs, we have found no significant changes of Landau level broadening and
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Conclusions 121

electron effective mass as a function of temperature from 90 mK to 1.2 K and magnetic
field up to 0.5 T. The high magnetic field magneto-transport has shown well developed
fractional quantum Hall states in the Landau level N = 0 (ν = 5/3, 4/3) and N = 1
(ν =7/3, 8/3). The fractional quantum Hall (FQH) states 5/3 and 4/3 have been sub-
jected to the magneto-transport studies in a tilted magnetic field. We have found that
the properties of these FQH states are strongly influenced by the intrinsic Zeeman energy,
resulting in the complete spin polarization of the ground state of both FQH states 5/3
and 4/3, in agreement with a composite fermion approach for FQH effect.

Spin gap enhancement of the fully occupied Landau levels has been studied by means
of magneto-PL in wide range of magnetic fields and temperatures. The observed field
and temperature dependence has been successfully described by simple phenomenological
model. We have concluded that the spin gap enhancement does not occur only in the
vicinity of the Fermi energy, as has been known so far, but it occurs at all occupied
Landau levels and its magnitude is the same for all Landau levels up to the Fermi energy.

Magnetic field induced modulations of the polarization resolved PL intensity revealed
several mechanisms influencing the efficiency of the radiative recombination. We have
shown that the dominant role in the recombination of electrons and holes is played by
non-radiative recombination channels. Other phenomena influencing an efficiency of the
radiative recombination have been also recognized, like degeneracy of Landau levels, oc-
cupation of Landau levels, selection rules and oscillatory efficiency of the screening. The
pivotal conclusion of our PL intensity studies is an identification of the simultaneous elec-
tron and hole spin-flip, mediated by phonon-assisted Bir-Aharonov-Pikus spin-relaxation
mechanism.

Manifestation of the two-dimensional density of states has been revealed in the pho-
toluminescence excitation spectra. We have found also an importance of the screening
and internal electric field in the single side modulation doped QWs, which influence the
binding energy of excitons bound to the unoccupied Landau levels N = 1.

Although we have presented an extensive magneto-optical and magneto-transport ex-
perimental study of a 2DEG, many phenomena have been successfully interpreted and
the data interpretation has been often supported by numerical calculations and data
modelling, many questions remained unsolved and some other appeared. Among those
questions, which remained unsolved, let’s mention for example the doublet Landau level
structure in both circular polarizations which can be well seen at higher Landau levels
in both photoluminescence and photoluminescence excitation. Even though we have pre-
sented a simple model to describe oscillations of the spin gap, there is no generally accepted
explanation for the oscillatory behavior of the absolute position of the PL emission (if any
exists). The reason, why longitudinal resistance shows large plateaux and energy of pho-
toluminescence sharp jumps at certain magnetic field is also not clear so far. An avoided
anticrossing observed in quasi-absorption (PLE) at every such a magnetic field, when any
of the Landau levels from the ground electronic subband crosses absorption resonance of
an exciton below the first excited electronic subband is also striking, as well as peaks
in the quasi-absorption at the Fermi energy. The interpretation of the absorption below
Fermi energy in PLE spectra at zero magnetic field should be probably also reexamined.
So far, we have interpreted this absorption as an excitonic one and we have argued by
non-homogeneous distribution of 2DEG. However, it seems to us, that the electron gas is
not so inhomogeneous as would be required by the proposed explanation. We have shown,
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Conclusions 122

that the spin gap enhancement appears not only in the Landau levels in the vicinity of
the Fermi energy, but also in the fully occupied Landau levels. However, the question has
risen, whether the spin gap enhancement occurs also in completely empty Landau levels.
Analysis of the thermally activated magneto-transport measurements revealed great in-
adequacies in the satisfactory description of the experimental data. Therefore, we invoke
more theoretical effort to properly describe this kind of experiments.

To summarize, we have shown number of new experimental results, some of them have
been successfully interpreted and led to the conclusions of the fundamental character.
However, also many questions remained unanswered and new have risen. Therefore, fur-
ther both experimental and theoretical investigations of a two-dimensional electron gas
will be certainly of a future interest of many forthcoming effort of many research groups
and we hope, that our work will contribute to a correct understanding of the properties of
a 2DEG and generally to the understanding of many-body strongly interacting systems.

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Conclusions 123

9.2 Résumé (En français)

Nous avons présenté une étude expérimentale de gaz d’électrons bidimensionnel (GE-2D)
confiné dans des puits quantiques de CdTe/CdMgTe et des puits quantiques magnétiques
de CdMnTe/CdMgTe. La recherche expérimentale a été faite au moyen de magnéto-
photoluminescence, de spectroscopie d’excitation de la photoluminescence, de mesures de
résistance longitudinale et de résistance Hall et de techniques complémentaires, comme
l’absorption de résonance cyclotron infrarouge et la diffusion Raman inélastique. Les
résultats expérimentaux ont été soumis à une analyse détaillée et comparés à des modèles
théoriques basés sur des modèles simples de mono-particules, à des modèles plus com-
plexes d’interactions multi-corps électron-électron. Quelques résultats ont été comparés
aux calculs numériques des états confinés dans des boites quantiques.

La connaissance du spectre d’énergie des états confinés dans nos boites quantiques
était essentielle afin d’interpréter correctement les résultats expérimentaux. C’est pourquoi
nous avons d’abord effectué des calculs numériques des états confinés et de leurs énergies
respectives. Les interactions électron-électron ont été considérées dans l’approximation de
densité locale (Local Density Approximation - LDA) et les fonctions d’onde d’électron et
de trou ont été calculées dans l’approximation de fonction enveloppe (Envelope Function
Approximation - EFA).

La caractérisation élémentaire au moyen d’absorption infrarouge et de diffusion Ra-
man nous ont aidés à déterminer la masse des électrons et leur facteur g effectif, qui sont
les deux paramètres principaux dans une description de mono-particule dans le champ
magnétique. La magnéto-conductivité à bas champ a indiqué que la contribution de la con-
ductivité longitudinale la plus importante est la contribution semi-classique de Drude. Des
contributions d’approximativement trois ordres de grandeur plus faibles ont été également
trouvées. Elles sont dues aux effets de la localisation faible (Weak Localization - WL),
d’interaction électron-électron et d’oscillations Shubnikov-de Hass. La contribution de
l’interaction électron-électron a été expliquée également avec succès avec le modèle semi-
classique des électrons tournants. L’analyse de l’amplitude des oscillations Shubnikov-de
Hass dans la résistivité longitudinale a donné des informations supplémentaires sur la
structure des niveaux de Landau, comme leur forme et la taille de leur élargissement. La
différence entre le temps de transport (τtr = 15 ps) et le temps quantique (τq = 3 ps) nous
a menés à la conclusion de la présence du mécanisme de dispersion d’origine longue portée.
Dans les études des puits quantiques de CdTe, nous n’avons trouvé aucun changement des
élargissements des niveaux de Landau ni de la masse effective de l’électron en fonction
de la température (entre 90 mK et 1.2 K) et du champ magnétique (jusqu’à 0.5 T). Le
magnéto-transport dans les champs magnétiques intenses a mis en évidence des états Hall
quantiques fractionnaires bien identifiés dans les niveaux de Landau N = 0 (ν = 5/3, 4/3)
et N = 1 (ν = 7/3, 8/3). Les états fractionnaires 5/3 et 4/3 ont été soumis à des études
de magnéto-transport dans un champ magnétique incliné. Nous avons constaté que les
propriétés de ces états sont fortement influencées par l’énergie Zeeman, et que leur l’état
fondamental est complètement polarisé, en accord avec une approche de fermions compos-
ites décrivant l’effet Hall quantique fractionnaire.

Le gap de spin amplifié dans les niveaux Landau entièrement occupés a été étudié au
moyen de magnéto-photoluminescence dans un grand intervalle de champs magnétiques
et de températures. La dépendance en champ et en température a été décrite avec succès
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Conclusions 124

par un modèle phénoménologique simple. Nous avons conclu que le gap de spin amplifié
n’apparâıt pas seulement à proximité de l’énergie de Fermi, comme décrit jusqu’ici, mais
que le phénomène se produit à tous les niveaux de Landau occupés et que son amplitude
est la même pour tous les niveaux de Landau jusqu’à l’énergie de Fermi.

Le modulation par le champ magnétique de l’intensité de la photoluminescence résolue
en polarisation a indiqué que plusieurs mécanismes influencent l’efficacité de la recom-
binaison radiative. Nous avons prouvé que le rôle dominant dans la recombinaison des
électrons et des trous est joué par un processus non-radiatif. D’autres phénomènes in-
fluençant l’efficacité de la recombinaison radiative ont été également identifiés, comme la
dégénérescence des niveaux de Landau, leur taux d’occupation, les règles de sélection et
l’efficacité de l’écrantage. La conclusion principale de notre étude de l’intensité de la pho-
toluminescence est une identification du processus mis en jeu, processus au cours duquel
le spin de l’électron et le spin du trou se renversent en même temps. Ce processus est
contrôlé par le mécanisme Bir-Aharonov-Pikus, qui est le mécanisme de la relaxation de
spin assistée par les phonons.

Les spectres obtenus par la spectroscopie d’excitation de la photoluminescence reflètent
la densité détats caractéristique des systèmes bidimensionnels. Les résonances excitoniques,
qui sont observées aux bords des sous-bandes électriques inoccupées, illustrent l’importance
de l’écrantage et des champs électriques intrinsèques dans les puits asymétriquement dopés.

Nous avons présenté des études magnéto-optiques et de magnéto-transport appro-
fondies d’un gaz électronique bidimensionnel. Les phénomènes identifiés ont été interprétés
avec succès et l’interprétation a été souvent confirmée par des calculs numériques. Cepen-
dant, beaucoup de questions restent non résolues et d’autres sont apparues. Parmi ces
questions non résolues, nous voudrions mentionner par exemple la structure en doublet de
niveaux de Landau dans les deux polarisations circulaires, qui peut être observée claire-
ment à des niveaux de Landau plus élevés par photoluminescence et par excitation de
photoluminescence. Même si nous avons présenté un modèle simple pour décrire les os-
cillations de gap de spin, il n’y a pas d’explication communément admise pour les oscil-
lations de la position absolue de l’émission de la photoluminescence (s’il en existe). La
raison pour laquelle la résistance longitudinale présente de grands plateaux et pour laque-
lle l’énergie de photoluminescence change pour certaines intensités de champ magnétique
n’est pas encore éclaircie. L’origine du croisement des niveaux de Landau observé par
spectroscopie d’excitation de la photoluminescence ainsi que des maxima dans la quasi-
absorption à l’énergie de Fermi reste aussi inconnue. L’interprétation de l’absorption
au-dessous de l’énergie de Fermi dans des spectres de photoluminescence d’excitation en
champ magnétique nul devrait être probablement réexaminée. Jusqu’ici, nous avons in-
terprété cette absorption comme l’absorption des excitons et nous avons discuté la distri-
bution non homogène du gaz électronique bidimensionnel. Cependant, il nous semble que
le gaz d’électrons n’est pas si inhomogène que suggéré par l’explication proposée. Nous
avons montré que le gap de spin amplifié concerne non seulement les niveaux de Landau
à proximité de l’énergie de Fermi, mais également les niveaux de Landau entièrement oc-
cupés. Cependant, la question se pose si le gap de spin amplifié existe également dans
les niveaux de Landau complètement vides. L’analyse du magnéto-transport thermique-
ment activé a montré de grandes limites dans la description théorique. Par conséquent,
un effort d’interprétation théorique est nécessaire afin de décrire correctement ce genre
d’expériences.
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Conclusions 125

Pour conclure, nous avons décrit plusieurs de nouveaux résultats expérimentaux. Cer-
tains d’entre eux ont été interprétés avec succès et ont menés à des conclusions de caractère
fondamental. Cependant, beaucoup de questions restent sans réponse et de nouvelles ont
été posées. Nous espérons que ce travail constituera une base pour de futures investiga-
tions expérimentales et théoriques sur les gaz d’électrons bidimensionnels et contribuera
participer à une compréhension correcte de ses propriétés. Nous espérons également que
ce travail permet de mieux comprendre la physique des systèmes multi-corps présentant
une interaction électron-électron forte.
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9.3 Závěr (Česky)

V předložené práci jsme prezentovali výsledky experimentálńıho studia dvou - dimen-
zionálńıho elektronového plynu (2DEP) v asymetricky n-dopovaných kvantových jamách
CdTe/CdMgTe a semi-magnetických kvantových jamách CdMnTe/CdMgTe. Experimen-
tálńı studium bylo provedeno metodami měřeńı magneto-fotoluminiscence, excitačńı lu-
miniscence, podélného a Hallova odporu a pomoćı doplňkových technik infračervené ab-
sorpce a Ramanova rozptylu. Experimentálńı výsledky byly podrobeny detailńı analýze
a srovnány s teoríı, kde byly použity jak jednoduché, jednočásticové modely, tak kom-
plexněǰśı modely zahrnuj́ıćı mnoha-částicové, elektron-elektronové interakce.

Znalost energetického spektra vlastńıch stav̊u 2DEP je esenciálńı pro správnou inter-
pretaci experimentálńıch dat. Proto byly v prvńım kroku provedeny numerické výpočty
kvantových vlastńıch stav̊u a jejich energíı v kvantových jamách CdTe. Elektron-elektronová
interakce v 2DEP byla započtena v aproximaci lokálńı elektronové hustoty (Local Density
Approximation - LDA) a elektronové a děrové vlnové funkce byly spočteny v aproximaci
obálkové funkce (Envelope Function Approximation - EFA).

Metodami infračervené absorpce a Ramanova rozptylu byla určena efektivńı hmota a
efektivńı g-faktor elektronu, což jsou dva kĺıčové parametry v jednočásticovém popisu po-
hybu elektronu v magnetickém poli, a tedy popisu spinově rozlǐsených Landauových hladin.
Analýza elektrické vodivosti v ńızkém magnetickém poli ukázala na dominantńı roli semi-
klasického Drudeho př́ıspěvku. Dále bylo nalezeno několik slabš́ıch př́ıspěvk̊u, které byly
identifikovány jako vliv slabé lokalizace, elektron-elektronové interakce a Shubnikov-de
Haasových oscilaćı. Př́ıspěvek mnoha-částicové elektron-elektronové interakce byl taktéž
úspěšně vysvětlen semi-klasickým model cirkuluj́ıćıch elektron̊u. Z ana- lýzy Shubnikov-
de Haasových oscilaćı byl určen tvar a š́ı̌rka Landauových hladin. Z rozd́ılu mezi trans-
portńı dobou života (τtr = 15 ps) a kvantovou dobou života (τq = 3 ps) bylo usouzeno
na dominantńı př́ıtomnost daleko-dosahového rozptylového mechanizmu. Ve studovaných
kvantových jamách CdTe jsme nenalezli žádné význačné změny rozš́ı̌reńı Landauových
hladin a změny efektivńı hmoty elektronu v rozmeźı teplot od 90 mK do 1.2 K a magnet-
ických poĺıch do 0.5 T. V magneto-transportńıch měřeńıch ve vysokém magnetickém poli
byly identifikovány zlomkové kvantové Hallovy stavy v Landauových hladinách N = 0
(ν = 5/3, 4/3) a N = 1 (ν = 7/3, 8/3). Zlomkové kvantové Hallovy stavy 5/3 a 4/3
byly podrobeny detailńımu studiu v nakloněném magnetickém poli. Bylo zjǐstěno, že
oba stavy jsou značně ovlivněny velikost́ı energie Zeemanovského štěpeńı, což vede k
úplné polarizovanosti těchto stav̊u, ve shodě s teoríı kompozitńıch fermion̊u pro zlomkový
kvantový Hall̊uv jev. Spinové štěpeńı plně obsazených Landauových hladin bylo stu-
dováno v širokém rozsahu teplot a magnetických poĺı metodou magneto-fotoluminiscence.
Vliv elektron-elektronové interakce a jej́ı teplotńı a polńı závislost byla úspěšně popsána
jednoduchým modelem. Bylo zjǐstěno, že k ześıleńı spinového štěpeńı vlivem elektron-
elektronové interakce nedocháźı jen v Landauových hladinách v okoĺı Fermiho meze, jak
bylo známo doposud, ale že k ześıleńı spinového štěpeńı docháźı ve všech plně obsazených
Landauových hladinách a mı́ra štěpeńı je ve všech hladinách stejná. Dále bylo určeno
několik mechanizmů ovlivňuj́ıćıch intenzitu fotoluminiscence 2DEP v magnetickém poli.
V prvńı řadě byl zjǐstěn dominantńı vliv nezářivých elektron-děrových rekombinačńıch
proces̊u. Mezi daľśımi parametry ovlivňuj́ıćımi intenzitu magneto-luminiscence jmenu-
jme degeneraci Landauových hladin, jejich obsazeńı, výběrová pravidla a v magnetickém

te
l-0

05
86

63
9,

 v
er

si
on

 1
 - 

18
 A

pr
 2

01
1



Conclusions 127

poli osciluj́ıćı efektivitu st́ıněni. Stěžejńı závěr studia intenzity luminiscence je identifikace
simultánńıho spinového relaxačńıho procesu elektron̊u a děr, který je zprostředkován BAP
(Bir-Aharonov-Pikus) relaxačńım mechanizmem doprovázeným emiśı longitudinálńıch aku-
stických fonon̊u. Projev dvou-dimenzionálńı hustoty stavu byl zjǐstěn při studiu 2DEP
metodou excitačńı luminiscence. Taktéž byla zjǐstěna d̊uležitost st́ıněńı a vnitřńıho elek-
trického pole v asymetricky dopované kvantové jámě, kde oboj́ı ovlivňuje vazebnou energii
excitonu vázaného u neobsazené Landauovy hladiny N = 1.

Přestože se předkládaná práce zabývá širokou řadou vlastnost́ı 2DEP, spousta jev̊u byla
úspěšně interpretována a interpretace dat byla často podpořena srovnáńım dat s teoríı a
numerickými modely, spousta problémů z̊ustala nedořešena a nové otázky vyvstaly. Mezi
těmi nezodpovězenými otázkami zmiňme např́ıklad multipletńı strukturu Landauových
hladin pozorovanou v obou kruhových polarizaćıch jak v datech fotoluminiscence tak
excitačńı luminiscence. Přestože jsme prezentovali jednoduchý fenomenologický model
objasňuj́ıćı ześıleńı spinového štěpeńı, doposud neexistuje jednoznačně přij́ımaný model
popisuj́ıćı osciluj́ıćı chováńı absolutńı hodnoty energie luminiscence (pokud takový model
v̊ubec existuje). Důvod, proč podélný odpor vykazuje v magnetickém poli široká plata a
energie luminiscence ostré schody taktéž neńı znám. Podstata interakce při kř́ıžeńı Lan-
dauových hladin ze základńıho elektronového podpásu s excitonovým stavem vázaným u
prvńıho neobsazeného elektronového podpásu taktéž neńı známa, stejně tak p̊uvod ṕık̊u v
kvazi-absorpci na Fermiho mezi. Interpretace absorpce pod Fermiho meźı bude muset být
patrně přezkoumána. Doposud byla tato absorpce identifikována jako excitonová v ne-
homogenńım elektronovém plynu. Avšak, dle našeho názoru, nehomogenita studovaného
elektronového plynu neńı natolik velká, jak by bylo vyžadováno pro vytvořeńı oblast́ı bez
2DEP, a tedy oblast́ı s př́ıtomnost́ı excitonu. Při studiu ześıleného spinového štěpeńı
jsme ukázali, že k tomuto mnoha-částicovému jevu docháźı ve všech plně obsazených Lan-
dauových hladinách až po Fermiho mez. Daľśı otázka vyvstává, zda by bylo možné toto
ześılené spinové štěpeńı pozorovat i v neobsazených hladinách nad Fermiho meźı. Při
analýze dat teplotně aktivovaného magneto-transportu jsme odhalili značné nedostatky v
dostupném a adekvátńım popisu dat. Proto bychom rádi v tomto směru apelovali na daľśı
teoretické snahy.

V této práci jsme prezentovali široké spektrum experimentálńıch výsledk̊u, část z nich
byla úspěšně interpretována a vedla k závěr̊um fundamentálńıho charakteru. I přesto,
spousta otázek z̊ustala otevřena a nové vyvstaly. Proto věř́ıme, že budoućı, jak exper-
imentálńı, tak teoretické snahy studia dvou-dimenzionálńıho elektronového plynu budou
jistě náplńı mnoha nadcházej́ıćıch praćı řady výzkumných týmů a doufáme, že tato práce
přispěje ke správnému porozuměńı vlastnost́ı 2DEP a obecně k hlubš́ımu porozuměńı
mnoha-částicových systémů.
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KurHigh mobility two-dimensional electron gas in CdTe quantum wells:
High magnetic field studies

Experimental studies of two-dimensional electron gases confined in CdTe and CdMnTe
quantum wells are presented. The data analysis is supported by numerical calcula-
tions of the band structure of confined states, using the local density and envelope func-
tion approximations. Four by four, k.p calculations have been performed to justify the
parabolic approximation of valence bands. Samples were characterized by Raman scatter-
ing spectroscopy and far infrared cyclotron resonance absorption measurements. Low-field
magneto-transport shows the dominant contribution of the semi-classical Drude conduc-
tivity and three orders of magnitude weaker contributions of weak localization, electron-
electron interaction and Shubnikov-de Haas oscillations. The contribution of electron-
electron interactions is explained within a semi-classical model of circling electrons. The
shape of Landau levels, broadening, transport and quantum lifetimes and dominant long-
range scattering mechanism have been determined. High-field magneto-transport displays
fractional quantum Hall states at Landau levels N = 0 and N = 1. The ground states 5/3
and 4/3 have been determined to be fully spin polarized, in agreement with the approach
of composite fermions for the fractional quantum Hall effect. The form of the photolumi-
nescence at zero magnetic field and its evolution with temperature have been described by
simple analytical model. Magnetic field and temperature dependence of the photolumines-
cence has been found to display the enhanced spin splitting of fully occupied Landau levels.
This many body enhanced spin gap has been successfully described by a numerical model.
The intensity of the photoluminescence demonstrated the importance of the non-radiative
recombination channel, degeneracy of Landau levels, their occupation, selection rules and
screening. The mechanism of the simultaneous electron and hole spin-flip was recognized
and attributed to the longitudinal acoustical phonon assisted Bir-Aharonov-Pikus spin
relaxation mechanism. Photoluminescence excitation spectra embody the characteristic
density of states of two-dimensional systems. The excitonic resonances, which are observed
at the edges of unoccupied electric subbands, illustrate the importance of screening and
internal electric fields in asymmetrically doped quantum wells.

Keywords: Two-dimensional electron gas, integer and fractional quantum Hall effect,
electron-electron interaction, optical spectroscopy and electronic transport at high mag-
netic fields and low temperatures.
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Gaz électronique bidimensionnel de haute mobilité
dans des puits quantiques de CdTe: Etudes en champ magnétique intense

Une étude expérimentale de gaz d’électrons bidimensionnel confiné dans des puits quan-
tiques de CdTe et de CdMnTe est présentée. L’analyse des données est soutenue par des
calculs numériques de la structure de bande des états confinés, utilisant l’approximation
de densité locale et de fonction enveloppe. Un calcul de type k.p a été utilisé pour justifier
l’approximation parabolique appliquée aux bandes de valence. Les échantillons ont été
caractérisés par spectroscopie Raman et par spectroscopie d’absorption de la résonance
cyclotron infrarouge. Le magnéto-transport à bas champ est dominé par la contribution
semi-classique de Drude et révèle trois contributions plus faibles, qui sont la localisation
faible, l’interaction électron-électron et les oscillations Shubnikov-de Haas. La contribution
des interactions électron-électron est expliquée dans un modèle semi-classique à trajectoire
circulaire. La forme des niveaux de Landau, leur élargissement, les temps de vie transport
et quantique et le mécanisme dominant de diffusion à longue portée ont été déterminés.
Le magnéto-transport sous champs magnétiques intenses révèle la présence d’états de Hall
quantiques fractionnaires dans les niveaux de Landau N = 0 et N = 1. Nous avons montré
que les états 5/3 et 4/3 étaient complètement polarisés en spin, en accord avec l’approche
des fermions composites pour l’effet Hall quantique fractionnaire. La forme de la photo-
luminescence à champ magnétique nul et son évolution avec la température sont décrites
par un modèle analytique simple. La dépendance en champ magnétique et en température
de la photoluminescence indique que le gap de spin est amplifié dans les niveaux de lan-
dau entièrement occupés. Ces effets multi-corps de l’amplification du gap de spin ont été
décrits avec succès par un modèle numérique simple. L’intensité de la photoluminescence
a mis en évidence l’importance des processus non-radiatifs pendant la recombinaison, la
dégénérescence des niveaux de Landau, leur taux d’occupation, les règles de sélection et
l’influence de l’écrantage. Le mécanisme de la relaxation parallèle des spins d’électron
et de trou a été identifié et attribué au mécanisme Bir-Aharonov-Pikus, assisté par les
phonons acoustiques. Les spectres obtenus par la spectroscopie d’excitation de la photo-
luminescence reflètent la densité détats caractéristique des systèmes bidimensionnels. Les
résonances excitoniques, qui sont observées aux bords des sous-bandes électriques inoc-
cupées, illustrent l’importance de l’écrantage et des champs électriques intrinsèques dans
les puits asymétriquement dopés.

Mots Clés: Gaz électronique bidimensionnel, effets Hall quantiques entier et fraction-
naire, interaction électron-électron, spectroscopie optique et transport électronique en
champ magnétique intense et a basse température.
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xxxxxDvourozměrný elektronový plyn v kvantových jamách CdTe:xxxxx
studie ve vysokých magnetických poĺıch

Tato práce se zabývá experimentálńım studiem dvou-dimenzionálńıho elektronového plynu
v kvantových jamách CdTe a CdMnTe. Interpretace dat je podpořena numerickými
výpočty pásové struktury kvantově omezených stav̊u použit́ım aproximace lokálńı elek-
tronové hustoty a aproximace obálkové funkce. Řešeńı vlastńıch stav̊u Kohn-Luttingerova
4×4 k.p hamiltoniánu vedlo k potvrzeńı správnosti parabolické aproximace valenčńıch
pás̊u. Základńı charakterizace vzork̊u proběhla metodami Ramanovy spektroskopie a in-
fračervené absorpce. Magneto-transport v ńızkém magnetickém poli ukazuje na domi-
nantńı vliv semi-klasické Drudeho vodivosti a taktéž byly pozorovány o tři řády slabš́ı
efekty slabé lokalizace, elektron-elektronové interakce a Shubnikov-de Haasových oscilaćı.
Př́ıspěvek elektron-elektronové interakce byl také vysvětlen semi-klasickým modelem cirku-
luj́ıćıch elektron̊u. Mimo jiné byl určen tvar a rozš́ı̌reńı Landauových hladin, transportńı
a kvantová doba života a dominantńı rozptylový mechanizmus vodivostńıch elektron̊u.
Magneto-transport ve vysokém magnetickém poli vykazuje formováńı zlomkových kvan-
tových Hallových stav̊u v Landauových hladinách N = 0 a N = 1. Bylo zjǐstěno, že
základńı zlomkové stavy 5/3 a 4/3 jsou plně polarizované, v souladu s teoríı kompozitńıch
fermion̊u pro zlomkový kvantový Hall̊uv jev. Teplotńı závislost tvaru spektrálńı čáry foto-
luminiscence v nulovém magnetickém poli byla popsána jednoduchým analytickým mod-
elem a byl prokázán nezanedbatelný vliv vyšš́ıch děrových podpás̊u. Studium ześıleného
spinového štěpeńı v širokém rozsahu teplot a magnetických poĺı ukázalo, že k tomuto
mnoha - částicovému jevu nedocháźı jen v okoĺı Fermiho meze, ale i v plně obsazených
Landauových hladinách a tento jev byl úspěšně popsán numerickým modelem. Intenzita
luminiscence v magnetickém poli ukázala dominantńı vliv nezářivé rekombinace elektron-
děrových pár̊u a dále vliv degenerace Landauových hladin, jejich obsazeńı, výběrových
pravidel a st́ıněńı. Taktéž byl identifikován proces současné spinové relaxace elektron̊u a
děr, zprostředkovaný BAP (Bir-Aharonov-Pikus) relaxačńım mechanizmem doprovázeným
emiśı podélných akustických fonon̊u. Spektra excitačńı luminiscence vykazuj́ı vliv hustoty
stav̊u dvou-dimenzionálńıho systému s parabolickou disperźı. Excitonové rezonance po-
zorované na hraně druhého elektronového podpásu ukazuj́ı na d̊uležitost st́ıněńı a vnitřńıho
elektrického pole v asymetricky dopovaných kvantových jamách.

Kĺıčová slova: Dvourozměrný elektronový plyn, celoč́ıselný a zlomkový kvantový Hall̊uv
jev, elekron-elektronová interakce, optická spektroskopie a elektronový transport ve vysokém
magnetickém poli a ńızkých teplotách.
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