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Autor: Lukáš Nádvorńık
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dodatečného potenciálu v kvantové jámě využit́ım nanolitografického opracováńı
povrchu nebo lokálńıch elektrod. Takto generovaná modulace transformuje běžnou
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cyklotronová rezonance je diskutována s ohledem na předpokládanou př́ıtomnost
Diracových kužel̊u.
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Abstract: In last two years, the proposal to create artificial graphene in stan-
dard semiconducting 2D systems via surface patterning has emerged. This way,
an alternative system would be created, allowing us to study phenomena relat-
ed to Dirac-type particles in a fully carbon free system. The main idea of the
concept assumes the creation of an additional potential in a quantum well by
nanopatterning of the specimen surface or by using local electrodes. The addi-
tionally introduced modulation can transform the conventional (i.e. parabolic)
energy dispersion into separated minibands with possible appearance of Dirac
cones. In the theoretical part, we introduce four basic criteria that estimate
appropriate technological parameters and the required experimental conditions.
Experimentally, we study the cyclotron resonance of prepared heterostructures
AlGaAs/GaAs with induced hexagonal potential via the etching lateral holes.
The observed multi-mode resonance response is discussed with respect to the
expected appearance of Dirac cones.
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Introduction

It happens sometimes that a certain usualness inspires the world. A simple daili-
ness with a rough surface and pallid gray coloured. Such an event is a kind of
true exceptionality that can be intensively felt if thinking about it. It might be-
come more powerful than very sophisticated technologies. The specialty of such
a case may rise from two characteristics: simplicity and implicitness (secret).
The simplicity means that It is not too far from human, not armoured behind
nanotechnologies, behind unimaginable dimensions or extreme rarity (as are pro-
cessors, nanolitografically prepared devices or Qbits). In contrary, Its simplicity
consists in easy availability and everyday performance – for example, when you
write with a crayon or paste a tape on a piece of graphite. Its implicitness rests
in disregard or neglect rather than in fundamental invisibility. The experience of
suddenly uncovered extraordinariness, present inside, succeeds to previous (or-
dinary) experience in the same (aspect). In this case, it is nothing mystical (as
sometimes the advanced technologies are), it becomes only a great novelty in al-
ready well known and accepted. In my opinion, the availability and wonders in
known (aspect), lead to the easily accessible deepness. And for me, such kind of
easily accessible deepness is a little dangerous... and very, very tempting indeed.

It is, most likely, the background of my high motivation in the topic of ar-
tificial graphene. Natural graphene, monoatomic carbon layer of graphite, has
really inspired the world community of scientists, it has affected many fields of
fundamental physics, as well as the technology and the industry [1, 2]. Nowadays,
graphene is a base of some types of chemical detectors, analogical processors, it
serves as conducting layer in LCD monitors and in the electronic paper con-
cept [3]. It simply uncovered (pseudo-)relativistic effects in condensed matters.
Naturally, our feeling of exceptionality may be catalyzed if one realizes that in
graphene, massless particles are created thanks to two main features: its two-
dimensionality and the hexagonal symmetry of its lattice.

This fact was not left unnoticed. The wish for creation artificially generated
massless fermions, just by mimicking the nature, was too strong and the topic too
attractive. And thus, after several papers concerned with theoretical electronic
bandstructures of system with a rectangular and hexagonal potential [4, 5, 6,
7, 8], the idea of artificial graphene has emerged [9, 10, 11]. Following the inner
thesis, the concept of artificial graphene consists in a simulation of both graphene
characteristics – our two dimensional electron gases formed in quantum well inside
heterojunctions (for example AlGaAs/GaAs) could mimic the two dimensional
crystal of graphene; and the symmetry of honeycomb lattice can be imitated by
an additional potential. There is not only one way how to create the potential,
however in every case, it requires nanotechnological processing.

The reason behind the concept is not only focused to fabricate the same
as the nature. Artificial graphene, if successively prepared, can serve as very
variable system to proof-of-principle experiments since the manipulation with
natural graphene is not very easy. Hence, it can simulate the effect of superlattices
on graphene, its strain or controlled inhomogeneities, designed defects of its lattice
and so on. The potential for applications consists also in advantages of the
system itself. Unlike the natural graphene, the artificial one allows to change
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all parameters as we want – for example the “lattice constant” or the value of
the attractive potential of each artificial “atom”. These changes could provide
considerably modified characteristics of the material – which is not possible (at
least, not in so easy way) in natural graphene. In summary, there is plenty of
reasons for the study and fabrication of such a material.

As already anticipated, this master thesis focuses on artificial graphene con-
cept, as one of graphene-based materials. The thesis is divided in four chapters,
conclusion and two appendices. The first chapter introduces the reader into
the world of graphene physics, descibes the particular features of graphene and
shows experiments that directly indicate Dirac-like properties of the system. This
knowledge is very important for the probing of our fabricated devices. The sec-
ond chapter follows the author’s theoretical calculations concerning the miniband
structure of artificial graphene, the examination of dimensions of Dirac cones and
it formulates four crucial criteria that one has to meet to observe graphene-like
physics in a conventional material. The third chapter describes in details tech-
nological processing that the author made or assisted in, and beside the known
method, it reveals another unique approach to create the potential. The last
chapter concerns the experiments made on artificial graphene samples, nominal-
ly, far infrared spectroscopy and photoluminiscence in magnetic field and trans-
port Quantum Hall effect experiments. Appendices contribute by an evolution
of eigen function over first Brillouin zone and a special method how to extract
the concentration of carriers from shapes of relative transmission spectra. Gen-
erally, the thesis covers more then 29 months of author’s work in three European
Institutions (Institute of Physics of Academy of Science of Czech Republic, Labo-
ratoire Nationale des Champs Magnetiques Intenses, CNRS, in Grenoble, France,
and Laboratorio NEST, Instituto Nanoscienze CNR in Pisa, Italy) and results
presented here were sent for a publication (preprint is attached in appendix C).
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1. Natural graphene – final aim

Ahead of opening the theoretical part of this Master thesis, a brief introduction
into current physics of graphene is given. We describe the fundamental charac-
teristics of graphene at a basic level and introduce necessary terminology, such as
Dirac cone, massless Dirac fermion or Fermi velocity. We also mention some ear-
ly experiments performed on graphene, namely magneto-transport and infrared
magneto-spectroscopy, in which graphene provides its characteristic fingerprint.
For further details about theory, preparation and well-known experiments, we
refer to author’s Bachelor thesis [12].

Unique properties of natural graphene originate from its two-dimensional crys-
tal lattice with hexagonally arranged carbon atoms [1, 2]. From the viewpoint of
crystallography, graphene’s structure is not a Bravais lattice, but can be viewed as
a triangular lattice filled by a base of two carbon atoms. The corresponding Bril-
louin zone is a hexagon, see figure 1.1, with several point of a higher symmetry:
Γ (center of hexagon), M (middle of sides) and K and K ′ (hexagon edges).
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Figure 1.1: First Brillouin zone of natural graphene, with ~bi base vectors
of its reciprocal space. Relevant points marked.

One graphene layer, as a theoretical construction, was first considered by P.
Wallace [13] in the 1947 and served as a reasonable starting point for calculations
of band structure of bulk graphite. Graphene itself, as a purely 2D materi-
al, was assumed to be thermodynamically unstable those times. Following his
tight-binding approach, we can limit ourselves to the hopping between nearest
neighbours characterized by coupling constant γ0. The band structure then takes
as simple form:

E ′(~k) = ±γ0 ·
(

1 + 4 cos2
√
3kya

2
+ 4 cos

√
3kya

2
cos

3kxa

2

)1/2

, (1.1)

which has been visualized in figure 1.2. a denoted the distance between two
nearest carbon atoms.

Expanding equation 1.1 around the K points by ~k, we obtain the following
electronic dispersion:

E ′( ~K + ~k) ≈ ±3γ0a
2
| ~K − ~k|+O((~k/ ~K)2) (1.2)
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which is linear in ~k, forming so-called Dirac cone. Recalling the standard expres-
sion for energy of relativistic particles, E2 = c2p2+m2c4, we immediately see that
electrons in the vicinity of K points behave as massless particles, usually referred
to as Dirac fermions [14]. Their velocity vF , i.e. an effective velocity of light, is
roughly 300× lower than real speed of light in vacuum:

vF =
3γ0a

2h̄
≈ 106m

s
. (1.3)

To some extent, the Dirac fermion resembles neutrino, nevertheless, it has a well
defined electric charge in addition.

Contrary to other two-dimensional systems, which are characterized by a
parabolic dispersion law and consequently also by a constant density of states,
ρ = m/πh̄2 (spin degeneracy included), graphene has a density of states that is
linear in energy and vanishes at so-called Dirac point:

ρ(E) =
2Ac|E − E0|
2πh̄2v2F

=
3
√
3a2

2πh̄2v2F
|ε|. (1.4)

From here the name “zero-gap semiconductor” originates – there is, actually, no
real band gap but neither any continuous junction of the conduction and valence
band. In undoped graphene, the Fermi level lies exactly at the Dirac point. The
gating allows unusual and straightforward tuning between electron- and hole-like
conductivity.

Figure 1.2: Visualization of the conduction and valence band in graphene.
Dirac cones appear at K and K ′ point (Dirac point) in the primitive cell
of its reciprocal space. Taken from [2].

If magnetic field is applied, graphene provides us with an unusual spectrum of
Landau levels. In contrast to systems of massive particles, where Landau levels
are equidistant and linear in magnetic field B, En = (n + 1/2)h̄eB/m

∗, Landau
levels in graphene read:

E(n) = En = sgn(n)h̄ωc

√

|n| = sgn(n)vF
√

2h̄eB|n| = sgn(n)E1

√

|n|, (1.5)

i.e., they are not equidistant and scale as
√
B.

This relatively complex Landau level spectrum represents a nice playground
for magneto-optical spectroscopy [15, 2]. Dipole-active transition are those with
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|n| → |n| ± 1. Therefore, for instance, the transition L−2 → L1 or L−3 → L4

are allowed in graphene (see figure 1.3). An example of such transitions observed
experimentally by far infrared magneto-spectroscopy is shown in figure 1.4.

Figure 1.3: Evolution of Landau levels in graphene along magnetic field
for several level index (left part). Allowed optical transitions are marked
in the right part. Taken from [2]

Graphene, as well as conventional semiconductor heterostructures contain-
ing 2DEG layer, allows for observation of quantum Hall effect – fundamental
magneto-transport phenomena. The quantum Hall effect is manifested by a
step-like dependence of Hall resistance ρxy, contrary to classical Hall effect that
implies a linear dependence of the Hall voltage on the applied magnetic field,
UH = BI/ne, where n is the carrier density and I stands for the current. Im-
portantly, the steps in quantized Hall resistance have universal form, i.e. depend
only n fundamental constants (e and h̄):

ρxy =
1

i

h

e2
or σxy = i

e2

h
. (1.6)

i here indicates the number of (ballistic) edge channels in the quantum Hall
regime. Since each occupied Landau level contributes one ballistic channel, the
integer index i can be replaced by the integer filling factor ν = nh

eB
(in case of the

integer quantum Hall effect).
In graphene, the quantum Hall effect was also observed [14, 18]. but the lowest

Landau level (n = 0) in this system does not depend on energy and importantly,
it is shared by both electrons and holes. Therefore, the index i is now changed to
i = 4(j+1/2) where j is new counting index. The prefactor 4 originates from the
spin degeneracy and valley degeneracy (two Dirac points K and K ′). The Hall
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Figure 1.4: Performance of Far infrared measurements in magnetic field
in graphene, taken from author’s bachelor thesis [12]. Peak position,
marked by points, lie precisely on

√
B-dependence curve.

plateaux have the same spacing but they are shifted by 2e2

h
from the origin. The

half-integer quantum Hall effect, as it is usually referred to, is shown in figure
1.5 along with an analogous measurement on bilayer graphene, which exhibits
another type of quantum Hall quantization.

Figure 1.5: (a) Chiral Quantum Hall in graphene (central part). In in-
set graph displays conventional behaviour for graphene bilayer. (b) A
scheme of Landau level structure in graphene monolayer, (c) in graphene
bilayer and (d) in conventional material. Taken from [14, 18].

Both presented experiment are, in fact, direct proofs of Dirac (relativistic-
like) nature of particles in graphene. Thereby, they will be the goal of our work
– and they will strictly decide about our success in the creation of massless Dirac
fermions in otherwise conventional material.
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2. Theoretical estimates

Unlike natural graphene where all conceivable quantities are set at “correct” val-
ues by the nature, preparation of the artificial graphene requires an extra thought
on the parameter adjusting and will be accompanied by certain nontrivial tech-
nological troubles. Intuitively, the main examples are the carrier concentration in
samples or the effective amplitude of applied hexagonal perturbation. In terms
of this perspective, we firstly proposed a simple numerical model which would
demonstrate the technological accessibility and help us with initial steps to the
sample fabrication. In the following section, a cosine model is presented and it is
compared with the known properties of natural graphene, followed by the main
aim of the theoretical part – formulation of four essential criteria which one has
to meet to observe graphene-like behaviour in such a system.

2.1 Generation of miniband spectra

The general way how to calculate energy spectrum in a crystal, i.e. a dependence
of energy of one particle state on quasi-wavevector ~k, consists in finding a set
of the lowest eigenvalues of crystal Hamiltonian in a convenient approximation.
In our case, the Hamiltonian comprises the general kinetic and specific potential
component

Ĥ =
p̂2

2m∗ + V̂ (~r), (2.1)

where m∗ is the effective mass of electron in desired material (for GaAs we con-
sider m∗ = 0.067m0, m0 is the free electron mass). To construct the specific
potential, one has to consider the natural graphene crystal symmetry. In figure
2.1 a typical graphene lattice and its reciprocal space are shown. The hexagonal
“honeycomb-like” structure is formed by two shifted sub-lattices A and B, both
of them generated by diamond-shape elementary cells defined by base vectors

~a1 =

(√
3

2
a,
a

2

)

, ~a2 =

(√
3

2
a,−a

2

)

, (2.2)

where a = aAA = aBB =
√
3aAB is the lattice constant (that is the distance of

nearest atoms of one sublattice). Such a crystal reflects in its reciprocal space
the same symmetry. The Wigner-Seitz cell is now defined by any two of these
three base vectors:

~g1 =
2π

a

(

1√
3
, 1

)

, ~g2 =
2π

a

(

1√
3
,−1

)

, ~g3 = ~g1 + ~g2 =
2π

a

(

2√
3
, 0

)

. (2.3)

With regard to the following, four specific points of high symmetry should be
mentioned:

Γ = (0, 0) , K =
2π

a

(

1√
3
,
1

3

)

, K ′ =
2π

a

(

1√
3
,−1
3

)

,M =
2π

a

(

1√
3
, 0

)

. (2.4)

Two equivalent K- and K ′-points are playing the crucial role in all the artificial
graphene concept since the pseudo-relativistic behaviour rests in the these regions
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Figure 2.1: Scheme of graphene crystal lattice (a) and its first Brillouin
zone in reciprocal space (b). The direct lattice is composed of two sub-
lattices of atoms A and B, the elementary cell (delimited by vectors ~a1
and ~a2 and by dashed lines) contains one atom of each types. Analogous-
ly, the Wigner-Seitz cell contains in reciprocal space two dual “images”
of these atoms K and K ′. A typical path used in miniband diagrams is
marked by gray dashed triangle.

of the Brillouin zone where the energy dispersion is linear [1, 2]. This will be more
deeply studied in the next section. Now, it is intuitive to define the effective
potential in real space (with ~r position vector) as a sum of cosine functions, using
base vectors of the reciprocal space as anticipated by equations (2.3), thus

V (~r = {x, y}) = V0(cos~g1~r + cos~g2~r + cos~g3~r). (2.5)

Equation (2.5) is the easiest potential form approximatively describing the crystal
of natural graphene, a numerical visualization is shown in Fig. 2.2.

Figure 2.2: Visualization of studied hexagonal potential as of equation
(2.5). Dark regions correspond to “atom positions” in real graphene,
the elementary cell is indicated.

The form of chosen potential leads us to build the basis as a finite, but large
enough, set of plane waves. Hence, for each point in Brillouin zone (each ~k) the
set is introduced as

Bk =
{

|n1n2〉 = ei(
~k+ ~Kn1n2

)~r, ~Kn1n2
= n1 ~g1 + n2~g2

}

(2.6)
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and the effective potential V (~r) is easy to rewrite

V (~r) =
∑

~Kn1n2

Ṽ ei
~Kn1n2

~r =
V0
2

{

ei~gj~r + e−i~gj~r
}

, j = 1, 2, 3. (2.7)

Elements of the Hamiltonian in basis (2.6) are expressed as HIJ = 〈I| V̂ (~r) |J〉,
where I = {n′1n′2} and J = {n1n2} are multi-indices running through each ~Kn1n2

.
For the purpose of numerical solving, we transcribe the multi-index to one single
index as follows: we start at Γ-point and continue to other centers of hexagons
around the first Brillouin zone in clockwise direction (see the Fig. 2.3). This way,

we browse all ~Kn1n2
up to desired distance from Γ. The counting index is then

the the position of each point in this sequence. After the evaluation of HIJ using
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Figure 2.3: Scheme for reconstruction of the plain wave basis Bk when
~Kn1n2 is passing by all Γ-points (centers of hexagons), starting at the
nearest-one.

orthogonality of bra-kets 〈I| and |J〉, the final form of the matrix is

HIJ = 〈n′1n′2|Ĥ|n1n2〉 =
h̄2(~k + ~Kn1n2

)2

2m∗ δn′1n′2,n1n2
+

+
V0
2

(

δn′1n′2,(n1±1)n2
+ δn′1n′2,n1(n2±1) + δn′1n′2,(n1±1)(n2±1)

)

, (2.8)

where δn′1n′2,n1n2
= δn′1,n1

δn′2,n2
are Kronecker δ.

Regarding the matrix form described by preceding formula (2.8), it is obvious
that the ratio of diagonal to off-diagonal components is determined by three pa-
rameters: lattice constant a, amplitude of applied potential V0 and effective mass
m∗ (which is constant in our case since we are fixed to GaAs). Since the shape of
miniband spectra, as a dependence of allowed energy states on quasi momentum
~k, will be obtained by calculating eigenvalues of the Hamiltonian, it is convenient
to understand the role of the mentioned ratio. In the extreme case when the
matrix is diagonal (thus the potential is equal to zero), the kinetic component
prevails and the energy dispersion is perfectly parabolic, as with an ideal free
particle problem or an ideal two dimensional electron gas (2DEG). Otherwise, if
the kinetic component is zero or negligible against V0, the off-diagonal potential
elements dominate and the final dispersion is almost independent of ~k and the
miniband spectrum is thereby practically flat. Appealing to intuition, the only
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Figure 2.4: Minibands generated for several values of the parameter ζ.
(a): ζ = 0, dispersion of a free 2DEG. (b): ζ = 0.4, first Dirac cones de-
velops (indicated by arrow), the second one appears but remains covered
by other bands. (c): ζ = 1, both Dirac cones fully develop. (d): ζ = 4.0,
tight-binding type narrow minibands form and Dirac cones gradually
flatten, ultimately becoming again unobservable. For a = 200nm, a,b,c,
and d correspond to V0 = 0, 0.4, 1.1 and 4.5meV in GaAs. The figure
is taken from [19].

quantity governing the spectrum shape is the ratio of the kinetic (proportional
∼ a−2) to the potential (∼ V0) energy, whereas the energy scaling of all mini-
band spectra is closely associated with absolute values of matrix elements. In
this sense, we define the following dimension-less parameter

ζ =
m∗

h̄2
V0a

2. (2.9)

It is useful to note that up to a factor of unity, it is ζ ∼ V0/E0, where E0 is the
kinetic energy of a free electron in the K-point of the Brillouin zone.

Well converged miniband spectra were obtained by a numerical diagonaliza-
tion of Ĥ in basis restricted to 36 plane waves as defined by (2.6). Changing
ζ-parameter we encounter all possible situations, as shown in figure 2.4. Starting
from the extremal nearly-free model (0 < ζ < 0.05), when the potential is so low
that the dispersion is visibly indistinguishable from the ideal 2DEG, we get to
the transitional band-structures (0.05 < ζ < 10), where the degeneracy is lifted
and a significant splitting of minibands, especially at Brillouin zone boundaries
is observed. Finally, we reach the tight-binding-like model (ζ > 10) with almost
completely flat minibands as typical for isolated atoms. The most important in-
terval seems 0.5 < ζ < 4.0 where two visible crossing of linear part of dispersion –
suggesting the occurrence of Dirac cones, uncovered by other minibands were cre-
ated within lowest six minibands in K-point (and in K ′-point analogously). This
interesting region is the objective of the next section, but before the examination
of these signs, the model itself should be verified.

Two simple methods are directly suggested to confirm the property of the
model that has to offer results similar as in natural graphene. As it has been
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said above, in the unperturbed or very slightly perturbed system, the dispersion
is almost parabolic. The term (~k + ~Kn1n2

) is then easy to evaluate in the special
points of Brillouin zone and to compare them with the spectrum at ζ = 0. To
complete the idea, regarding to this term, the minibands in the Γ point should
be six-times degenerated in lowest seven minibands because the kinetic term
(~k + ~Kn1n2

)2, respectively | ~Kn1n2
|, take same values for six different pairs n1n2

(n1 = ±1 or 0, n2 = ±1 or 0, except the combination n1n2 = 0, 0). The minibands
are twice degenerated for M -point ( ~K00 = 0 and ~K−1−1 = −~g3 with ~k = ~M) and

three times for K-point ( ~K00 = 0, ~K0−1 = −~g3 and ~K−10 = −~g1 with ~k = ~K),
referring to the figure 2.3 (we cover three lowest minibands only). With the

same logic, the lowest energy for ~k laying on the line |MK| has to be twice
degenerated, as well as above the line |KΓ|. Continuing this train of thoughts,
one can predict degeneracy and simple shape of all the dispersion spectrum and
compare it with the numerically generated one. Such a verification has been made
and no discrepancy was observed.

Not only the ideal 2DEG but also the perturbed modeling should be verified.
For simplicity if we take into account only two lowest minibands, their splitting
∆E in M -point is determined by perturbation theory as

∣

∣

∣

∣

∆E V0/2
V0/2 ∆E

∣

∣

∣

∣

= 0, (2.10)

where ∆E = E0 − E is the energy shift from the unperturbed eigen-energy E,
which gives ∆E = ±V0/2, thus the size of created gap is V0. As comparing with
our numerical results two limitations of the estimate should be emphasized: first,
V0 has to be a weak perturbation against kinetic component E0, so it is valid for
low ζ only, and second, the interband coupling with other minibands is required
to be minimal which leads to low ζ as well. Such a comparison of theoretical
and numerical splitting is presented in figure 2.5. Regarding the dependences
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Figure 2.5: Dependence of the miniband splitting in M -point on the
potential (leftside) and on the “superlattice constant” a (rightside), with
a marked ideal curve (orange dashed). The numerical curve deviates
from the ideal-one as ζ is increasing. Since ζ depends quadratically on
a, the deviation is faster in this case. We emphasize that the y-axis scale
is very tiny in the right figure.

of splitting correlation with V0 and a in M point, a good approach to assumed
behaviour is obvious when we go to lower ζ. To further investigate the model
properties and checking them against natural graphene, we focus now on the main
features in spectra - on probable Dirac cones.
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2.2 Eigenfunctions as a proof

Along with obtaining miniband spectra in figure 2.4 that suggest the presence
of two cones, two additional checks should be realized in numerical analysis –
firstly to verify the relativistic nature of energy dispersion in this part of Brillouin
zone (which are the linear dependence on ~k and isotropy close to K-point), and
secondly to characterize the effective dimensions of the cones where the deviation
is still acceptable. In this section, we show an exploration of eigenfunctions
corresponding to the region of interest (K andK ′ points), and in the next section,
the effective size of cones is investigated.

An example of miniband visualization over the interesting part of Brillouin
zone directly suggests the cone-like character of studied features (see 2.6-left),
contrary to the miniband crossing shown in figure 2.4(b) in the top right part
which is forming not a cone but a “ditch” only (compare with figure 2.6-right).
Moreover at first view, these cones-like structures have linear lateral surface and
they are isotropic in ~k-space (this aspect is quantitatively examined in section
2.3). Now, we will compare numerical eigen-functions generated close toK-points
with the analytical ones. Following Ch.-H. Park and S. G. Louie [4], we sketch
the derivation of analytical eigen-functions and use them as a starting point in
our Dirac cone examination.
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Figure 2.6: Surface plots of minibands. Left: The fourth miniband cre-
ating two obvious cone structure in K-points (yellow regions on the flat
projection) and parabolic minimum in Γ-point (black region), configu-
ration of parameters is identical as in figure 2.4(c), i.e. ζ = 1, a = 200
nm. Right: the sixth miniband forming a ditch only, even if it looks like
a possible cone crossing in figure 2.4(b) (ζ = 0.4, a = 200 nm).

Let consider the basis of Hilbert space composed of three plane waves (the
model takes into account only three dispersion bands) in form

B =
(

ei(
~K1+~k)·~r, ei(

~K2+~k)·~r, ei(
~K3+~k)·~r

)

, (2.11)

where ~Kn is a wave vector pointing to three K-points forming the angle 120
◦.

Taking the Hamiltonian Ĥ = Ĥ0 + Ĥ1, uncommonly we start with Ĥ0 as an
unperturbed part formed by a matrix containing off-diagonal elements V0 only,
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and then Ĥ1 is the kinetic component viewed as a perturbation, represented by
a diagonal matrix with a ~k-vector originating in K-point. Eigen-values of Ĥ0

are −V0, −V0 and 2V0 which denote a twice degenerated miniband (Dirac cone)
and one split off miniband. Since we are focused on Dirac cone present in two
degenerated bands only, we find the following condition for V0 and ~k

h̄v0|~k| < V0 <
3h̄2K2

2m∗ , (2.12)

where the first inequality guarantees that we stay in linear part of dispersion not
far from the K-point (hence Ĥ1 is still a weak perturbation) and the second is
a request on very small coupling with the third miniband. In this situation, we
neglect influence of the third split off miniband and reduce the matrix Ĥ1 to 2×2
in Hilbert space spanned by two eigen-vectors (belonging to the eigenvalue V0) of
Ĥ0 as follows

Ĥ1 = h̄
v0
2

(

−kx −ky
−ky kx

)

, (2.13)

with kx = |~k| cos(θ~k), where θ~k is the angle between ~k and the x axis. This can
be rewritten as

Ĥeff = h̄
v0
2
(kxσx + kyσy), (2.14)

which is just the effective Hamiltonian of graphene for ~k close to K-point ex-
pressed using two Pauli matrices σx and σy. The group velocity of states described
by (2.14), called Fermi velocity vF , is given by

vF =
v0
2
=
h̄| ~K|
2m∗ =

2πh̄

3m∗a
(2.15)

and is a half of the group velocity of free 2DEG v0. It is appropriate to note that
vF is dependent only on 1/a and 1/m

∗ and not on V0. We focus more deeply on
vF in the next section.

Eigen-values of Ĥeff denoted in equation (2.14) are

E(s,~k) = sh̄
v0
2
|~k| (2.16)

and its eigen-functions

∣

∣s, θ~k
〉

=
1√
2
|↑〉+ 1√

2
seiθ~k |↓〉 , (2.17)

where s = ±1 is a band index and states |↑〉 and |↓〉 are pseudospin eigen-states
of σz. They correspond to situations when all electrons are strongly localized
near atoms of sub-lattice A, or B, respectively,

|↑〉 = 1√
3
ei3π/4

(

1, ei2π/3, ei3π/4
)T
, |↓〉 = 1√

3
ei3π/4

(

1, e−i2π/3, e−i3π/4
)T
, (2.18)

expressed in the original basis (2.11). To visualize these eigen-states, we shown
in figure 2.2(a-d) their symmetrical and antisymmetrical combinations, i.e., the

state (2.17) with Θ~k = 90◦ and −90◦. Controlled by the ~k-vector orientation
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(it means to the θ~k), electrons are either localized in the middle of two neigh-
bouring “atoms” of sublattice A and B, or in a channel over “atom” arm-chair.
Immediately, we can compare the analytical solution, figure 2.2(c) with a nu-
merical output of the model, which is plotted in figure 2.8(a), and we state that
in sufficiently low distance from K-point and with V0 not too large (the crite-
ria started in the equation 2.12) very similar features are numerically generated

(the figure is located in appendix B). By letting the ~k-vector go around the K-

point (with |~k − ~K| ¿ |ΓK|) and so passing through six main axes of crystal
symmetry, all six symmetrical and antisymmetrical functions were reconstructed.
Although the ideal conditions for this observation are quite strict – the radius
and V0 have to be small enough, the correlation of highly idealized and radically
two-miniband-reduced analytical solutions with the numerical-one, taking into
account the coupling with 36 other minibands and the spacial effect of non-zero
~k, it is a very good demonstration of the occurrence of Dirac cones in this region,
as it is in real graphene.

Figure 2.7: Modulus square of eigen-states in real space (a): |↑〉, (b):
|↓〉, (c): and their symmetrical

∣

∣+, θ~k = 90◦
〉

and (d): antisymmetrical
∣

∣+, θ~k = −90◦
〉

combination as explained in the main text. It is neces-
sary to emphasize that for other θ~k = 210◦ and 330◦, the eigen-states
looks identically as in (c), only rotated by 60◦ or 120◦ – in other words,
the it is occupying one of the remaining two pairs of hexagon sides. We
note that the symmetrical combination is normalized to 1.

The dependence on rising V0, i.e. ζ, or larger ~k will now be analyzed. Looking
at figure 2.8(a-d), where such a dependence is shown, one finds the correlation
with one expects from the spectra: as the V0 is increasing, electrons are more and
more localized in “atom” positions and the system is merging to tight-binding
model of completely isolated “atoms”. Otherwise if ~k is leaving the linear region of
the effective cone and moves towards Γ-point, the extrema of eigen-functions are
quickly decaying into a practically flat density of probability of localization and
become almost a plane wave corresponding to the region of parabolic dispersion.

To complete the view, we should observe another low-laying minibands in
K-point. Although corresponding analytical solution is not available, a simple
prediction can be taken. Regarding to the third split miniband, in the range
of very low ζ, its eigen-state should represent localization of electrons in the last
high-symmetry point of the Brillouin zone (when pseudospin-states are occupying
atoms of sublattice A and B) – the central region, i. e. the Γ-point. The

eigen-function is expected to be symmetrical in ~k-space because of the symmetry
of third minibands close to K-point, see figure 2.9(a). This region is also a
complement to the area of all possible eigen-state combinations of first and second
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Figure 2.8: Square of eigen-vectors generated by the model for a small
radius 1/1000 of the distance |ΓK| and ζ = 0.01, 0.4, 1.0 and 4.0,
referring to (a-d) respectively. As ζ increases, the model is transforming
from the nearly-free to tight-binding-one (compare with 2.4). We note
that the colorbar scale is changing.

miniband. In this range of ζ, the description by three minibands, as presented
above, is valid and the sum of all eigen-states should uniformly cover all the
reciprocal space (which corresponds well with the nearly-free point of view). If
we increase ζ and shift the model to the tight-binding-like situation, the function
is now completing the others to a different form, see figure 2.9(b), when the central
part is depopulated contrary to “atoms” and their joint-segments. Concerning the
second Dirac cone, a typical shape of second harmonic is expected and due to its
nature – the symmetrical combination of two pseudo-spin states, the final square
of the wavefunction has three maxima in place of the only one corresponding to
the first Dirac cone. Visualizations of mentioned eigen-states are shown in figure
2.9(c,d).

Figure 2.9: Square of eigen-functions in radius 1/100 of the distance |ΓK|
corresponding to the third (a,b) and fourth miniband (c,d). (a): the
function taken with ζ = 0.4 is a complement to the other possible con-
figuration of eigen-states in first and second band (compare with 2.8(b)),
thus it is now covering all the reciprocal space. (b): the same situation
for ζ = 4, where the sum of eigen-functions of all three bands creates a
different tight-binding structure (see figure 2.8(c)). (c) and (d): Sym-
metrical and antisymmetrical combinations of pseudospin eigen-states
corresponding to the second cone (compare with the first cone 2.2(c,d)).
The colorbar scale is changing.
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2.3 Effective dimension of Dirac cones

The ability to define the effective range of linearity in the dispersion spectrum
could seem to be crucial since, in principle, adjust the Fermi level to cross the
Dirac cone, i.e., the dispersion in its approximatively linear part. At the begin-
ning, let’s notice that the simplicity of model, which is not reflecting the real pro-
file of the potential and preparation of samples in general, and the experimental
difficulty to adjust the Fermi level with a great precision make a precise exam-
ination of Dirac cones complicated. Nevertheless such an estimate, even made
using a simple model, should be useful to the understanding the dependence of
the deviation from the linear-part and of size of cones on two main parameters –
the ζ and the radius from K-point. Firstly, an analysis based on overlaps between
two eigen-functions will be presented, followed by a group-velocity-based point of
view, and finally the isotropy of cones will be shortly discussed.

The standard definition of overlap between two wave functions introduced as
a scalar product in Hilbert space is not a suitable form in our case since it gives
zero for two plane waves

∫

ψ∗
1ψ2d

2r =

∫

e−i(~k′+ ~Kn′,m′ )~rei(
~k+ ~Kn,m)~rd2r = 0 (2.19)

if ~k′ 6= ~k or ~Kn′,m′ 6= ~Kn,m (the integration is taken over all space). Hence we
use a new quantity to investigate the wave-functions. This modified overlap is
defined in the simplest way as

〈

ei(
~k′+ ~Kn′,m′ )~r|ei(~k+ ~Kn,m)~r

〉

= δn′nδm′m. (2.20)

In the new definition (2.20) we reduce the integration area and integrate only over
one elementary cell. This way, the overlap (2.19) starts to differ from zero since
the in the new range we do not integrate over the complete period of harmonic
function in the integrand. Next, we neglect the dependence of the overlap on
~k′ − ~k since we focus mainly on the limit |~k′ − ~k|a¿ 1.

Now regarding the form of eigen-states around K-point in the equation (2.17),
we deduce that the term

〈

+1, θ~k1|+ 1, θ~k2
〉

is equal to 1 for θ~k1 − θ~k2 = ∆θ~k = 0
and equals 0 for ∆θ~k = π. The non-extremal overlap is intuitively governed
by a harmonic cosine function due to the complex exponential in the equation
(2.17). Since wave-functions are, in general, calculated up to (undetermined)
overall complex prefactor, the meaningful quantity is the absolute value. Explicit
calculation using (2.17) yields | cos(∆θ~k/2)|.

Numerical results, obtained by the modified scalar product of eigen vectors in
the basis of plane waves, are shown in figure 2.11 (against ζ) and 2.10 (against

radius r, distance of ~k from the K-point). It can be seen that as the Dirac cone
is more imperfect (when ζ is decreasing or the radius r is increasing), overlaps
are more deviating from | cos(∆θ~k/2)|. It seems to be difficult to define a sharp
boundary of the cone because the way, how much this type of deviation influences
the electron behaviour, cannot be easily predicted, however, we can find the radius
r when the linear dispersion starts to deform fast to other type of dispersion. With
respect to our further experimental results, we can set the limits for ζ = 0.4 and
1.0 within the first and second cone as r1st ≈ 1/3 and r2nd ≈ 1/5 of distance
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Figure 2.10: Overlaps of wave-functions (a) taken from the first cone at
ζ = 0.4 and (b) from the second-one at ζ = 1.0 as depending on the
radius from K-point. The indicated ratio corresponds to the part of
|ΓK| distance.

|KΓ|, respectively. Regarding the dependence on ζ, see figure 2.11, the first cone
is fully developed at ζ ≈ 0.4 and the second-one at ζ ≈ 2.0 whereas overlaps do
not change to much when ζ is over this value.

The evolution of the Fermi velocity on r – the main characteristic of the
linear dispersion, is a good candidate for a limiting factor of Dirac cone size. In

general, the linear part of dispersion has the group velocity vF =
1
h̄
dε(~k)
dk

equal to
a constant. Hence, we can indicate the maximal radius of the cone according to
a point where vF starts to considerably differ from the constant.
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Figure 2.11: Overlaps of wave-functions generated around (a) first and
(b) second Dirac cone at r = 1/5 of |ΓK|. It seems plausible to say
that cones are fully developed at ζ = 0.4 and 2.0, respectively, since the
perfection of the behaviour decelerates quickly.

As one can see in figure 2.12, the final Fermi velocities vF = 2.4 × 104 and
4.8× 104 m/s in K-point is exact for all ζ, as expected by (2.15) for the first and
second cone with a = 150 nm, nevertheless the profile of vF is not flat around
this point. In low ζ after the cone is developed enough, a large constant plateau
is created but vF is then decreasing (ev. increasing) in the proximity of Dirac
cone. It means that the cone has majority of its surface linear but the vertex is
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slightly deformed into a paraboloid. Increasing ζ, we suppress this behaviour and
obtain a perfectly flat dependence, implying a nearly perfect cone. Upon further
increase of ζ, the plateau is falling down and the dispersion has to slow down its
group velocity to reach the correct value of vF in K-point. One can argue that
this parabolic deviation is small as compared to the dispersion near Γ-point, for
example, and the global shape is conical as well. An overall conclusion is that
the first cone does not finish its growth completely at ζ = 0.4, as suggested by
overlaps, and the ideal ζ value for both of cones is 0.7 < ζ < 1. The maximal
radius is estimated as r1st ≈ 1/3 and r2nd ≈ 1/5 of the distance |ΓK|. Finally, we
have to note that in very large ζ, the vF in K-point is not remaining the same but
it is slightly decreasing despite the prediction (2.15) which is not dependent on
V0 ∼ ζ. The reason is that the derivation of mentioned equation is done by the
first order perturbation theory assuming the basis of three plane waves (2.11).
Nevertheless, our numerical calculations are made in the basis of 36 waves, thus
the effect is caused by mixing of higher bands. Analytically, this shift of vF can
be described by the second or higher order of the perturbation theory, as made
in [9].
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Figure 2.12: Fermi velocities vF against the position between Γ and K-
point for the first and second Dirac cone (first and fourth miniband,
respectively), a = 150 nm. Red arrows indicate the theoretical ideal
vF in K-point: −2.4 × 104 and −4.8 × 104 m/s, the gray dashed line
separates the legend for each cone. The optimally flat dependence is
shown by red curve for the second cone. Slight vF shift is notable in
higher ζ for the first Dirac cone. Obviously, the best values for the cone
shapes are 0.7 < ζ < 1.

At the end of this section, after observing the homogeneity of vF , the cone
isotropy should be also commented. The ideal Dirac cone has circles as its isoen-
ergetic contours (points in reciprocal space with the same energy), however, even
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in natural graphene a massive deformation, called trigonal warping, is observed
when getting farther from the K-point (see [13]). It is caused by the intuitive
fact that at large distances the situation is not the same in different directions –
there are three carbon atoms which deform the band to a triangular-shaped one.
The same phenomenon will appear in our model whereof intensity is suitable for
the determination of the cone size as well. We used the lower part of both cones
and visualized them in the horizontal projection, so now, the key parameters are
the maximal radius r and ζ. Looking at figure 2.13, one can clearly observe the
reducing of the trigonal warping as ζ increases or the radius decreases.

Figure 2.13: Examples of top views on the center of Dirac cones. (a):
the first cone with ζ = 0.1 and rmax = 1/15 of |ΓK|, (b): the first cone
with ζ = 0.1 and rmax = 1/50, and (c): the second cone at ζ = 1 and
rmax = 1/15. The trigonal warping is reducing at lower r and hifger ζ.

To determine the size, isoenergetic contours have been fitted by circles, as
suggested, and the sum of residues of the fit was plot against parameters ζ and
r. Nevertheless, as reported in figure 2.14, no special point (for example a local
massive gradient) in the dependence on radius r was observed and the tendency is
linear thus the maximum acceptable value of parameter r cannot be determined
naturally by the curve profile. The only way how to find it is to select a threshold
of the sum of residues. Otherwise, the dependence on ζ is more significant –
decreasing of the trigonal warping with increasing ζ is stopped around ζ = 0.8
and increases again. This behaviour is corresponding with the evolution of vF in
2.12 for too large ζ and support the ideal choice of 0.7 < ζ < 1.

2.4 Four criteria – experimental basis

We have already identified two Dirac cones in spectra, investigated their prop-
erties and compared the electron behaviour with natural graphene. It is now
appropriate to conclude all these theoretical efforts and to find a convenient link
to the experimental part of the thesis. We condense the knowledge into four cru-
cial criteria that have to be met for the accessing Dirac fermions in semiconductor
superlattices. A fulfillment of these criteria is not, naturally, a guarantee that a
practical observation will succeed but offers to us a good guideline in technological
and experimental point of view.

1. Favourable miniband structure – recalling figure 2.4 and comments related to
it, the first obvious criterion has already been noticed. It is the appropriate
adjusting of ζ parameter to obtain a miniband structure containing a large,
well developed Dirac cone(s) which is not “covered” by other branches of
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Figure 2.14: A fitting of isoenergetic contour by a circle with the radius
as a fitting parameter. The standard deviation (in %) is plotted againts
ζ and the diameter r. While the dependence on r is linear and does not
offer any natural boundary of the cone, as the ζ parameter is changing
the evolution is non-linear and occurs a minima near ζ = 0.8. This fact
is in accordance with conclusions concerning vF (the figure 2.12).

the miniband dispersion. Disregarding the fine details discussed in section
2.3, the linear part is accessible in mentioned range 0.5 < ζ < 4.0 for the
second Dirac cone and 0.2 < ζ < 2.0 for the first one, that corresponds
to 0.6 < V0 < 4.5 meV and 0.2 < V0 < 2.3 meV for the “superlattice”
constant a = 200 nm, respectively. The way how to relate V0 with the actual
technology is one of main subjects of the next chapter. The parameter ζ ≈
0.8 was suggested as an ideal choice whereas both cones are well developed
and have the best inner profile (see the preceding section).

2. Fermi level positioning – graphene-like properties are, in particular, caused
by its Fermi level positioned just in the linear part of the energetic disper-
sion. This happens when the carrier concentration n, or the Fermi level
EF , in a sample is adjusted to cross one of the exposed Dirac cones. For
ζ = 1.0 and the first and second cone, see figure 2.4(c), it means to set
n ≈ 0.5 × 1010 and 3.3 × 1010 cm−2, but for ζ = 4.0 the second cone re-
quires more favourable n ≈ 6.5 × 1010 cm−2 (see the Appendix A to more
details). If one reduces the “superlattice” constant a with ζ remaining the
same, the system offers identical miniband shape (including Dirac cones) –
only shifted in energy (the spectrum is outspread), see the comment to the
definition of ζ (2.9). For example the configuration ζ = 0.9, V0 = 4 meV
and a = 100 nm implies n ≈ 1.7 × 1010 and 1.4 × 1011 cm−2 for the first
and second cone. From the technological point of view, the second cone
provides more favourable perspectives because of more easily accessible n.

3. Low disorder – under realistic conditions, such an ideal electronic dispersion
as calculated in section 2.1 is smeared by several mechanisms present in
the system. Two main types are the irregularity of the induced potential
(see next chapter 3) and the presence of impurities, scatters and other
inhomogeneities in the 2DEG layer. While the effect of the first mentioned
disorder is complicated to quantify, the second-one can be estimated by

21



the condition for its mean free path le = h̄µ
√

2πn/e2 À a. Since for
µ = 105 cm2/(V·s) (our typical mobilities after all technological processing)
and n = 1011 cm−2 it is le ≈ 500 nm, this criterion is not too strict. We
note that it is a necessary but not sufficient condition only.

4. Careful probing – the last important criterion concerns the experimental
conditions, especially T and B, which must not influence the system too
much. In the following measurements, Landau level transitions are the key
optical probing method. If one wants to observe graphene-like behaviour
the modulating potential has to be the main governing effect and the cy-
clotron quantization plays the role of a scanning means only. It implies the
condition h̄ωc À EDC , where ωc =

eB
m∗
and EDC is Dirac cone size in energy,

thus the cone is too large to contain minimally two Landau levels (between
them transitions are realized). Since EDC ∼ 0.3 meV (for ζ = 1, a = 200
nm) and h̄ωc/B ∼ 1.7 meV/T, tolerable magnetic fields are hundreds of mT
at most. Analogously, the ambient temperatures have to satisfy kT À h̄ωc

that may mean the sub-kelvin range.

Concluding this chapter, we demonstrated that an ideal cosine perturbation
deforms parabolic dispersion of 2DEG to the extent that it leads to the appearance
of two well exposed Dirac cones. These cones have a non-trivial inner structure
depending on the applied perturbative potential and they can retain their linear
dispersion as far as 1/5 – 1/3 of the distance |ΓK| from the K-point. Following
four essential criteria, comprising a good choice of the potential, an appropriate
concentration of carriers, a low disorder and low magnetic field and temperatures,
one might be on a right way towards the first artificial graphene preparation ever
made.
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3. Technological preparation

The idea to create artificial graphene consists in mimicking nature. There are two
basic characteristics of graphene: it is two-dimensional and has a hexagonal sym-
metry. The first of them is easy to imitate by the (quasi-)2D electron gas (2DEG)
created at a heterojunction or in a quantum well. Such structures, for example
aluminum gallium arsenide in contact with gallium arsenide (AlGaAs/GaAs),
are nowadays straightforwardly available with a relatively high quality thanks to
recent developments in molecular beam epitaxy (MBE) and well understood as
well. The 2DEG is created as a very thin layer just on the junction, see figure
3.1(a). The electrons are donated by a doping layer separated by a spacer tens of
nanometer wide. This modulation-doping technique allows to spatially separate
electrons from their (ionized) donors and to suppress the scattering on them. In
result, the mobility of electrons in 2DEG can easily exceed 106 cm2/(V·s).
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Figure 3.1: Band diagrams. (a): The bandstructure in equilibrium near
the heterojunction contact, solid lines in the triangular well show bot-
toms of individual electronic sub-bands created by spatial confinement
of electrons in 2DEG. (b): The semiconductor–metal contact, i.e. the
Schottky barrier.

In the first section of this Chapter, we present three ways how to mimic the
second aspect of graphene – the hexagonal lattice, induced by a lateral superlat-
tice introduced in Chapter 2, and then steps in technology necessary to prepare
our samples for both, optical and transport experiments. Especially, the electron
beam lithography, the dry etching and metal sputtering will be mentioned as well
as the ohmic contacting of 2DEG or designing the Hall bar geometry. In this
sense, the chapter covers the second phase of the way towards artificial graphene
which the author of this thesis and his collective had passed.

3.1 Methods of creation and control of potential

The performed simulations imply necessity to create lateral modulation of the
strength of a few meV. The potential minima then play the role of artificial
carbon atoms and thus electrons loose original parabolic dispersion, as presented
in chapter 2. In principal, there are several methods to do that, and during our
work, we have practically explored three of them.
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The easiest way is to deform electron concentration locally by a metallic con-
tact, i.e. to create a Schottky barrier on the surface of the heterostructure, see
Figure 3.1(b), which locally depletes density of electrons. Such a barrier has a
characteristic width of

w ≈
√

2εSVb

eND

, (3.1)

where ND stands for concentration of donors and other (negatively) ionized im-
purities. The dielectric constant in GaAs/GaAlAs structures reaches εS ≈ 13ε0
and the barrier height is typically Vb ∼ 0.5 eV. This implies the width of the de-
pleted region about w ∼ 250 nm for ND ∼ 2× 1016 cm−3. In this way, the effect
is strong enough to create lateral modulation of the 2DEG that is located 100
and 115 nanometers under the surface in our heterostructures (see figures 3.2a,b).
In our samples, the 2DEG contains electrons provided by two heavily Si-doped
δ-layers located between the surface and the heterojunction (Nδ−Si ∼ 1012 cm−2),
which significantly screen the surface-induced modulation of 2DEG. Nevertheless,
the real simplicity of production was the reason why the metal-semiconductor
method was used in the technological beginning.

��� ���

Figure 3.2: Schemes of wafer cross-sections. (a): wafer 1 where 2DEG is
formed in 20 nm wide quantum well 100 nm under the surface, and (b)
wafer 2 with a triangular well containing 2DEG in the depth of 115 nm.

The second possibility consists in the modulation of the specimen surface by
etching, which locally changes distribution of electrons between surface states,
Si-layers and 2DEG. In our non-etched structures, the surface states are saturat-
ed via first Si-doped δ-layer, whereas the second one fills the 2DEG. The local
etching thought the first δ-layer has following three impacts on our structures,
three effects appear in the system: (i) the removed doping layer is no more sat-
urating the surface states, (ii) the density of states on the damaged surface is
increased (iii) the reduced distance of 2DEG from surface induces its saturation
directly from 2DEG. All three effects result in a local decrease of concentration
in the 2DEG layer that can be formally represented by the effective potential V0,
introduced in Section 2.1. Such a process is expected when we use the lateral
modulation of the surface by etched holes (antidots) in the required symmetry –
the antidot represents a decrease of concentration that means the maximum of
the repulsive potential. According to figure 2.2 on the page 9, the symmetry has
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to be triangular (the lightest regions). The correlation between the depth of holes
d and V0 is not exactly known but we expect that its is monotonous in certain
limits (as holes are deeper V0 increases). In the next chapter, this correlation has
been found experimentally and is concerned as one of main results of this work.

The most sophisticated method is extension of the first one and supposes a
local gating of the sample. Unlike the hole etching that produces only one per-
manent V0, the top gate allows us to tune V0 in a certain range. Such an electrode
composes of a metal planar gate with long metal needles attached on its bottom
and reflecting the hexagonal or triangular potential (according to expected bias).
Needles touch the surface and create a local electrostatic potential, while the
plate on top of them keeps needles at the same potential (see figure 3.3). Besides
the mentioned tunability, this design offers us another advantage – the electrode
does not introduce any mechanical disorder as the etching and thereby the mo-
bility remains unaffected. On the other hand, this design does not allow us to
create lateral modulation with a period shorter than is the depth of 2DEG and
the obtained potential profile has to be numerically calculated (Laplace problem
with defined boundary condition), as shown later on. The use of samples with a
very shallow 2DEG as well as a proper design of the gate shape is then crucial.
Naturally, the top gate covering all the active area of the sample is usable for
transport experiments. Presented structure should be further fitted with a back
gate that will provide us with an independent tuning of the electron density. This
way, the first two criteria introduced on the page 20 can be controlled directly
during the experiment.

Figure 3.3: Since ζ depends quadratically on a, the deviation is faster in
this case. We emphasize that the y-axis scale is very tiny in the right
figure.

Three presented ways to create and control the potential of artificial graphene
correspond to real steps done in technology. The first method, based on Schottky-
type contact, was used in the beginning, nevertheless no reasonable results were
observed in (transport) measurements. Probably, the effect of δ-Si doping layers
was as strong as predicted and the Schottky barrier had influence only on very
shallow part of the sample and the 2DEG remained not modulated. Therefore,
this method has been left and the second proposal has been realized. As shown in
several optical and transport experiments, this approach indeed leads to lateral
modulation of 2DEG, see chapter 4. The third procedure is the most sophisticated
and demanding. For the tunability and complex control of the system one has
to pay a lot – new technology and processes require plenty of time and human
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force. The fabrication of such gates is currently in progress and the state-of-art
is presented in section 3.3. Hence, all the experimental results were obtained
with samples processed by the second method. The following text provide details
about preparation of the samples via this second approach.

3.2 Optical samples

In this section, we summarize the important technological steps necessary to pre-
pare artificial graphene samples for infrared magneto-spectroscopy measurements.
We refer to them as to “optical” samples. These steps involve the composition of
used heterostructures, the electron beam lithography, as well as the dry etching
and final “make-up” of our samples. In general, specimens for optical studies
are easier to prepare since the only requirements are reasonable samples later-
al dimensions (exceeding the wavelength of the probing light, i.e. hundreds of
microns) and in case of a transmission configuration also substrate transparency
(undoped substrate necessary).

For our purpose, we used Al0.33Ga0.66As/GaAs heterostructures MBE-grown
on a GaAs substrate with the composition shown in figure 3.2(a,b). Two type of
structures have been used: the first one has a quantum well 20 nm wide located
located 100 nm under the surface. The electrons are provided by two δ-Si layers
(14 nm and 24 nm under the surface). In the second wafer, the 2DEG is located
nearby the heterojunction 115 nm deep below the surface and 50 nm wide Si-
doped region is placed in the depth of 40 nm. Both structures are capped by a
thin GaAs protecting layer.
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Figure 3.4: Process of electron beam lithography. Step 1: O2 plasma
etching of surface oxides, step 2: sample surface coated with resist,
step 3: electron beam exposition changes chemical properties of exposed
area, step 4: resist developing (washing out the exposed/unexposed area,
according the type of resist), steps 5 and 6: dry Ar+ + SiCl4 plasma
etching, resist mask is etched out very slowly, step 7: resist removal in
the acetone solution.

To laterally modulate the 2DEG via the second discussed method, we used
the electron beam lithography (EBL). The principle is analogous to the standard
optical (UV) lithography – an electron sensitive resist is put on the sample and
exposed to the electrons. Unlike the optical lithography, no mask (equiv. stamp)
is used and lateral resolution is provided by a narrowly focused electron beam
“writing” on the resist. This resist is coated on samples surface cleaned from ox-
ides by oxygen plasma (fig. 3.4, step 1) – 100 Watts and 300 Pa for 2 minutes have
been empirically found as fully sufficient. The resist exposed to electron beam
modifies its internal structure by polymerization (depolymerization) for the posi-
tive (negative) resist and becomes dissolvable (hardened) compared to unexposed
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resist. The sample is then placed into the developer solution that removes all the
exposed and unexposed areas for the positive and negative resist, respectively.
Such a procedure (see figure 3.4, steps 2–4) creates a resistive polymer mask on
the surface and enables other planar technologies. Although the finest resolution
of used EBL is about 8 nm (the beam radius is 2 nm), the resist thickness signif-
icantly reduces this resolution. The electron beam penetrating through the resist
layer is successively laterally extended and electrons effectively expose larger and
larger area. Simultaneously, the thickness of the resist cannot be arbitrarily low,
since e.g. the dry etching partially removes the polymer. The the minimal thick-
ness (100 nm in our case) is then directly related to the power and duration of
this etching. With the least necessary resist thickness, the real resolution of EBL
is approximatively 40 nm. This leads to an unpleasant limitation – the minimal
diameter of holes is 50 nm and their distance 70 nm. In our present experiment,
only samples with hole diameters 60–80 nm and a = 200 nm were used due to
practical reasons, since the time required for the exposition of the 1 mm2 area
is proportional to the quantity of holes (tens of hours for one sample). A SEM
image of such a developed resist mask is shown in figure 3.5(a).
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Figure 3.5: Scanning electron microscope microphotography of (a) the
exposed and developed resist mask (we use a reference patterned area
since the SEM procedures might re-expose the mask) and (b) the etched
holes on the surface.

Holes were produced by dry plasma etching using the ICP apparatus from
Oxford Instruments (steps 5 and 6 in figure 3.4). The process consists in the
argon bombardment and the directional SiCl4 chemical plasma etching. The
sample with a removed oxide layer (the step 1 in figure 3.4 can be also done just
before the etching) is placed into the chamber on a Silicon or stainless chuck and
its surface is activated by long-run Ar+ bombardment (in our case: 12 minutes,
power 8 W, ∼ 80 V, pressure 2 mTorr, strike pressure 30 mTorr). Afterwards, the
own etching is realized using the ratio Ar:SiCl4 10:2 with power 9 W, pressure
4 mTorr, strike at 30 mTorr and the ICP acceleration 10 W for the stainless
chuck and the ratio 10:1 with power 6 W, pressure 2 mTorr, ICP 0 W for the
silicon one. The important difference between the two kinds of chucks consists in
oxidation. The silicon chuck is more susceptible for the oxide creation which has
to be therefore removed by hydrofluoric acid before its next use. Moreover, the
metal chuck is not so reactive and catalytic as the silicon one and the etching is
thus advancing slower even at higher powers. And just relatively slow etching at
high powers implies more stable conditions and more precise results. For both
chucks, a correlation between etching duration and the depth of holes was found to
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be linear, reaching 40–80 nm/min and 30–45 nm/min for the silicon and stainless
chucks, respectively. An SEM image of such an etched surface is shown in figure
3.5(b).

Results of performed etching were verified by two techniques. Regarding the
known thickness of the resist, the resulting depth of holes can be determined
by the DEKTAK device without sacrificing the possibility to etch further if the
present holes are not deep enough. Thanks to a 25 µm wide tip it can scan
the surface and restore the surface profile with the z axis precision of a few
nanometer. For this purpose, special specimens (called “satellites”) are etched
together with every sample. Each satellite contains several rectangularly-shaped
holes with varying edge length. Such a profile of the surface, still partially covered
by polymer mask, serves as a trustful indication of the real etched depth (see
figure 3.6(b)). After the wanted depth is achieved, the resist on the sample is
stripped off in acetone (figure 3.4, last step). If not, the sample is not stripped and
etching continues and another satellite is used. As the real depth of narrow holes
is easy to measure directly, we can, alternatively, cleave the satellite structure
and observe the cross-section using the electron microscope. Such a particularly
precise but demanding measurement is shown in figure 3.6(a) and was done for
each prepared optical sample.
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Figure 3.6: Direct and indirect method to determine the depth of etched
holes. (a): A SEM image of a cross-section of a patterned sample. For
this purpose, we used an additional control field of holes. (b): DEKTAK
measurement of large reference holes (30 µm diameter).

The patterned area was surrounded by a gold window that defines optically
active surface of the sample. This golden frame is made of 50 nm thick layer of
pure gold and was created by the thermal vapour deposition over a developed
mask. This time, an optical lithography was applied. After the deposition, the
sample was placed into a beaker with acetone that lifted off gold layers sitting
on the remaining resist, as schemed in figure 3.7, last step. The final structure is
shown in figure 3.8. Logically, if the metal layer is thicker then the resist no lift
off is enabled.

Specific parameters of prepared and studied samples are listed in table 3.1.
Here, we do not mention samples finally not explored experimentally. The sam-
ples A and B based on the wafer 1 while the sample C on the wafer 2. The carrier
concentration n and the mobility µ are derived from transport measurement using
the method presented in the chapter devoted to experiments. The final depth of
holes varies among the samples that allows us to estimate the correlation between
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Figure 3.7: Process of the lift off. Step 1: exposition of the resist layer,
step 2: developing, step 3: vapour deposition of metal (AuTi or AuGeNi
in our case), steps 4 and 5: lift off in an acetone solution. The deposed
layer has to be thinner than the thickness of the resist, otherwise the lift
off is not possible or all the metal layer will be lift off.

the depth and the potential amplitude V0. These important characteristics are
also listed in the table 3.1.

Figure 3.8: Schematic of an optical sample with golden window. Diameter
of holes is not in scale.

Sample n (×1011 cm−2) µ (×106 cm2/(V·s) ddots/d2DEG (nm)
A <1 >0.7 15/100
B <1 >0.7 20/100
C 1.4 0.5 48/115

Table 3.1: Basic characteristics of samples in the discussion. The certain in-
certitude of n and µ for samples A and B originates from the difficult electric
contacting of the wafer 1.

3.3 Transport samples

The transport measurement on samples prepared by the following method stud-
ies quantum transport phenomena – the Quantum Hall effect (QHE) and the
Shubnikov de-Haas oscillations (SdHO). Usually, the Hall bar configuration is
used, as shown in figure 3.9(a), which enables to measure the voltage drop along
and across the current channel. The region outside the Hall bar is etched out so
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deeply that 2DEG is completely removed in this area. Both current and voltage
contacts were created using standard Au/Ge/Ni alloy and expended by a gold
contacting plate. These bonding plates allow us to create contacts to the Hall
bar via micro-bonding machine, see figure 3.9(b).

The preparation of Hall-bar structures includes several etching phases. During
the first one, the Hall-bar structures is isolated (using a negative resist mask).
The artificial graphene structure is created in the second phase, when the main
channel is hexagonally patterned by etched holes analogously to optical samples.
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Figure 3.9: Schematics of Hall bar design. (a) Visualization of one of
realized Hall bar configurations. Brown colour designates the ohmic
contacts, the golden one bonding plates. (b) Hall bar cross-section. The
AuGeNi alloy contacts 2DEG through Hall bar edges.

In detail, the ohmic contacts are deposited using Au88%Ge12% target with a
Ni slices. Due to a poor adhesion of gold on GaAs, a thin Ti layer (≈ 10 nm)
is deposited prior the main contact layer composed of 90 nm AuGeNi. After
the lift off (that implies the resist thickness more than 100 nm), contacts are
annealed in reducing atmosphere, namely in the forming gas H2 + N2, to prevent
oxidation of contacts during the annealing (450◦C for 5 minutes with the rampe
100◦C/min). Thanks to it, the alloy AuGe does not only interfuse with nickel but
also foms “dendrites” that contact better the 2DEG layer. Within this procedure,
the visual morfology of contact is important – empirical rule says that before the
annealing the surface should be golden grey and glossy and it should not tear
when scratching (that means a good adhesion to the surface). The contacts
become reddish brown, dull and rough after annealing (see figures 3.10(a,b)).

The deposition of golden bonding plates is straightforward procedure equiv-
alent to the preparation of gold windows in the optical samples (we refer to the
image of a final Hall bar structure in figure 3.11(a)). Gold is used because of
its softness useful for the micro-bonding. First, the sample is glued onto a chip-
carrier by an epoxy resin that is resistant against low temperatures and easily
dissolvable in acetone. Second, after several hours of hardening, the chip-carrier is
set into the bonding device equipped by a thin needle with 15 µm thick aluminum
wire. Bonding contacts between the chip-carrier and the sample are interconnect-
ed semi-manually (motions of the hand are transferred into very tiny motions of
the tip). For the wire mounting, ultrasound is used – the wire is squelched and
impacted into the soft gold plate, see figure 3.11(b). Such a prepared chip-carrier
is then manually soldered onto a holder by indium melt and silver wires.

Since this Master thesis is mainly focused on optical measurements, the trans-
port was understood as a complementing experiment. A number of samples with
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Figure 3.10: Comparison of AuGeNi layer (ohmic contacts) before and
after the annealing process. The morphology and visual control are the
first and fast verification that the 2DEG is well contacted.
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Figure 3.11: Finalization. (a) Image of a final Hall bar. On the main
channel a hexagonal pattern is visible due to the change of surface op-
tical properties. (b) Photography of a chip carrier bonded with a glued
sample.
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unpatterned Hall bar was probed to choose the most convenient wafers with re-
spect to the carrier concentration and mobility. Several of them were used to
study impact of patterning and surface etching on properties of 2DEG, as re-
ported in chapter 4. Certain samples with hole-patterned Hall bar served for
magneto-transport measurements on artificial graphene. For this purpose, we
designed 100 µm wide and 600 µm long (unpatterned) Hall bars that have been
first used to characterize the wafers and later on hexagonal patterning via etched
holes was added.

In the future work, several concepts of sample architecture might be explored.
In particular, special samples allowing both, optical as well as transport exper-
iments can be prepared. In such a case, the whole area of the samples will be
patterned and Hall bar structures will created locally by deep narrow ditches. In
ideal case, both experiments can be performed simultaneously. If only transport
experiments are of interest, significantly more advanced design can be used, as
discussed in the next subsection.

3.4 Needle electrode

So-called “needle electrode” or “needle-like gate” design is a long term concept
allowing us to change continuously and independently two principal parameters
governing the artificial graphene – the effective potential V0 ∼ ζ (the criterion 1
started in the section 2.4) and the position of the Fermi level (criterion 2). The
carrier concentration can be tuned using a back gate. If both other remaining
criteria are satisfied (disorder and low B and T ), the ideal configuration can
be reached by varying V0 and n just during an experiment. When successful,
properties of artificial graphene should emerge.

Encouraged by promising results obtained on optical samples, we have started
the first realization of such an advanced structure. Since every new technology is
generally very time-consuming and to the end unpredictable, only an incomplete
realization of gates can be presented here. No transport experiments have been
done yet.

Schematically, the process is similar, nevertheless, more complicated than the
creation of a simple Hall bar. This time, large holes for ohmic contacting are
etched first through open windows in the positive resist layer (figure 3.12, step
1). Without any resist removal, the AuGeNi contact is deposited (step 2). After
stripping the resist (step 3), we anneal contacts as described above and check that
the 2DEG is well ohmically contacted. For this purpose, one can use a point-
contacter that connects opposite AuGeNi gobbets and measures the resistance.
It should exceed 10-20 kΩ at room temperature. It is followed by another etching
of deep ditches, which separate newly created Hall bar from the other part of the
sample (step 4). When successfully accomplished, the samples are again coated
by another positive resist and holes are exposed on the main channel (step 5).
Now, a thin adhesive layer of titan (10 nm) and a sufficiently thick layer of gold
is deposited. That creates a gold plate with narrow needles over the Hall bar
where the electrostatic effect of the plate is lightly screened by the polymer mask
between needles (step 6). This part causes most of our technological obstacles
as reported below. Instead of lift-off, another negative resist deposition follows
(step 7) and all parts outside the Hall bar and bonding plates are removed by
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Figure 3.12: Process of needle gate creation. 2DEG is marked by the
vertical solid line. Step 1: Etching of large holes for ohmic contacts,
step 2: deposition of AuTi over the same (unremoved) mask, step 3:
stripping of resist in acetone and annealing of contacts, step 4: another
resist layer deposition, exposition and developing, followed by etching of
deep ditches that separate the Hall bar from the rest of material, step
5: stripping the old resist and deposition of another one, area above
ohmic contacts is opened, hole pattern above the main channel is ex-
posed and developed, step 6: AuTi vapour deposition, step 7: deposition
and lithography of negative resist that finally covers only the top gate
(the main channel) and area around ohmic contacts (will form bonding
facets), step 8: wet etching of gold and titan, steps 9 and 10: O2 plasma
etching of all uncovered resist, step 11: bonding of facets and contacting
the top gate.

EBL. Using the solution of iodide in potassium iodide (KI), we wet etch the gold
layer and using 40% HF with 40% NH4F in the ratio 7:1 we dissolve the titanium
layer, only the covered areas remain (step 8). Now, we proceed to the dry plasma
exposition (oxygen plasma, 300 W, 500 Pa for 20 minutes) that lightly burn the
rest of the resist and cannot destroy or lift-off the electrode, as the acetone bath
would (steps 9 and 10). In figure 3.13, the final gated Hall bar is shown. Before
the transport measurements, the gold contacting plates and the top gate are
bonded to a chip carrier (step 11).

The missing experience with the preparation of a sophisticated gate lead to
problems in the step 6. Some of them are easy to overcome – for example, the
control of the pattern uniformity and the same length of all needles. In this case,
we develop a procedure how to inspect the bottom of the electrode. The sample is
put upside-down on a slightly heated Si wafer with deposited SU resist (∼ 90◦C)
that becomes gluey. After cooling down, when the sample surface is well glued, all
is inserted into solution of 10% H2SO4 and 30% H2O2 for several hours. When all
GaAs and AlGaAs is dissolved, the remaining resist between needles is removed
in barrel O2 plasma. We obtain the needle electrode nicely spread on a silicon
wafer, figure 3.14(a), which allows us to examine the quality of needles using the
electron microscope. In top view, one can observe their periodicity and thickness,
see figure 3.14(b), the isometric orientation serves to inspect the length.

In our case, another problem emerged. As shown in figure 3.15(a) taken by
the electron microscope, golden needles break and fall down on the surface if the
resist filling the space between needles is burn-out. Such behaviour might mean
that the AuTi deposition has not been uniform. The needle is not homogeneous
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Figure 3.13: Optical microscope photography of a final Hall bar with a
needle gate above the main channel. One of the facets, served early as
a contact for the longitudinal resistance measurements, is now used as
a gate control (lower left).
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Figure 3.14: SEM images of bottom side of needle gate. (a): Overall view
on the needle gate glued to a wafer, lightly damaged by the GaAs etching
and transporting. (b): Detail on needle bottoms – still surrounded by
the remaining resist.
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along its length but constricted or even interrupted once or several times. Figure
3.15(b) shows that deposited gold forms surprisingly large grains, sometimes even
larger than the diameter of the hole for the needle. Two solutions are suggested
and currently explored – first, a Au-Ti-Au-Ti-Au sandwich structure could be
deposited, since gold and titan have different lattice constant and grains could
not grow up to this size, or second, another metal could be used for the gate –
for example platinum, which does not create grains.
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Figure 3.15: Bottom views on the needle gate after removal of the re-
maining resist. (a): All needles are broken and downfallen on the gold
plate. (b): Comparison of the size of gold grains and the diameter of
holes.

Along with the technology, a simple estimate of the potential created by needle
electrodes might be useful. We have simplified the problem to one dimension and
numerically solved the following Laplace equation

∆x,yΦ = 0, (3.2)

where ∆x,y =
∂2

∂x2 +
∂2

∂y2 . There is only one boundary condition, the needle elec-

trode keeps a final constant potential, see 3.16(a). We concentrated on region
40 nm below the needles, where 2DEG is located in a new generation of samples.
The equi-potential curve near the 2DEG (dashed line) has a typical cosine profile.
If one does not carry about the absolute value of the voltage on the gate, but only
about the cosine amplitude introduced in this depth, several observations related
to the electrode shape can be made. If the length of needles exceeds the distance
between each other (i.e. the “lattice constant” a), the potential amplitude prac-
tically does not depend on this length. The ratio between a and the diameter
of needles is crucial. Since the period a should be kept as low as possible (to
get the Dirac cone higher in energy and to operate in higher concentrations), the
only indeed tunable parameter is the needle diameter. The lowest technological-
ly achievable needle thickness is 30 nm, which lead to the relative amplitude of
several % of the mean value, see figure 3.16(b).
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Figure 3.16: Visualization of the potential created by the needle elec-
trode. (a): Solution of Laplace equation for marked design. Position of
2DEG is represented by the dashed line where a cosine-like dependence
is evident. (b): Relative amplitude of the potential created in the depth
of the 2DEG (40 nm) against the number of iteration. According to
electrode configuration, several well converged values are shown. Un-
fortunately, the relative amplitude should reach several percentiles in
accessible designs.
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4. Experiments

In this chapter, we focus on three experimental methods that were used to probe a
number of samples prepared by the dry etching process described in chapter 3. As
optics, it mainly covers the far infra red (FIR) transmission Fourier spectroscopy
of Landau levels and the photoluminescence (PL) spectroscopy of Landau levels,
both in magnetic field. In the transport arrangement, we benefited from the low
temperature electronic measurement of the quantum Hall effect (QHE) and the
Shubnikov-de-Haas oscillations (SdHO) within the Hall bar geometry (as com-
mented in the last chapter as well). Although these three experiments represent
the main and very discussed part of the experimental work, other numerous non-
trivial and time-consuming measurements had to be accomplished to support the
presented ones. It concerns the transport characterization of every sample set,
the probing of contact quality or checking technological troubles and difficulties.
As that this work is not seen anytime, the author reminds it here.

The presented experimental work has been done in several institution within
Europe. The FIR spectroscopy has been taken at National Laboratory of High
Magnetic Fields in Grenoble with the dr. Milan Orlita’s supervision, the photolu-
minescence spectroscopy at NEST Institute of Scuola Normale Superiore in Pisa
under dr. Vittorio Pellegrini’s supervision and the electronic transport at Insti-
tute of Physics at Academy of Science of Czech Republic with tight cooperation
with dr. Vı́t Novák.

4.1 FIR: experimental background

Unlike other kinds of spectroscopy, the Fourier spectroscopy does not use a disper-
sion element, such is a grating or a prism, which spatially split the incident light
by its wavelength, which is thus processed as monochromatic. Thanks to a nu-
merical analysis, hereby Fourier transformation, a wide spectral range is obtained
just after one scan of polychromatic light. In general, the Fourier transformation
connects a time dependence with a frequency dependence of the signal intensity
by the following expression

S(ω) = Re

∫ ∞

−∞
I(x)e2πi xωdω. (4.1)

The time dependence of the signal is obtained using the Michelson’s interferom-
eter. The main polychromatic beam is split into two branches by a beamsplitter,
where the length of one of these branches is periodically modified by a moving
mirror. Therefore, the resulting intensity after the interference depends on the
∆x position of the mirror. The position is then easily connected with the time de-
pendence with respect to the mirror speed. Applying the Fourier transformation,
we get a spectral range where its length is defined by the maximal ∆x and other
optical aspects (characteristics of beamsplitters, light sources, windows etc.). The
resolution of such a spectrum is closely connected with the discrete character of
the problem. Only a finite number of mirror positions are taken into account, so
the steps n · δx = ∆x produce non-zero intervals in the spectral output, m · δω.
For further information, one refers to the author’s bachelor thesis [12].
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Figure 4.1: Scheme of the experimental setup. The radiation exits the
spectrometer (a) and is focused by parabolic mirror (b) into the probe
through entering window (c). The probe is placed in the cryostat (d)
filled by liquid helium and pumped down to T = 1.7 K. The cryostat
is equipped by superconducting coil (e), the sample (f) is placed in
Faraday configuration. Here, the light transmits through the sample (f)
or reference and continues to the input window (g) at the bolometer (h)
where it is collected. Then wires (i) transfer the electric signal to the
preamplificater (j) and further to the spectrometer/computer.

The used setup consisted of a Fourier spectrometer controlled by a computer
and coupled to a probe plunged into a helium-pumped cryostat equipped by
superconducting coils. The low energy edge of the used spectrometer was h̄ω ≈
3 meV and its resolution was mostly set to 0.125 meV. As a source of light,
a mercury lamp and a globar were used, providing black body radiation with
maxima at approximately 10 meV and 25 meV, respectively, as beamsplitter, two
types were employed – T222 and Mesh250. The probe, represented in figure 4.1,
was a tube equipped by a removable part supporting the sample, the detector and
connecting electrical wires. The parabolic mirror focused the radiation into the
tube through a white polyethylene window. The white window transmits a part
of visible light, which excites the electron density in the quantum well (originally
with very low carrier concentration due to the etching, for the quantification
of this phenomenon, see section 4.4). If the black polyethylene is mounted, an
optical fiber has to be used in to illuminate the sample and enhances the electron
density. The second method was useful when the white window provides too high
electron density and the sample did not fulfill the criterion 2 (see section 2.4). The
light transmitted through the sample or reference is absorbed by the composite
silicon bolometer. The signal is then amplified and processed by the computer.
The used superconducting coil provides the field up to 13 T. The cryostat is filled
by liquid helium that can be pumped down to the temperature of 1.7 K.

After the Fourier transformation of the obtained signal, a relative transmission
T (k,B) with respect to the spectrum taken at B = 0 T is calculeted

T =
S(k,B)

S(k,B = 0)
(4.2)
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At higher magnetic fields, the dependence of the bolometer on the applied field
becomes relevant and can be corrected by reference spectra

T =
S(k,B)/Sref(k,B)

S(k,B = 0)/Sref(k,B = 0)
(4.3)

The reference is mostly a simple hole in metal plate with a radius comparable to
the sample size.

4.2 FIR: results and discussion

From a number of samples probed by the FIR transmission spectroscopy, the
convenient carrier density has been found in samples: A, B and C, as introduced
in the end of section 3.2 and in table 3.1. These are characteristics taken from
parent wafers before the processing. After several first measurements, we found
that electron densities have considerably decreased in majority of samples after
the processing. To increase the carrier density and to get into a predicted range
of suitable concentrations, we used the white polyethylene window or optical
fiber illumination by the visible light. Such an additional excitation (permanent
or short flashed) produced a new (quasi-)stable density. These new electron
concentrations have been estimated from shape of cyclotron response, as described
in appendix A. The obtained values are summarized in the following table 4.1.

Sample wafer n (×1011 cm−2) µ (×103 cm2/(V·s) ddots/d2DEG (nm)
A 1 0.8 130 15/100
B 1 0.8 110 20/100
C 2 1.8 95 48/115

Table 4.1: Characteristics of samples under experimental conditions. Values
were inferred from shape analysis of transmission spectra, see appendix A. We
note that new electron densities are very close to the range 0.6 – 0.7 cm−2

predicted by criterion 2, see the end of section 2.4, as well as mobilities > 105

cm2/(V·s), criterion 3.

To complete the final arrangement of samples, an interference problem has to
be discussed. As we used the wavelength of hundreds of µm, the Fabry-Perot-
like interference appeared between back and front side of sample and caused a
disturbing noise over all spectral range of interest. Unfortunately, an additional
grating and wedging of back side was not very efficient. However, the followed
effect was mostly more intensive than this interference background.

Now, we proceed to the probing of cyclotron resonance by Fourier spectroscopy
in far infrared spectral range. A standard spectrum of an unpatterned sample, our
reference, shows well-defined Lorentzian peaks. Since the Landau level spectrum
is

Ec(ω, n) = h̄ωc(n+ 1/2) = h̄
eB

m∗ (n+ 1/2) (4.4)

and the allowed transition respects the rule ∆n = ±1, the energy consumed by
the experimentally traced excitation is ∆E = h̄ωc. Indeed, the real dependence
of energetic position of cyclotron peak is linear on the magnetic field – as one can
see in figure 4.2.
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Figure 4.2: FIR transmission spectra for unmodulated reference sample.
Single Lorentzian peak lies exactly on h̄ωc and no splitting appears, as
commonly observed.

Our examined patterned samples exhibit a different behaviour. As shown in
figure 4.3, an obvious double or multiple peak response appears at low magnetic
field. These characteristic modes occur at energies above h̄ωc and their deviation
from the main transition peak becomes stronger with decreasing B. This splitting
of the cyclotron resonance mode into more components vanishes in high fields,
but it happens at different fields in different samples, i.e., the splitting definitely
depends on the strength of modulation potential (different depth of etched holes).

Without doubt, the lateral superlattice affects noticeably the spectra. Al-
though the effect produces the internal double or multiple mode structure of the
original single peak, the changes are not so dramatical as we would expect in
case of clear formation of Dirac-like electronic bands. Regarding relatively small
deviations from linear tendency of ideal 2DEG and the vanishing of the effect
as 1/B in limit of high magnetic field, even a brief observation of spectra sug-
gests a perturbative behaviour. Thus, the potential generated by the superlattice
creates a considerably weaker effect than Landau level quantization, its strength
V0 becomes only a perturbation comparing to the level spacing h̄ωc, suggesting
V0/h̄ωc as a small parameter. Therefore, due to the perturbative behaviour of
observed effect of our modulation, due to the breaking the criterion 4 (low mag-
netic field and low energy spectral range) started in section 2.4, we fail to observe
graphene-like physics in our samples.

However, the perturbative effect of the superlattice can be nevertheless ex-
ploited. Developing a perturbation theory can provide relevant conclusions about
present effective potential. Such knowledge is very useful for design of new sets
of samples in future. Benefiting from the perturbation approach of X. F.Wang,
P. Vasilopoulos et al. [5], the unperturbed energies En = h̄ωc(n + 1/2) are, due
to the hexagonal potential, broadened into bands

En,κx,κy = En + V0e
−2β2/3Ln(4β

2/3)×
{

2 cos β2(κx +
1√
3
) cos β2κy√

3
+ cos 2β2κy√

3

}

(4.5)
where β2 = 2π2`20/a

2, `20 = h̄/eB and ~κ belongs to the hexagonal first magnetic
Brillouin zone (see the visualisation in figure 4.5a). Now, energies of dipole-
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Figure 4.3: Relative magneto-transmission spectra of studied samples A
(dholes ≈ 15 − 25 nm, d2DEG = 100 nm), B (dholes = 20 nm, d2DEG =
100 nm) and C (dholes = 48 nm, d2DEG = 115 nm) in parts (a), (b)
and (c), respectively. The multi-mode character of cyclotron resonance
absorption vanishes with the increasing magnetic field at B ≈ 5, 6 and
7 T in the sample A, B and C, respectively. All spectra are shifted
vertically for clarity by 0.15, 0.25 and 0.2, respectively.
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Figure 4.4: Fanchart of transitions observed in studied specimens A, B
and C, cf. in figure 4.3 (left vertical axis): Vertical arrows depict magnet-
ic fields at which the multi-mode character of CR absorption vanishes.
The position of the main CR peak in spectra taken on the sample A is
marked by crosses. The straight line corresponds to the theoretical CR-
line position with an effective mass of m∗ = 0.067m0, which has been
derived from measurements on reference (unpatterned) sample. Lower
part of the figure (right vertical axis) shows derived values of CR-line
splitting ∆E. The dashed line corresponds to the fit of ∆E for the
sample A based on the theoretical model discussed in the text.
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allowed optical transitions are ∆En+1,n = En+1,κx,κy − En,κx,κy , which can be
rewritten by recurrence formulae for Laguerre polynomials Ln, see reference [20].
As we deal with relatively low electron densities and filling factors ν = nh/eB < 2
(that means only the first Landau level is occupied for B > 1.7), we may consider
n = 0 only. Since L(x)1 − L(x)0 = −x, the term ∆E1,0 becomes easy to express

∆E1,0 = E1,κx,κy − E0,κx,κy = h̄ωc −
4

3
V0β

2e−2β2/3b(κx, κy) (4.6)

where b(κx, κy) denotes the curled bracket of Eq. (4.5).
The optical transition energy ∆E1,0 enters the transition probability P0→1(ω)

as: [21]

P0→1(ω) =
2π

h̄

∫

d2κ

(2π)2
|〈1, κx, κy|p0→1|0, κx, κy〉|2δ(∆E1,0 − h̄ω), (4.7)

where ω is the photon energy and p0→1 is momentum operator containing the pre-
term e ~A/m. If we neglect this dipole transition matrix element, the observable
optical characteristic features correspond to van Hove singularities in the joint
density of states (jDOS)

J0→1(ω) =

∫

d2κ

(2π)2
δ(∆E1,0 − h̄ω)f0,κx,κy(1− f1,κx,κy) (4.8)

which reflects the occupation of involved electronic states: the initial state n = 0
occupied and the final n = 1 empty, for each ~κ. Such condition is expressed by
the Fermi-Dirac occupation factor f . At filling factor ν < 2, P0→1(ω) becomes a
band with a width

w(B) = 6V0β
2e−2β2/3 (4.9)

that depends on the magnetic field only. The band is generally centered around
the cyclotron energy h̄ω = h̄ωc. If the ν decreases, the width decreases as well
since electrons occupy smaller and smaller area of magnetic Brillouin zone of the
first Landau level (n = 0). In the limit of high magnetic fields, only a small part
of the ~κ-space is occupied. The band is transformed back into delta function
δ(ωc) and only transition with ω = ωc are allowed.

Equation (4.9) provides a reasonable basis for interpretation of the evolution
of peak-to-peak distances presented in figure 4.3. These data follow the magnetic
field dependence of w(B) allowing to extract the values of V0 for the particular
sample. It should be noted that the peak splitting observed in experiments prob-
ably does not correspond to the full width w as calculated using equation (4.9)
because the lower edge of the absorption band is suppressed for ν < 2 (this is the
case of B > 2 T and n < 1011cm−2).

However, other features of the absorption band also scale as cw(B), where 0 <
c < 1 is a constant. These features, i.e., the lower and upper edge and logarithmic
singularity in the middle of band, are shown in Figure 4.5a,b and correspond to
the indicated transitions of the broadened Landau bands En,κx,κy , i.e., γ, α and
β, respectively. The first states that become depopulated upon the filling factor
dropping below two (that is when the magnetic field is increased) are those close
to the top of the band. Hence, the transitions α are the first ones to disappear
from the absorption spectra. We note that the Zeeman splitting εz is roughly
50× lower than the LL broadening at B = 2 T, εz = geh̄/2m0B ≈ 0.05meV.
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Figure 4.5: Part (a): Schematic plot of three lowest lying Landau levels
broadened into bands due to the lateral hexagonal modulation. Transi-
tions originating in van Hove singularities in the joint density of states
J0→1(ω) are marked by α, β and γ. Whereas α and γ are the band
edges, β is the logarithmic singularity corresponding to the saddle point
between two neighbouring minima of ∆E10 in ~κ-space (as shown in the
top panel). Part (b): Magnetic field dependence of α, β, γ jDOS singu-
larities. “Edge” shows the lowest in energy allowed transition, as defined
by the position of the Fermi level (for n = 5.0× 1010 cm−2). Ec = h̄ωc

is the cyclotron energy.
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For the remaining two features β and γ, our form of the potential V (x, y)
would imply c = 1/9. However, we believe that the feature β which leads to
a logarithmic van Hove singularity in the jDOS, may be easily smeared out.
Another candidate for an absorption feature is the Fermi edge (transitions from
the states close to EF to the next Landau band) which is also shown in the lower
panel of Fig. 4.5. Although the Fermi edge does not precisely scale with w(B),
it always appears at frequencies ω ≈ ωc hence c ≈ 1/3. The values of V0 inferred
from fitting our data, assuming that the splitting of the CR mode corresponds
to 1

3
w(B), are shown in table 4.2 alongside with the corresponding ζ. As can

be observed, the obtained values match surprisingly well into the range required
by the criterion 1 (0.5 < ζ < 4.0, see section 2.4), but on the other hand, the
superlattice effect is still a perturbation compared to Landau level quantization.
In this meaning, reduction of superlattice constant a is convenient since such
system would lead to higher ζ (and n) and more favourable ratio V0/h̄ωc.

Sample dholes d2DEG V0 ζ
A 15-25 100 2.2 meV 2.4
B 20 100 3.5 meV 3.1
C 48 115 4 meV 3.6

Table 4.2: Potential amplitude V0 and the corresponding dimensionless pa-
rameter ζ for samples A, B and C as derived by fitting our data using 1

3
w(B),

equation (4.9). The etching depths and the distances from 2DEG to the sample
surface are also listed.

The double peak feature observed at lower magnetic fields is also a reminiscent
of confined-magneto-plasmons (CMP) [22]. This fact motivated us to perform a
control experiment that would exclude this possible interpretation. In an infi-
nite 2DEG system at zero magnetic field, particular plasma oscillations can be
observed [23]. These oscillations of wavelength λ = 2π/q are described by the
dispersion ωp(q) =

√

e2nq/2m∗εrε0. According to previous experiments [24], the
dispersion in non-zero magnetic field is governed by a combination of cyclotron

frequency ωc and CMP frequency ωp(q),
√

ω2
c + ω2

p(q). In a metal stripe of width

W , the wave-vector is given by q = π/W . Other numerical simulation [25] show,
in fact, whole series of CMP modes at frequencies ω > ωc that corresponds to
integer multiples of basic wave-vector q = π/W .

Now, if we consider our hexagonal modulation as an array of stripes withW =
a, the fundamental energy of first CMP mode can be, in a bold approximation,
estimated roughly as

ωCPM =

√

ω2
c +

πe2n

2m∗aεrε0
≈ ωc +

πen

4Baεrε0
. (4.10)

Here, a first hesitation starts when one is able to fit the formula (4.10) to our data
surprisingly well, but the needed carrier density is n ≈ 2.5 × 1010 cm−2, thus a
density four times smaller then is present in tested samples. To make us sure that
the CMP dependencies look similar only accidentally, we performed the following
experiment. The sample B was successively illuminated by optical fiber to excite
more electrons to the 2DEG layer and its FIR response was measured after each
step. As can be seen in figure 4.6, the peak splitting obviously decreased as
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Figure 4.6: Magneto-transmission spectra taken on the sample B at
B = 4.5 T and four different carrier concentrations. The density has
been subsequently increased by exposing the sample to visible light for
the indicated times, where corresponding concentrations are 7.0×1010,
8.0×1010, 9.0×1010 for additional illumination time 0, 2, 12 seconds,
respectively. The highest illumination does not produce any increase of
density since the system is already saturated. The spacing of observed
modes clearly decreases with the carrier density. No other reaction to
the highest illumination underlines the right correlation between the
splitting and the concentration. The spectra are shifted vertically for
clarity.

the density increased (the true correlation between the illumination and electron
density was proved by fitting the spectra shapes using the numerical method
described in appendix A). However, equation (4.10) fails to explain the observed
behaviour whereas according to CMP theory, ωCPM ∼

√
n. Notwithstanding

that the formula is derived from a very approximative approach, the observed
contra-variant tendency of ωp(n) in theory and in experiment considerably makes
the CMP theory unreliable for this purpose.

Concluding this section, FIR transmission spectroscopy revealed a multi-mode
cyclotron response as a clear effect of lateral superlattice, nevertheless, the ex-
periment did not disclose any evidence of Dirac-like electronic bandstructure due
to the small parameter V0/h̄ωc (criterion 4 not fulfilled). The perturbative char-
acter allowed us to find a correlation between the depth of holes and the effective
potential V0, necessary for any theoretical estimate. The lesson taken from the
experiment suggests that a reduction superlattice constant a would be best way
for our future work.

4.3 Photoluminescence

Samples B and C were also probed by photoluminescence (PL) spectroscopy with
the aim of enlarging the spectral range and uncover the behaviour bellow 2 T.
Samples were placed into a cryostat equipped by an incoming and outcoming win-
dow, a movable holder for samples, CCD infrared camera to control the sample
position and a system of lens and other optical elements. The near infrared signal
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was generated in prepumped laser at wavelength λ = 797 nm (below the band
gap od Al0.33Ga0.66As). After exit from the resonator, the light continues through
focusing and guiding elements, and is reaching a neutral gray filter which reduces
the laser power to P ≈ 50 µW. A larger value might heat the sample. When
the light comes into the cryostat and is absorbed by the sample, it produces an
excitation of electrons from valence band to a higher part of the conduction band
(and creates pairs “electron-hole”). Thanks to intraband relaxations, excited elec-
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Figure 4.7: Scheme of photoluminescence process. Incoming light (red
colored) causes an excitation and hole-electron pair creating. The ex-
cited electron relax to lower energies in conduction band, from where it
recombines with a hole and emit diffusive light (blue colored). Quasi-
stable Fermi level position is then related to the width of PL spectra at
zero magnetic field.

trons termalize, analogically in the valence band. The inter band recombinations
of electrons and holes is referred-to as luminescence. Unlike the incident laser
beam, the emission light is isotropic. Thereby, it is necessary to tilt the sample
holder which reflects the incident beam out of the next optical way. The emission
light continues then out of cryostat and is analyzed by a grating spectrometer,
having spectral range ∆E ≈ 8 meV, i.e., ∆λ ≈ 4 nm.

An example of PL spectra for sample B in the range of fields 0 < B < 3 T is
shown in figure 4.8. Before further comments, let us focus now on the spectrum
at zero magnetic field. Unlike the FIR experiments, where the determination
of carrier concentration requires the fitting of spectra and analyzing their area
(see appendix A), the PL provides an easy method how to define the electron
(and as well as hole) density. Since before excitation, the quantum well occurs a
low electron concentration, after excitation the density of electrons exceeds the
density of holes. In such case, the spectral width of PL response, would be limited
by holes distribution in the valence band. However, the valence band is usually full
of disorder states where a hole can be localized. As it is spatially confined, its wave
packet is wide spread over ~k-space and thus it can recombine with electron at every
~k. Therefore, the concentration of holes is not a limiting factor and the width of
PL spectrum corresponds to the energy position of Fermi level (calculating from
the bottom of the conduction band), as schemed in figure 4.7. Assuming now
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Figure 4.8: Photoluminescence spectra in magnetic range 0 < B < 2 T
(upper) and 2 < B < 3 T (lower). Splitting due to the superlattice
effect appears at ≈ 3 T as a obvious double peak feature. Orange curves
designate 0.5 T steps.
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that the 2DEG is ideal and its dispersion is completely parabolic, we determine
the carrier density dn thanks to the known density of states in 2DEG as follows
(including spin degeneracy)

dn = DOS(ε)dε =
m∗

πh̄2
EF . (4.11)

According to the spectrum at B = 0 T, whereof width is approximatively 3 meV,
we obtain dn ≡ n ≈ 0.8 × 1010 cm−2. So very similar concentration as observed
in FIR experiments. It is necessary to note here that found n is not the dark
concentration present in the sample. In the same way as the concentration in
FIR was determined by additional illumination by visible light, the density in
PL is a quasi-equilibrium of pumping excitation and recombination. However, it
represent the actual concentration during the experiment, so that experimental
conditions can be, in such meaning, supposed as very similar.
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Figure 4.9: Fanchart of transitions in PL spectra. Filled and empty point
denote peaks (taken in two days), dashed line represent Landau levels in
magnetic field and orange vertical line the boundary between different
filling factors. A significant splitting of the transition from Landau level
n = 0 (red points) is obvious at two points.

In overall view on presented data – now in nonzero magnetic field (so Landau
levels are forming), we immediately find a strong and obvious splitting of main PL
peak (corresponding to recombination from n = 0 Landau level) at 3 T and below,
down to 1.5 T. Another branch appearing at 1.5 T corresponds to the second
Landau level (n = 1), and the feature below 0.625 T may be a signature of the
third one. Specific positions of peaks are displayed in figure 4.9. In this fanchart,
full and empty point represent two successive independent measurements, dashed
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lines are theoretic assumptions of Landau level evolution in magnetic field

En=0 = Eg +E1+E
′
1+Ec = Eg +

h̄2π2

2m∗
ed

2
+

h̄2π2

2m∗
hd

2
+ h̄eB

(

1

m∗
e

+
1

m∗
h

)

, (4.12)

where Eg ≈ 1.52 eV is bandgap at 1.7 K, E1 and E
′
1 are ground states in quantum

well for electrons and heavy holes and d = 20 nm is the width of quantum well.
Vertical orange lines separate different filling factors in the system (top axis). Red
points designate main PL peak which is then split (blue points). Green points
may mean another splitting connected with other jDOS features introduced in
the previous section. Violet points then well describe the second Landau level
evolution followed by brawn one performing a strange behaviour close to the
third Landau level position. That can be, however, an artifact resulting from
complicated decomposition of spectra at low fields.

In summary, the sample B exhibits the same effect of the lateral superlattice
in its PL spectrum, and can be interpreted in the same way as results in previous
section 4.2. The amplitude of splitting at 2 T, for example, is the same as the
inferred form FIR data, i.e., ∼ 1 meV.

Besides the splitting, supporting our interpretation, the PL data show anoth-
er expected behaviour – the position of main peak (red points) does not follow
the theoretic tendency in magnetic field above 2 T, so approximatively below
filling factor ν < 2. The slope of this tendency is considerably smaller. Similar
phenomena can be seen, in careful view, in violet point at ν < 3. Such a be-
haviour has been observed in high magnetic field in many cases, for example [26],
nevertheless, the phenomena has not been theoretically explained up to present
day.

4.4 Transport

Transport experiments were the corner-stone of our technological preparation of
samples. Not very time-consuming measurement in low temperatures provides
fast and easy characterization of samples, following parameters like the electron
density, mobility or conductivity of 2DEG layer. In this sense, these experiments
were often accomplished during the fabrication phase. After it, when optical
measurement are dominating the experimental work, the transport served as an
additional method to verify wafer characteristics when processed. The electronic
transport will become very useful at the moment when needle-gated samples
are prepared. Then, the transport will be the only and powerful experimental
method.

With respect to relatively low carrier concentration in optical samples (with-
out additional illumination), we wondered what was the effect of etching holes on
the average carrier density in the quantum well. We started with already contact-
ed and prepared samples with a Hall bar design – but without any patterning.
For these samples, quantum Hall effect (QHE) and Shubnikov-de Haas oscilla-
tions (SdHO) were measured. Then, an additional nanolithographical patterning
was added, as described in details in chapter 3. In next measurements on these
structures, we searched for changes in SdHO.

In fact, minima in SdHO (ideally, zero longitudinal resistivity) appear when
the transport skips from diffusive to ballistic. In this situation, the current is
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Figure 4.10: Electronic transport measurement on sample 1E5 before
(upper) and after hole-processing (bottom). Blue lines designate QHE
evolution in B, the red ones the SdHO. The magnetic fields at the fourth
minimum indicate the actual electron density, while the value of SdHO at
B = 0 corresponds tightly with 2DEG mobility. The slope of QHE evo-
lution, disregarding plateaux, contributes carrier density as well. Com-
paring two graphs, a considerable decrease of the concentration is re-
markable, as well as the change of mobility (see the corresponding text).
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lead by electrons in edge states, creating oriented ballistic channels, without real
possibility to get to the opposite channel. That results in the absence of electron
backscattering which, in general, produces a non-zero resistivity (as is typical in
diffusive transport). The condition for such a regime is similar as in case of QHE,
see equation 1.6 on page 6 – it appears when the Fermi level is between Landau
level, lying on localized states. Since the density of states for one level is eB/h,
the filling factor (without spin degeneracy) can be written as

ν =
nh

eB
⇒ n =

νe

h
B. (4.13)

For ν = 4, the prefactor νe/h ≈ 1011 cm−2T−1. The fact means that the magnetic
field in Tesla, corresponding to the fourth minimum of SdHO, indicates already
the density of carriers in units of ×1011 cm−2. The fourth minimum is easy to
find since the ratio between magnetic field of each two neighbouring minima is
the inverse ratio of their filling factors. One should note that we have to count
the filling factor only in even numbers since the spin degeneracy fill each Landau
level by a twice as large n. Another method how to find the density uses the Hall
resistivity – at low magnetic fields, its slope is connected with n as follows

Uxy = RHBIxx =
1

ne
BIxx. (4.14)

All results were inferred using both methods, if the data are available.

Sample netch (×1011 cm−2) norig fall hdots/2DEG (nm)
1E2 1.9 2.8 32% 80/210
1E3 1.9 2.7 30% 85/210
1E5 2.1 2.6 20% 100/210

Table 4.3: Decrease of the electron density in three control samples – by 20–
30% in all cases. However, the fall-down is not easily predictable since the
relative depth of holes does not determine the effect properly. Probably, it
depends on many other factors.

A typical example of magneto-transport experiment is shown in figure 4.10.
In the upper part, a typical transport of unpatterned sample is presented – the
red line corresponds to SdHO and blue one to QHE with obvious Hall plateaux.
The fourth minimum indicates n ≈ 1.6×1011 cm−2. In the lower panel, the same
sample with 100 nm deep holes (and 210 nm deep 2DEG) occurs very similar
behaviour. The equivalent density is lower, as the partial etching of the Si-δ layer
leads to a lower doping. The effect of nearer surface (bottoms of holes) and of
its surface states is also considered. In summary, three samples from different
wafers were probed and in each of them a serious decrease of concentration was
observed, as table 4.3 reports. Concerning optical samples, the etching could
create the same depletion (non suitable for FIR experiments) and thus we had to
increase the density by illumination.

Focusing on the second accessible parameter, at zero magnetic field the mo-
bility of 2DEG layer can be expressed as

µ = RHσ =
1

ne

Ixx
Uxx

l

d
(4.15)
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where l is the distance of longitudinal Hall bar contacts and d the width of Hall
bar. Regarding the data in figure 4.10, we immediately see that the mobility has
decreased since at B = 0 the Rxx increased more than twice but the concentration
decreased only by small tens of percents. In the same way, we present table
4.4 summarizing results. The transport method of determination (upper part)
nicely match with the determination from spectral shape made for optical samples
(bottom part). In all cases, the decrease of mobility was around 30%. This fact
directly states that the mobility in optical sample should be high enough to fulfill
the criterion 4 (µ ∼ 105 cm2/Vs, section 2.4).

Sample µetch (×106 cm2/Vs) µorig fall hdots/2DEG (nm)
1E2 0.7 1.8 61% 80/210
1E5 0.6 1.3 53% 100/210
A, B 0.13–0.2 ? – 20-25/100
C 0.1 0.5 80% 48/115

Table 4.4: Fall in mobility before and after the patterning. As can be seen, the
etching produces a considerable decrease of mobility. In this meaning, a gated
needle electrode can provide better samples since it does not affect the sample
surface and neither its volume.

Unfortunately, we cannot conclude that the performed transport measurement
showed any non-standard behaviour that could have been interpreted as an effect
of the superlattice (or Dirac fermions). Although presented samples were not
carefully designed especially for the purpose of “artificial graphene” measurement,
even a slight perturbation would have been highly motivating. In all three hole-
patterned sample, there was no special evidence of such behaviour (as presented
in FIR experiments). However, the constitution of these samples was considerably
different – the depth of 2DEG was 210 nm and the contacting process was not
ideal (many of contacts broke down and were not usable). One can rationally hope
that using the special needle-electrode designed samples, now in preparation, will
bring more pleasant results.
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Conclusions

The Master thesis covers three steps necessary to realize artificial graphene –
the theoretical estimates and prognosis, technological preparation of samples,
and finally, the experiments aimed at direct demonstration of massless Dirac
fermions, possibly created in the system. In such terms, the thesis represents
a comprehensive report on artificial graphene ideas developed by author, his
supervisor, advisor and other team members mentioned in acknowledgments. It
introduces, in summary, the reader into first steps on far-from-easy way towards
artificial graphene.

In the theoretical part, devoted to finding numerical estimates of basic techno-
logical parameters, we studied the creation of Dirac cones and Dirac fermions in
classical 2DEG perturbed by a hexagonal lateral potential. Two Dirac cones were
found in lowest six minibands, whereof the second one performs more favourable
dimensions and energy position. The true Dirac nature of both of them was
demonstrated by the evolution of their eigen-functions in the first Brillouin zone
and by other numerical methods. The effective radius of Dirac cones was estimat-
ed as 1/5− 1/3 of “the radius of first Brillouin zone”, thus of the distance |ΓK|.
This fact leads to the request for more than 1 meV precision in the adjusting
of the Fermi level. Finally, the theoretical work formulated four crucial criteria
for technologists and experimentalists – the parameter ζ (connected to the value
of potential V0) has to be set in ranges 0.5 − 4.0, or better in a narrower range
0.7− 1.0 with the concentration about n ≈ 7× 1010 cm−2. The most demanding,
in our case, was the criterion 4 that calls for very low magnetic field, which prints
towards low energies of probing light and low temperatures.

The technology of the preparation was described in details and contains all
necessary parameters and used methods. Besides the fabrication of optical or
transport samples, based on dry etching of holes in hexagonal symmetry, other
used or still designing devices were presented. The most sophisticated one, the
concept of needle-shaped electrode gated over a classical Hall bar geometry, was
shown and several technological troubles were indicated. According to the main
sense of this chapter, we hope that mentioned information can help other fighters
in the field of artificial graphene.

Concerning the experiments, three concepts of measurements were done –
the far infrared spectroscopy and photoluminescence in magnetic field and low
temperatures electronic transport measurements. Results, providing by main FIR
experiments, show a non-conventional phenomenon, nevertheless they assertively
suggest that we have broken the fourth criterion – we work in too high energies.
Notwithstanding that other sample parameters match well or are not far from
the requested values, we have to, unfortunately, state that no direct signature of
Dirac fermions was observed. However, the results were used to find an important
correlation. Since the effect of superlattice was weak compared to Landau level
quantization (too high energies and magnetic field), we used a perturbation theory
to explain the observed deviations. Thanks to it, we found the correlation between
the depth of etched holes and the effective potential V0, created in such way in
the 2DEG layer. As realized during measurements in Pisa, other teams in world
are solving the very similar problems – so that we hope this will be considerably
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useful for our colleagues.
The possible future work will be certainly connected with needle electrode

concept presented in the second chapter. Such a proposal combines many advan-
tages, as is the continuous control of two crucial parameters, ζ and V0, during
transport experiments. Of course, the cost of these positive aspects is just the
complicated fabrication of the electrode – but on the other hand, it might lead
to significant discoveries.

As met during presentations of our work, there are fair critics of the artificial
graphene concept. Some of them simply look at the theme as at an eye-taking,
stylish or fashionable topic only, but a few of them see the inner conflict – the
disagreement between the simplicity and closeness-to-human of graphene and the
sophisticated, unimaginably precise processing of artificial graphene. In case of
artificial graphene, I completely agree that the use of the tempting motivation,
originated from natural graphene, causes something uneasy to solve. However, if
the work provokes questions concerning the relation between the natural and the
artificial, nature and technology, or originality (tradition) and change (moderni-
ty), I am glad to contribute.
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[19] L. Nádvorńık, M. Orlita, N. A. Goncharuk, L. Smrčka, V. Novák, V. Jurka,
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A. Estimate of concentration and
mobilities

The method how to calculate the electron density in 2DEG according to its FIR
transmission spectrum [27], assumes a 2DEG layer with conductivity σ, enfolded
between two same materials with permittivity ε. The wave equation on boundary
at z = 0 is

∂2E

∂z2
− 1

c2
∂2E

∂t2
− σ

εc2
∂E

∂t
= 0. (A.1)

Assuming the the incident light in form exp iωt, we obtain

∂2E

∂z2
+
1

c2
ω2E + iω

1

εc2
jδ(z) = 0. (A.2)

At z 6= 0, the solution for the incident light Ei(r, t) = Ei exp(ikz − iωt) and for
reflected one Er(r, t) = Er exp(−ikz − iωt), for z < 0, and the transmitted light
Et(r, t) = Et exp(ikz − iωt), for z > 0.

From the boundary conditions at z = 0 [27], we find the transmission coeffi-
cient t = Et/Ei as follows

t± =
1

1 + σ±
2ñε0c

(A.3)

where ñ is refractive index of the material and σ± originates from circularly
polarized coordinates describing j± = jx+ijy = σ±(Ex+iEy) = σ±E±. According
to semi-classical Drude model, we express the conductivity

σ± ≈ σ0
1

1 + iτ(ω − ωc)
. (A.4)

where σ0 =
ne2τ
m∗
. Now, for a detector insensitive to polarization of radiation we

write the transmittance for linearly polarized light

T =
1

2
(|t+|2 + |t−|2). (A.5)

Since we measured cyclotron resonance absorption, only one circular polarization
can be absorbed – the other one is transmitted nearly completely, thus |t−|2 ≈ 1.
Applying the expansion to power series 1

1+x
≈ 1− x on equation A.3, we obtain

|t+|2 ≈ |1− σ+

2ñε0c
|2 =

=
(

1− σ0

2ñε0c
1

1+τ2(ω−ωc)2

)2

+
(

σ0

2ñε0c
τ(ω−ωc)

1+τ2(ω−ωc)2

)2 (A.6)

Since we work in approach of weak absorption, thus the term σ0

2ñε0c
is considerably

smaller than 1, we neglect all quadratic terms in equation A.6 and hence, we get

|t+|2 ≈ 1−
σ0
ñε0c

1

1 + τ 2(ω − ωc)2
. (A.7)

Equation A.5 then leads to

T = 1− e2nτ

2ñε0cm∗
1

1 + τ 2(ω − ωc)2
. (A.8)
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In equation A.8, there are only two unknown variables: electron density n and
mean life time τ . The equation has already form convenient for two parametric
fitting of Lorentzian peaks in FIR spectra. Since the mobility is often written as
µ = eτ/m∗, the presented method provide us both parameters n and µ necessary
for the sample characterization upon experimental conditions.
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B. Eigenfunction evolution in
first BZ

63



C. Towards artificial graphene
(paper)
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Towards engineering artificial graphene

L. Nádvorńık,1,2, ∗ M. Orlita,3, 2, 1 N. A. Goncharuk,2 L. Smrčka,2 V. Novák,2 V. Jurka,2
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We report on a measured non-linear in magnetic field dependence of cyclotron resonance ab-
sorption as well as its splitting into several modes in GaAs/AlxGa1−xAs heterostructures with an
etched hexagonal lateral superlattice, i.e., in artificial graphene. Our explanation, based on the
perturbation theory, describes the observed phenomena as a weak effect of the lateral potential on
the two-dimensional electron gas (2DEG). In addition, we propose a set of four criteria that one has
to satisfy to realize graphene-like physics in materials containing 2DEG with a tunable hexagonal
modulation.

PACS numbers: 73.22.Pr, 73.21.Cd, 78.67.Pt

I. INTRODUCTION

The range of paths to explore Dirac fermions has re-
cently been (once again) extended beyond the standard
field of graphene1,2 to a completely new class of systems.
The artificial graphene (AG) concept is based on the
idea of creating massless fermions in semiconductor het-
erostructures by modulating the two-dimensional elec-
tron gas (2DEG) with a lithographically created super-
lattice. If the introduced potential reflects the hexagonal
symmetry of natural graphene and it is strong enough,
the electronic structure changes towards a graphene-like
one.3,4 A lateral modulation of the surface by etching5–7

or by placing a gate electrode represent two possible tech-
niques. Lithographical fabrication offers more freedom
in creating artificial crystals than preparation of struc-
tures from real atoms and consequently the electronic
properties of the AG, such as the slope of the Dirac
cone (that is the Fermi velocity), can be widely tuned.8

Moreover, various proof-of-principle device prototypes9

(filters, valves,10 Veselago lens,11 splitters12 etc.) could
be more easily tested on AG basis owing to the larger
versatility of electron beam lithography compared to an
atom-by-atom manipulation required for fabrication of
natural graphene devices. In the present work, with help
of a simplified AG model, we first formulate four basic
criteria to make graphene-like characteristics observable
and then show how they can be tested using magneto-
optical experiments. We conclude that AG with the de-
sired hallmarks of Dirac-fermions may be technologically
attainable but their actual observation is missing so far.

II. THEORY

Compared to previous works,4,8 we use a simplified
AG model that allows for a better insight into how the
individual parameters of the modulation potential V (~r),

~r = (x, y) govern the miniband structure. We consider
V comprising of three cosine functions

V (~r) = V0(cos ~g1~r + cos ~g2~r + cos ~g3~r), (1)

where ~g1 = 2π/a(1/
√
3, 1), ~g2 = 2π/a(2/

√
3, 0), ~g3 =

~g2 − ~g1 are the basis-vectors of the graphene reciprocal
space, a is the distance between two minima of the ap-
plied potential [Fig. 1(a)] and V0 is the potential ampli-
tude. If we construct the Hamiltonian matrix in basis B
of plain waves,

B =
{

ei(
~k+ ~Kn1n2

)~r, ~Kn1n2
= n1~g1 + n2~g2

}

, (2)

the ratio of diagonal to off-diagonal matrix elements is
determined by V0 and a. Except for an overall scaling,
the eigenvalues depend on a single dimensionless param-
eter

ζ =
m∗

h2
V0a

2, (3)

where m∗ is the electron effective mass (in GaAs, 0.067
of the electron vacuum mass m0). Up to a factor of the
order of unity, it is ζ ≃ V0/E0 where E0 is the kinetic
energy of a free electron at the K-point of the Brillouin
zone.
Depending on ζ, we obtain miniband spectra contin-

uously varying from the free 2DEG, through nearly-free
and tight-binding models, up to completely flat bands
corresponding to isolated (artificial) atoms. We point
out that two Dirac cones can be found (within the low-
est six minibands, see Fig. 2(b),(c) with Fermi velocities
vF = 2.4 × 104 and 4.8 × 104 m.s−1 when a = 200 nm.
Both Dirac cones were numerically explored and their
Dirac-fermion-like nature was confirmed in terms of spec-
tral properties (cone-like character with trigonal warp-
ing) and wavefunctions.4 Maximum Dirac cones size is
of the order of E0. Further quantitative studies of the

http://arxiv.org/abs/1104.5427v1
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FIG. 1. (color online) Artificial graphene: Part (a): hexago-
nal potential of Eq. (1) defining the AG (in units of V0). Dark
regions correspond to “atom positions” in the real graphene;
the primitive cell is indicated. (b): Scanning electron mi-
croscope image of the surface of one of the samples, (c): its
atomic layer structure (2DEG depth ≈ 100 nm) and (d): the
sample layout (not at scale).
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FIG. 2. (color online) Minibands generated for several values
of the parameter ζ. (a): ζ = 0, dispersion of a free 2DEG.
(b): ζ = 0.3, first Dirac cones develops (indicated by arrow),
the second one appears but remains covered by other bands.
(c): ζ = 0.9, both Dirac cones fully develop. (d): ζ = 4.0,
tight-binding type narrow minibands form and Dirac cones
gradually flatten, ultimately becoming again unobservable.
For a = 200 nm, a,b,c, and d correspond to V0 = 0, 0.4, 1 and
4 meV in GaAs.

Dirac cones characteristics seem of less use with regard
to the simplicity of the model; in the following we show
how it, nevertheless, can be employed as a guide for AG
fabrication.
Four criteria shall now be stated necessary to observa-

tion of graphene-like physics in AG. (i) Suitable miniband

structure — looking at Fig. 2, the obvious first criterion
is to appropriately adjust the ζ parameter lest the de-

sired Dirac cones be not “covered” by other branches of
the miniband structure. For the second Dirac cone, we
find the range 0.5 < ζ < 4.0 corresponding to V0 between
0.6 and 4.5 meV (for a = 200 nm as in our samples de-
scribed below). (ii) Fermi level positioning – to observe
graphene-like properties, the Fermi level, EF , should
cross the linear part of the spectrum. Estimated values
of EF for the first and second Dirac cones for ζ = 0.9 are
0.15 and 1.2 meV approximately corresponding to carrier
concentrations n ≈ 0.5 × 1010 and 3.3 × 1010 cm−2, re-
spectively, and for ζ = 4 then n ≈ 6×1010 cm−2 (see Ap-
pendix A), suggesting that the second Dirac cone would
be better accessible from technological point of view. Al-
though the first Dirac cone develops already for smaller
V0 it would force the experimentalist to work at too low
n. If a is reduced with ζ remaining the same, the system
offers somehow more favourable perspectives: ζ = 0.9,
V0 = 4 meV and a = 100 nm implies n ≈ 1.7 × 1010

and n ≈ 1.4× 1011 cm−2, for the first and second Dirac
cone, and the identical shape of minibands (including the
Dirac cones) as in Fig. 2(c), only moved to higher ener-
gies. (iii) Low disorder – the idealized miniband struc-
ture, as suggested in Fig. 2, will be smeared by various
irregularities of the system: both by impurities present
in the unmodulated heterostructure and imperfections of
the modulation potential. The minimal requirement to
meet is that the mean free path le = ~µ

√

2πn/e2 ≫ a.
This criterion is not too stringent since le ≈ 500 nm
for µ = 105 cm2/(V.s) and n = 1011 cm−2 but it only
constitutes a necessary and not a sufficient condition for
tracing AG physics. (iv) Careful probing – the last im-
portant aspect is that the measurement conditions must
not affect too strongly the AG system. Typically, this
means that both the temperature, T , and magnetic field,
B, are low enough. To preserve graphene-like behaviour,
the system has to be governed by the modulation po-
tential, and the cyclotron quantization has to play only
the role of a scanning means. Hence, ~ωc ≪ EDC with
EDC denoting the Dirac cone size in energy, and since
the cyclotron energy ~ωc = ~eB/m∗ equals ∼ 1.7 meV
at B = 1 T, the quest for Dirac fermions in AG should
aim at relatively weak magnetic field. Miniband struc-
tures in Fig. 2 show EDC ∼ 0.3 meV (note that a good
general estimate of EDC is E0) therefore tolerable mag-
netic fields are hundreds of mT at the most. Similarly, to
keep kT ≪ ~ωc, temperatures in sub-kelvin range may
be needed.

III. EXPERIMENT

To create the required type of potential on the sur-
face of our samples, we fabricated a pattern formed by
holes in triangular symmetry, etched into material. Elec-
tron beam lithography and dry etching processes (Ar+

+ SiCl4) were used to obtain the three samples under
study (A, B and C, see Table I) which have holes etched
to 15-25, 20 and 48 nm in depth. The diameter of
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holes was always 50-70 nm and nearest-neighbour dis-
tance a = 200 nm. Two types of GaAs/AlGaAs het-
erostructures have been used as a starting material: the
first one for the samples A and B, containing a 100 nm
deep 2DEG formed in the 20 nm wide quantum well and
charged by two Si delta-doped layers, 14 nm and 24 nm
under the surface (Fig. 1(c); the second one for the sam-
ple C, which consists of the 115 nm deep 2DEG confined
in a triangular quantum well under one 50 nm wide Si-
doped layer. Modulated areas were covered by a 50 nm
thin layer of gold with a 1×1 mm2 window [Fig. 1(d)].
The samples were placed into a helium-pumped cryo-

stat at T = 2 K, equipped with a superconducting coil
producing the magnetic field up to 13 T. The Fourier
transform spectrometer working down to photon ener-
gies of ~ω ≈ 4 meV, with a globar and mercury lamp as
the radiation sources, was coupled to the cryostat. The
signal was detected using bolometer kept at T = 2 K.
Transmission spectra have been collected with resolutions
down to 0.125 meV. The initial concentration of carriers
in samples before processing was changed as a result of
etching as well as of illumination by visible parts of glo-
bar/mercury lamp emission spectra. Therefore, the ac-
tual concentration has been finally estimated from area of
CR peak as nA,B ∼ 0.8× 1011 cm−2 and nC ∼ 1.8× 1011

cm−2 (see Appendix A for details). The carrier mobility
after processing was estimated to be somewhat in excess
of 105 cm2/(V.s) for all three samples and similar mobil-
ities were inferred also from magneto-transport measure-
ments on samples parent to C.
The electronic bands in our samples have been studied

using methods of Landau level (LL) spectroscopy in far
infrared spectral range. The magneto-transmission spec-
tra of a set of three patterned samples and one reference
sample have been measured. In Fig. 3, typical spectra,
i.e., the transmission of the samples normalized to the
response at B = 0, are presented for fields B = 3−7.5 T.
Transmission spectrum measured on the reference sam-
ple (an unpatterned wafer, the same as used for sam-
ples A and B) exhibited only a single cyclotron-resonance
(CR) mode of the Lorentzian shape having energy of
~ωc. As shown in Figs. 3a-c, the transmission spectra
measured on the patterned samples exhibit double- or
multi-mode CR response at low magnetic fields. Char-
acteristically, these additional modes appears at energies
above ~ωc. This splitting of the CR mode into more com-
ponents vanishes with the increasing B, but at different
fields in different samples, i.e., this splitting depends on
the strength of the modulation potential or the depth of
etched holes. For stronger modulation potential (deeper
holes), the multi-mode CR is visible up to higher mag-
netic fields (see Fig. 4).

INTERPRETATION

The question raised now is what we can learn from
present experiment and whether signatures of Dirac
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FIG. 3. (color online) Relative magneto-transmission spectra
of studied samples A (dholes ≈ 15− 25 nm, d2DEG = 100 nm),
B (dholes = 20 nm, d2DEG = 100 nm) and C (dholes = 48 nm,
d2DEG = 115 nm) in parts (a), (b) and (c), respectively. The
multi-mode character of cyclotron resonance absorption van-
ishes with the increasing magnetic field at B ≈ 5, 6 and 7 T in
the sample A, B and C, respectively. All spectra are shifted
vertically for clarity.

bands have been observed or how far are we from their
observation. As can be sen in Fig. 3, the patterned struc-
tures show noticeably modified spectra, but observed
changes are not as dramatic as we could, even intuitively,
expect in case of a clear formation of Dirac-like electronic
bands. The modulation potential seems to be not strong
enough to incite Bloch waves mimicking Dirac-fermion
physics. Main absorption features still occur close to ~ωc

but in contrast to the cyclotron peak of the unmodulated
2DEG, they exhibit internal structure which disappears
roughly as 1/B (see Fig. 4) in the limit of high mag-
netic fields. Such behavior is suggestive of a perturbative
effect of a potential whose strength becomes gradually
weaker relative to the spacing of LLs. This spacing, the
cyclotron energy ~ωc, then provides the dominant energy
scale and the modulation potential V0 is only a pertur-
bation described by the small parameter V0/~ωc. Data
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FIG. 4. (color online) Fanchart of transitions observed in
studied specimens A, B and C, cf. Fig. 3 (left vertical axis):
Vertical arrows depict magnetic fields at which the multi-
mode character of CR absorption vanishes. The position of
the main CR peak in spectra taken on the sample A is marked
by crosses. The straight line corresponds to the theoretical
CR-line position with an effective mass of m∗ = 0.067m0,
which has been derived from measurements on reference (un-
patterned) sample (not shown in this paper). Lower part of
the figure (right vertical axis) shows derived values of CR-line
splitting ∆E. The dashed line corresponds to the fit of ∆E
for the sample A based on the theoretical model discussed in
the text.

presented in Fig. 3 therefore bear witness to an overly
strong effect of magnetic field that almost washes up the
effect of the modulation potential and, similar to previ-
ous works, e.g., Ref. 8, we fail to observe graphene-like
behavior on grounds of violating the forth criterion (as
defined in Sec. II).
To remedy this shortcoming, measurements at lower

magnetic fields are needed. This is in principle possible
yet beyond the low-energy limit of the employed Fourier
transform spectroscopy. Still, we can draw conclusions
from our experiments regarding the first two criteria de-
scribed in Sec. II. This way we first find how our sam-
ples need to be optimized in the future and second, what
maximum magnetic fields can be employed for studying
the projected graphene features. According to the first-
order perturbation approach,14 the unperturbed energies
En = ~ωc(n+ 1/2) are broadened into bands

En,κx,κy
= En + V0e

−2β2/3Ln(4β
2/3)×

×
{

2 cosβ2(κx + 1√
3
) cos

β2κy√
3

+ cos
2β2κy√

3

} (4)

where β2 = 2π2ℓ20/a
2, ℓ20 = ~/eB and ~κ belongs to the

hexagonal first magnetic Brillouin zone. Owing to special
properties of Laguerre polynomials Ln,

15 optical tran-
sition energies, that are En+1,κx,κy

− En,κx,κy
, can be

rewritten in a simple way. Since we deal with low carrier

concentrations at which only the lowest LL is occupied,
we can restrain ourselves to n = 0,

∆E1,0 = E1,κx,κy
−E0,κx,κy

= ~ωc−
4

3
V0β

2e−2β2/3b(κx, κy)

(5)
where b(κx, κy) denotes the curled bracket of Eq. (4).
The optical transition energy ∆E1,0 enters the absorp-

tion probability α(ω) at a photon frequency ω, see, e.g.,
Ref. 16, upon a transition between n = 0 and n = 1 LLs
measured in our experiments

α1,0 =
2π

~

∫

d2κ

(2π)2
|〈1, κx, κy|px|0, κx, κy〉|2δ(∆E1,0−~ω).

(6)
If we neglect the dipole transition matrix element for the
moment, the characteristics spectral features corresponds
to the van Hove singularities, see Fig. 5, in the the joint
density of states (jDOS):

a(ω) =

∫

d2κ

(2π)2
δ(∆E1,0 − ~ω)f0,κx,κy

(1− f1,κx,κy
),

in which all those transitions at a given energy ~ω =
∆E1,0 count where the initial (n = 0) state is occupied
and the final (n = 1) state is empty, as expressed by
the Fermi-Dirac occupation factors f . At a filling factor
ν = nh/eB = 2, which was assumed in Eq. (6), a(ω) is a
band of the width

w(B) = 6V0β
2e−2β2/3 (7)

situated close to ω = ωc. The width of the band de-
creases with decreasing ν, as the filling of the n = 0 LL
decreases and smaller portions of the magnetic Brillouin
zone become available for transitions. In the limit of very
large B, a(ω) turns into a delta-peak at exactly ω = ωc.
Eq. (7) provides a reasonable basis for interpretation of

experimental data presented in Figs. 3(a)-(c). The peak-
to-peak distance shown as the lower data sets in Fig. 4
follows the magnetic field dependence of w(B) allowing
to extract the values of V0 for the particular sample. It
should be noted that the peak splitting observed in ex-
periments probably does not correspond to the full width
w as calculated using Eq. (7) because the lower edge of

Sample dholes d2DEG V0 ζ

A 15-25 100 2.5 meV 2.4

B 20 100 3.5 meV 2.9

C 48 115 4 meV 4.0

TABLE I. Potential amplitude V0 and the corresponding di-
mensionless parameter ζ for samples A, B and C as derived by
fitting our data using Eq. (7), see text for details. The etching
depths and the distances from 2DEG to the sample surface
are also listed. Following relatively high ζ values, the lattice
parameter reduced down to a ≈ 100 nm would be more ap-
propriate to achieve better defined Dirac cones for the given
modulation strengths V0, see Sec. II.
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modulation. Transitions originating in van Hove singulari-
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and γ. Whereas α and γ are the band edges, β is the loga-
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two neighbouring minima of ∆E10 in ~κ-space (as shown in the
top panel). Part (b): Magnetic field dependence of α, β, γ
jDOS singularities. “Edge” shows the lowest in energy al-
lowed transition, as defined by the position of the Fermi level
(for n = 5.0 × 1010 cm−2). Ec = ~ωc is the cyclotron energy.

the absorption band is suppressed for ν < 2 (this is the
case of B > 2 T and n < 1011cm−2).

However, other features of the absorption band also
scale as cw(B), where 0 < c < 1 is a constant. These fea-
tures are shown in Fig. 5 and correspond to the indicated
transitions of the broadened Landau bands En,κx,κy

. The
first states that become depopulated upon the filling fac-
tor dropping below two (that is when the magnetic field is
increased) are those close to the top of the band. Hence,
the transitions α are the first ones to disappear from the
absorption spectra. We note that the Zeeman splitting εz
is roughly 50× lower than the LL broadening at B = 2 T,
εz = ge~/2m0B ≈ 0.05 meV.

For the remaining two features β and γ, our form of
the potential V (x, y) would imply c = 1/9. However, we
believe that the feature β which leads to a logarithmic
van Hove singularity in the jDOS, may be easily smeared
out. Another candidate for an absorption feature is the
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FIG. 6. (color online) Magneto-transmission spectra taken
on the sample C at B = 4.5 T and four different carrier con-
centrations. The density has been subsequently increased by
exposing the sample to visible light for the indicated times.
The spacing of observed modes clearly decreases with the car-
rier density. The spectra are shifted vertically for clarity.

Fermi edge (transitions from the states close to EF to the
next Landau band) which is also shown in the lower panel
of Fig. 5. Although the Fermi edge does not precisely
scale with w(B), it always appears at frequencies ω ≈ ωc

hence c ≈ 1/3. The values of V0 inferred from fitting
our data, assuming that the splitting of the CR mode
corresponds to 1

3w(B), are shown in Tab. I alongside with
the corresponding ζ.
Splitting of the cyclotron peak in diminishing mag-

netic fields shown in Fig. 3 is also reminiscent of confined
magneto-plasmons (CMP),17 and this circumstance mo-
tivated us to perform a control experiment that excludes
the effect of CMP, as described below. An infinite sys-
tem with the 2DEG at zero magnetic fields can sustain
plasma oscillations18 of wavelength 2π/q at frequency

ωp(q) =
√

e2nq/2m∗εrε0. Under the combined effect
of the confinement and perpendicular magnetic field, the
usual cyclotron resonance mode is experimentally found

to shift from ωc to higher frequencies
√

ω2
c + ω2

p(q); in a

metallic stripe (quantum wire) of width W , the wavevec-
tor is given by q = π/W (see references in Sec. III
of Ref. 20). Numerical simulations based on classical
electrodynamics21 in fact show a whole series of CMP
peaks at frequencies ω > ωc that correspond to integer
multiples of the fundamental wave vector q = π/W .
Viewing our hexagonal modulation as (an array of)

quantum wires with W = a is, of course, a bold ap-
proximation, nevertheless, it can provide us with a rough
estimation of the energy of the lowest confined magneto-
plasmon mode:

ωCPM =

√

ω2
c +

πe2n

2m∗aεrε0
≈ ωc +

πen

4Baεrε0
. (8)

Taking n ∼ 2.5×1010 cm−2, i.e., the carrier density three
times smaller than estimated above, we can reproduce
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our experimental data surprisingly well. Nevertheless,
this agreement is probably only incidental, as the concept
of magneto-plasmons fails to explain experimental data
in Fig. 6. Here we, using external illumination, varied
the electron density in the sample C and observed a clear
decrease of the splitting of modes with the increasing car-
rier concentration, which directly contradicts Eq. (8). In
addition, one does not expect ωCMP to change with the
strength of the modulation, but just opposite behavior is
clearly observed experimentally, see Fig. 4. We thus con-
clude that CMP do not underlie the observed splitting of
the absorption peak.

CONCLUSION

In conclusion, we stated four basic criteria that need
to be met in order to achieve the proposed graphene-like
bands in modulated semiconductor heterostructures, and
thus earn them the name artificial graphene. Splitting
of the cyclotron resonance line observed in far infrared
magneto-optical experiments on laterally patterned sam-
ples allowed us to estimate the strength of the modulation
potential. We found that the samples under study may
be close to meeting criteria (i-iii) formulated in Section II
and in order to comply also with criterion (iv), much
lower magnetic fields (∼ 50 mT) and preferably also
somewhat lower temperatures (below 1 K) should be em-
ployed. This criterion does not seem to be fulfilled (mag-
netic fields too high) in the most recent experiments23

thereby postponing still the first observation of Dirac
fermion physics in artificial graphene to (possibly not too
distant) future.
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Appendix A: Carrier concentration

Theoretical estimates. For the criterion (ii) to be met,
the carrier concentration n must be adjusted appropri-
ately to match the Fermi energies of the first and second
Dirac cones. Taking Fig. 2(c) as an example, EF −E0 ≈
0.15 and 1.2 meV, we estimate the carrier concentration
quoted in the main text by n ≈ (EF −E0)m

∗/π~2 where
E0 ≈ −0.75 meV is the bottom of the miniband struc-
ture. Strictly speaking, density of states belonging to the
miniband structure will fluctuate around the free-2DEG
value m∗/π~2 but it will only lead to corrections of the
desired n that are small compared to the precision with
which we can estimate n experimentally.

Experimental estimate. We assume that the 2D elec-
tron gas is embedded in between two insulating GaAs lay-
ers with a refractive index of ñ ≈ 3.0 in the relevant spec-
tral range. For a detector which is insensitive to polar-
ization of radiation and high-quality sample (ωcτ ≫ 1),
the transmittance is given by T = 1

2 (|t+|2+ |t−|2), where
t+ = 1/(1 + σ+/2ñε0c) and t− ≈ 1, see, e.g., Refs. 19
and 22. If we remain in the limit of weak absorption, we
obtain the sample transmission:

T ≈ 1− Re σ+

2ñε0c
= 1− e2nτ

2ñε0cm∗

1

1 + τ2(ω − ωc)2
,

in terms of optical conductivity σ+, which allows us to
easily estimate the carrier density n in the studied sam-
ples.
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