Univerzita Karlova v Praze Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

Lukáš Šedivý

Úprava struktury defektů v polovodičích CdTe/CdZnTe žíháním v Cd a Te parách.

Fyzikální ústav Univerzity Karlovy Oddělení polovodičů a polovodičové optoelektroniky

Ing. Eduard Belas, CSc., Obecná fyzika

2009

Poděkování

Děkuji všem pracovníkům Oddělení polovodičů a polovodičové optoelektroniky při Fyzikálním ústavu Univerzity Karlovy za podporu a cenné rady.

Obzvláště bych chtěl poděkovat vedoucímu mé bakalářské práce - Ing. Eduardovi Belasovi,CSc - za příkladné vedení při experimentálních měřeních, za pomoc při interpretaci získaných výsledků, jakožto i za cenné rady při konečném zpracováním práce. Jeho rady výrazně přispěly ke zlepšení práce.

Dále bych rád poděkoval Mgr. Marku Bugárovi za některé obrázky a všestrannou pomoc a podporu při zpracování této práce.

A především musím poděkovat svým rodičům, sestře a přátelům za poskytování morální podpory a jazykové korektury.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním.

V Praze dne 6. srpna 2009

Lukáš Šedivý

Obsah

1	Úvo	od	6					
2	Vla 2.1	Vlastnosti <i>CdTe</i> 2.1 Úvod						
	2.2	Fyzikalni vlastnosti	8					
3	Teo	retická část	9					
	3.1	Vlastní defekty v polovodičích	9					
	3.2	Koncentrace elektronů ve vodivostním pásu	9					
	3.3	Elektrická vodivost a pohyblivost nosičů proudu	12					
	3.4	Hallova konstanta	14					
	3.5	Defekty v CdTe	15					
4	Exp	perimentální metody	16					
	4.1	Růst krystalů	16					
	4.2	Příprava vzorků	17					
		4.2.1 Řezání	17					
		4.2.2 Broušení	17					
		4.2.3 Leptání a leštění	17					
	4.3	Měření vodivosti a koncentrace nosičů metodou Van der Pauwa	17					
		4.3.1 Metoda Van der Pauwa	17					
		4.3.2 Příprava kontaktů	19					
		4.3.3 Kontaktování	19					
		4.3.4 Měřící aparatura	20					
	4.4	Bezkontaktní měření měrného elektrického odporu zařízením COREMA	20					
	4.5	Žíhání vzorků v dvojzónové peci	22					
	4.6	Eliminace inkluzí	22					
	4.7	$I\check{C}$ mikroskop	22					
5	Výs	eledky měření a diskuse výsledků	24					
	5.1	Vzorky	24					
	5.2	Měření vodivosti a koncentrace metodou Van der Pauwa	24					
	5.3	Bezkontaktní měření odporu	25					

5.4 Měření vodivosti a koncentrace nosičů náboje po žíhání	$\begin{array}{c} 27\\ 28 \end{array}$
6 Shrnutí a závěr	29
Seznam obrázků	29
Literatura	36

Název práce: Úprava struktury defektů v polovodičích CdTe/CdZnTe žíháním v Cd a Te parách. Autor: Lukáš Šedivý Katedra (ústav): Fyzikální ústav Univerzity Karlovy Vedoucí bakalářské práce: Ing. Eduard Belas, CSc. e-mail vedoucího: belas@karlov.mff.cuni.cz}

Abstrakt: V předložené práci byl studován vliv strukturních defektů na elektrické vlastnosti materiálu CdTe. Byla snaha odstranit strukturní defekty v materiálu při zachování vyhovujících parametrů pro detekci rentgenového a γ -záření. Materiál byl charakterizován pomocí měrného elektrického odporu, koncentrace a pohyblivosti nosičů. Též byly pomocí infračerveného mikroskopu pozorovány telurové inkluze v materiálu.

K charakterizaci elektrických vlastností materiálu byly využity dvě vzájemně nezávislé metody a to sice: (1) měření elektrické vodivosti a Hallovy konstanty metodou Van der Pauwa a (2) měření elektrické vodivosti pomocí bezkontaktní metody na aparatuře COREMA.

Klíčová slova: monokrystal CdTe, strukturní defekty v polovodičích, žíhání v parách kadmia, detektory γ -záření.

Title: Adjustment of defect structure in CdTe/CdZnTe semiconductors by annealing at Cd or Te overpressure. Author: Lukáš Šedivý Department: Institute of Physics of Charles University Supervisor: Ing. Eduard Belas, CSc. Supervisor's e-mail address: belas@karlov.mff.cuni.cz

Abstract: In this thesis, the influence of structural defects on the electrical characteristics of CdTe material was investigated. The performed research focused on the removal of structural defects in the material, while preserving acceptable features for X-ray and γ -radiation detection. The material was characterized by its electrical resistivity and by the concentration and agility of its particles. Tellurium inclusions were observed using infrared microscope.

For the characterization of electrical features of the material, two mutually independent methods were exploited: (1) measuring of electrical conductivity and Hall constant by Van der Pauw method (2) measuring of electrical conductivity by a non-contact method on COREMA system.

Keywords: monocrystal CdTe, structural defects in semiconductors, annealing in cadmium vapour, γ -radiation detectors.

Kapitola 1 Úvod

Tato bakalářská práce je zaměřena na charakterizaci převážně elektrických vlastností polovodiče CdTe. Tyto vlastnosti lze výrazně měnit žíháním v parách Cd a Te. Žíháním lze změnit koncentraci strukturních defektů v materiálu, jež výrazně ovlivňují detekci záření.

Již mnoho let je materiál CdTe považován za vhodného kandidáta na detektory γ záření. Použití stávajících materiálů (Si,Ge, \ldots) jako detektorů přináší některé problémy. Například Si je schopen detekovat pouze nízkoenergetické γ -záření, protože jeho absorpční schopnost je nízká. Ge má absorpční schopnost vyhovující, ale šířka jeho zakázaného pásu je malá, a proto musí být chlazen na teplotu kapalného dusíku, či dokonce kapalného hélia, aby se snížil šum detektoru.

Právě funkčnost detektorů CdTe za pokojové teploty lze využít v mnoha aplikacích. Především jej lze využít v zobrazovacích aplikacích, ať již v medicíně či technické praxi [1].

Struktura předkládané práce je následující. V úvodní kapitole 2 je charakterizován materiál CdTe. Teoretická část práce, obsažena v kapitole 3, definuje základní fyzikální principy aplikované při experimentech. Dále jsou v kapitole 4 uvedeny experimentální metody použité k charakterizaci materiálu, jakožto i experimentální data. Systematicky byly zkoumány elektrické charakteristiky materiálu, přičemž byl kladen důraz na povrchovou úpravu, a většina výsledků byla ověřována vzájemně nezávislými metodami. Získané výsledky měření jsou interpretovány v kapitole 5. Závěrečná kapitola 6 obsahuje především motivaci k dalšímu studiu a možné rozšiřující směry dalšího výzkumu.

Kapitola 2

Vlastnosti CdTe

2.1 Úvod

Polovodiče lze v zásadě rozdělit na jednosložkové a vícesložkové. Mezi významné jednosložkové polovodiče patří například Si a Ge. Vícesložkové polovodiče zpravidla tvoří II - VI či III - V sloučeniny, přičemž římské číslo udává atomovou skupinu. Nejběžněji používaný zástupce III - V sloučenin je GaAs a mezi II - VI sloučeniny patří CdTe.

K výhodám materiálu CdTe patří velká šířka zakázaného pásu, vysoké atomové číslo této sloučeniny $Z \doteq 50$, relativně vysoká hustota materiálu a nízká energie nutná k vytvoření elektron–děrového páru .

Tyto výhody předurčují materiál CdTe k využití v mnoha aplikacích. Je možné využívat jej k detekci záření s možným rozlišením energií (spektroskopické aplikace). Při využití prosté detekce existence záření se jedná hlavně o použití v rámci počítačové tomografie a to ať už v lékařství a nebo v průmyslu. Příkladem dalšího využití jsou neinvazivní metody charakterizace materiálu, monitoring radioaktivních prvků, ať již v jaderných elektrárnách, úložištích jaderného odpadu či zabezpečení jiných podobných pracovišť. Významné využití lze předpokládá i v rámci boje proti terorismu, kde by tento materiál mohl sloužit k odhalování rizik na letištích.

Pro spektroskopické aplikace je možné vyrobit detektory se spektrálním rozlišením. Zde se opět výrazně projeví výhoda použití za pokojové teploty (což umožňuje velká šířka zakázaného pásu), kterou ostatní materiály postrádají.

Detektory se vyrábějí buď jednotlivě nebo ve formě matic. Velikost jednoho pixelu bývá obvykle $25 \times 25 - 100 \times 100 \ \mu m^2$, přičemž čím je menší plocha pixelu, tím výraznější vliv na kvalitu signálu mají vnitřní defekty materiálu [2].

Sirokou oblast uplatnění materiálu CdTe tvoří též aplikace ve fotovoltaice při výrobě solárních článků, jak je uvedeno například v [3].

Materiál CdTe lze též s úspěchem použít jako vysoce kvalitní podložku pro molekulární epitaxi k výrobě úzkopásových polovodičů.

2.2 Fyzikální vlastnosti

CdTe krystalizuje v kubické krystalové struktuře s prostorovou grupou F - 43m. Jeho hustota je $\rho = 5,85 \, g/cm^3$, přičemž hmotnost jedné molekuly je $M = 240,01 \, g/mol$. Krystal CdTe je přímý polovodič se širokým pásmem zakázaných energií (zhruba 1,56 eV při teplotě 300 K). Efektivní hmotnost elektronů je 0,11 m_e a děr 0,4 m_e . Další fyzikální vlastnosti materiálu jsou uvedeny v tabulce 2.1 [2, 3, 4].

Materiálový parametr	Hodnoty
Mřížková konstanta a [Å]	$6,482 \pm 0,001$
Teplota tání [° C]	1092
Teplota varu $[^{\circ}C]$	1130
Relativní permitivita ε_r	10, 2
Pohyblivost elektronů $\mu_e \left[cm^2/Vs \right]$	1050
Pohyblivost děr $\mu_h \left[cm^2/Vs \right]$	100
Magnetická susceptibilita $\chi \left[eV \right]$	4, 5
Tvrdost $[Kg/mm^2]$	50

Tabulka 2.1: Přehled základních fyzikálních vlastností CdTe při teplotě 300 K a tlaku 1 atm

Výhodou materiálu CdTe je možnost jeho výroby s oběma typy vodivostí (n,p), jak ve vysokoodporové, tak vodivé formě. Navíc dopováním lze tyto vlastnosti takřka libovolně měnit. Podrobněji je možnost změny vodivosti rozebrána například v [5, 6].

Kapitola 3

Teoretická část

3.1 Vlastní defekty v polovodičích

Nedopované polovodiče obsahují volné páry elektron – díra, jejichž počet se vzrůstající teplotou stoupá. Elektron i díra jsou elektricky nabité částice. Elektrický proud v látce je způsoben pohybem elektricky nabitých částic. Je-li vodivost polovodiče založena převážně na těchto volných nábojích, říkáme jí *vlastní vodivost*. Ke generování těchto volných párů je třeba polovodiči dodat energii například ve formě teploty, záření,

Umístíme-li však do polovodiče několik málo atomů jiných prvků, kterým přebývá nebo chybí jeden elektron vůči majoritnímu materiálu polovodiče, lze snížit energii nutnou k tomu, aby se v polovodiči vytvořili volné nosiče náboje – vytvoříme tedy specifickou krystalovou poruchu.

Krystalová porucha, která je schopná dodat krystalu volný elektron (např. pětimocná příměs v čtyřmocném krystalu), je nazývána *donor*. Nejnižší energie, nutná k tomu, aby se elektron odtrhl od příměsi se nazývá aktivační energie donoru E_D . Elektrická vodivost způsobená touto poruchou se nazývá *elektronová vodivost* čili *vodivost typu N*.

Krystalová porucha, která je schopná zachytit elektron z majoritního krystalu (např. třímocná příměs v čtyřmocném krystalu) se nazývá *akceptor*. Aktivační energie akceptorů E_A je řádově stejná jako E_D . Elektrická vodivost způsobená touto poruchou se nazývá *děrová vodivost* neboli *vodivost typu P*. [7]

3.2 Koncentrace elektronů ve vodivostním pásu

Koncentraci elektronů ve vodivostním pásu je možno vypočítat za pomoci *Fermi*– *Diracovy statistiky*. Střední počet elektronů nalézajících se na energii E je určen Fermiho rozdělovací funkcí f_0 :

$$f_0(E) = \frac{1}{\exp\left(\frac{E-E_F}{k_B \cdot T}\right) + 1},\tag{3.1}$$

kde k_B je Boltzmanova konstanta, T je absolutní teplota a E_F je Fermiho energie definovaná vztahem (3.2)

$$f_0(E_F) = \frac{1}{2}.$$
 (3.2)

Celková koncentrace volných elektronů ve vodivostním pásu n je dána vztahem (3.3) dle [7, 8, 9]:

$$n = \frac{2}{\sqrt{\pi}} N_C F_{\frac{1}{2}}(\eta), \qquad (3.3)$$

kde N_C je hustota stavů při isotropní efektivní hmotnosti elektronů m_n , dána vztahem (3.4), h je Planckova konstanta
a $F_{\frac{1}{2}}(\eta)$ je Fermiho integrál, definován vztahem (3.5).

$$N_C = 2\left(\frac{2\pi m_n k_B T}{h^2}\right)^{\frac{3}{2}}, \qquad (3.4)$$

$$F_k(\eta) = \int_0^\infty \frac{x^k}{1 + e^{k-\eta}} dx,$$
 (3.5)

kde $x = \frac{E}{k_B T}$ a $\eta = \frac{E_F}{k_B T}$. Při malém zaplnění vodivostního pásu elektrony ($n \ll N_C \Longrightarrow f_0 \ll 1$) lze dle [7] vztah (3.2) zjednodušit na

$$f_0(E) = e^{\eta} e^{-x}. (3.6)$$

To znamená, že koncentraci elektronů lze popsat pomocí Maxwell-Boltzmanovy statistiky. Takovým polovodičům se říká nedegenerované a jejich Fermiho mez leží minimálně $4k_BT$ pod spodním okrajem vodivostního pásu ($\eta \ll 4$). Spočteme-li za těchto podmínek Fermiho integrál (3.5), získáme pro koncentraci elektronů v nedegenerovaných polovodičích vztah

$$n = N_C e^{\eta}. \tag{3.7}$$

Hodnota E_F je závislá na koncentraci elektricky aktivních poruch v krystalu, jejich aktivační energii a teplotě. Při slabé ionizaci poruch v krystalu ji můžeme snadno vypočítat z podmínky elektrické neutrality krystalu jako celku.

1. Vlastní vodivost vzniká přechodem elektronů z valenčního do vodivostního pásu. Fermiho energii můžeme vyjádřit jako funkci $E_F(T, E_g, m_n, m_p)$, kde m_n je efektivní hmotnost elektronu a m_p děr. Při teplotě absolutní nuly (T = 0 K) leží uprostřed zakázaného pásu a se vzrůstající teplotou se jen mírně mění dle (3.8)

$$E_F = \frac{-E_g}{2} + \frac{3}{4}k_B T \ln \frac{m_p}{m_n}.$$
 (3.8)

Dosazením do vztahu (3.7) dojdeme ke koncentraci vlastních elektronů n_i a vlastních děr p_i dané vztahem

$$n_i = p_i = 2\left(\frac{2\pi k_B T}{h^2}\right)^{\frac{3}{2}} (m_n m_p)^{\frac{3}{4}} e^{-\frac{E_g}{2k_B T}}.$$
(3.9)

2. **Příměsový polovodič** s elektronovou vodivostí má koncentraci donorů N_D převažující nad koncentrací akceptorů N_A ($N_D \succ N_A$). Aktivační energie donorů je E_D . Všechny nabité akceptory jsou kompenzovány donory, protože leží na mnohem nižší energetické hladině. Budeme-li uvažovat teplotní interval, v němž lze koncentrace děr ve valenčním pásu zanedbat,dostaneme dle [8] vztah:

$$\frac{n(N_A+n)}{N_D-N_A-n} = \frac{N_C}{2} \cdot e^{-\frac{E_D}{k_B T}}.$$
(3.10)

Vztah (3.10) lze dále zjednodušit za předpokladu slabé ionizace donorů $(k_B T \ll E_D \implies n \ll (N_D - N_A))$. Pro teplotní obor, kde je ještě splněno $(n \ll N_A)$ (oblast 1 v obr. 3.1) dostaneme pro koncentraci elektronů

Obrázek 3.1: Teplotní závislost koncentrace elektronů. Převzato z [7]

$$n = \frac{N_D - N_A}{N_A} \cdot \frac{N_C}{2} \cdot e^{-\frac{E_D}{k_B T}}.$$
 (3.11)

Pokud naopak platí v nějakém intervalu (
 $n\gg N_A),$ pak dostaneme

$$n = \sqrt{\frac{(N_D - N_A)N_C}{2}} \cdot e^{-\frac{E_D}{k_B T}}.$$
 (3.12)

K Fermiho energii poté dojdeme jednoduchým porovnáním vztahu (3.11), respektive (3.12) se vztahem (3.7), a dostáváme

(a) Pro $(n \ll N_A)$

$$E_F = -E_D + k_B T \ln\left(\frac{N_D - N_A}{2N_A}\right). \tag{3.13}$$

(b) Pro $(n \gg N_A)$

$$E_F = -\frac{E_D}{2} + \frac{1}{2}k_B T \ln\left(\frac{N_D - N_A}{N_C}\right).$$
 (3.14)

(c) Pro úplnou ionizaci donorů $(E_D \ll k_B T)$ je koncentrace rovna

$$n = N_D - N_A.$$
 (3.15)

3.3 Elektrická vodivost a pohyblivost nosičů proudu

 $M\check{e}rn\acute{a}$ elektrická vodivost σ je definována jako konstanta úměrnosti v Ohmově zákonu [2, 7], tedy

$$\mathbf{j} = \sigma \mathbf{E}, \tag{3.16}$$

kde \mathbf{j} je elektrický proud a \mathbf{E} intenzita elektrického pole.

Hodnota měrné vodivosti je závislá na pohyblivosti nosičů náboje a jejich koncentraci

$$\sigma = e n \mu_n + e p \mu_p = \sigma_n + \sigma_p \tag{3.17}$$

kde *e* je náboj elektronu, *n*, respektive *p* je počet volných elektronů, respektive děr, μ_n , respektive μ_p je pohyblivost těchto částic.

Pohyblivost nosičů je závislá na druhu jejich rozptylu v látce a je charakterizována střední dobou mezi dvěma srážkami elektronů. Této době se říká relaxační doba τ a je charakterizována střední volnou dráhou $\langle l \rangle = v \langle \tau \rangle$, kde v je střední tepelná rychlost. Pro pohyblivost tedy platí

$$\mu_i = \frac{e}{m_i} \langle \tau_i \rangle, \qquad (3.18)$$

kde i = n, p.

Rozptyl nosičů proudu je zapříčiněn jednak tepelnými kmity atomů či iontů, jednak cizími atomy, a také poruchami v krystalové mřížce. Pro výslednou relaxační dobu platí dle [7] vztah

$$\frac{1}{\tau} = \frac{1}{\tau_L} + \frac{1}{\tau_0} + \frac{1}{\tau_I}, \qquad (3.19)$$

kde τ_L je relaxační doba zapříčiněná rozptylem nosičů na akustických kmitech mříže, τ_0 rozptylem na podélných optických fononech a τ_I rozptylem na ionizovaných příměsích (tedy donorech a akceptorech).

Pro všechny druhy rozptylu pak platí

$$\tau_k = C_k(T)x^s, \qquad (3.20)$$

kde $C_k(T)$ je konstanta závislá na teplotě, x je redukovaná kinetická energie nosiče a s je exponent závislý na typu rozptylu a to následovně

- Rozptyl na akustických kmitech mříže $s = -\frac{1}{2}$
- Rozptyl na ionizovaných příměsích $s = \frac{3}{2}$
- Rozptyl na optických kmitech mříže je exponent funkcí teploty $s(T) \in (0; \frac{1}{2}).$

Výslednou pohyblivost lze pak za předpokladu rozptylu na akustických kmitech mříže (μ_L) a ionizovaných příměsích (μ_I) přibližně určit ze vztahu

$$\frac{1}{\mu} \simeq \frac{1}{\mu_L} + \frac{1}{\mu_I} = AT^{\frac{3}{2}} + BT^{-\frac{3}{2}}, \qquad (3.21)$$

kde A, B jsou konstanty nezávislé na teplotě.

Pro pohyblivost μ_0 , ovlivněnou pouze rozptylem na optických kmitech mříže, platí

$$\mu_0 = DT^{\frac{1}{2}}(e^{\frac{\Theta}{T}} - 1), \qquad (3.22)$$

kde *D* je faktor slabě závislý na teplotě a $\Theta = \frac{h\omega_0}{2\pi k_B}$ je takzvaná charakteristická teplota, přičemž $\frac{h\omega_0}{2\pi}$ je energie optického fononu.

3.4 Hallova konstanta

Je-li krystal umístěn do magnetického pole o indukci B_z , kolmého na směr protékajícího proudu J_x , dochází ke stočení drah nosičů náboje ve vzorku ve směru osy y vlivem Lorentzovy síly. Tyto nosiče vytvoří příčné elektrické pole E_y , pro které platí

$$E_y = R_H B_z J_x, \tag{3.23}$$

kde R_H je Hallova konstanta. Pro Hallovu konstantu obecně platí

$$R_H = -r_H \frac{n\mu_n^2 - p\mu_p^2}{e(n\mu_n - p\mu_p)^2},$$
(3.24)

kde r_H je rozptylový faktor, definovaný jako

$$r_H = \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2}, \tag{3.25}$$

kde τ je relaxační doba, jejíž závislost je značně složitá (více informací lze nalézt například v [7]).

Hallův úhel ϑ odchýlení $\mathbf{E}(E_x, E_y, E_z)$ od osy x je popsán vztahem

$$\tan \vartheta = \frac{E_y}{E_x} = \mu_H B_z, \qquad (3.26)$$

kde μ_H je Hallova pohyblivost.

Pro polovodič s pouze děrovou nebo elektronovou vodivostí platí ze vztahu (3.24) pro Hallovu konstantu zjednodušené vztahy

1. polovodič typu P (n = 0)

$$R_H = r_h \frac{1}{e \cdot p}.\tag{3.27}$$

2. polovodič typu N (p = 0)

$$R_H = -r_h \frac{1}{e \cdot n}.\tag{3.28}$$

Protože lze svázat Hallovu konstantu R_H s Hallov
u pohyblivostí μ_H přes vodivost σ vztahem

$$\mu_H = |R_H \sigma_n| = r_H \mu_n, \tag{3.29}$$

lze z teplotní závislosti R_H a σ_n určit rozptylový mechanismus nosičů proudu.

3.5 Defekty v CdTe

Dominantními bodovými defekty v CdTe dle [4] jsou

- 1. Vakance po kadmiu (v krystalové mřížce chybí Cd atom), která se chová jako akceptor.
- 2. *Intersticiální atom Cd* (atom se nachází v mezi uzlové pozici). Tento defekt se chová naopak jako donor.
- 3. Antisite defekt (Te leží ve vakanci po Cd). Defekt se též chová jako donor.

Cizí příměsi vytvářejí substituční akceptory či donory nebo akceptorové komplexy s bodovými defekty (A-centrum).

V materiálu se také často nacházejí shluky jednotlivých složek – *inkluze* a *precipi-táty. Inkluze* vznikající při krystalizaci materiálu vlivem nestejného složení taveniny a pevné fáze na krystalizačním rozhraní. Během růstu krystalu není tavenina CdTe na krystalizačním rozhraní dokonale homogenní a utuhne lokálně v ne-stechiometrickém poměru.

Precipitáty vznikají při chlazení krystalu vlivem zmenšené rozpustnosti defektů.

Kapitola 4 Experimentální metody

4.1 Růst krystalů

Krystal CdTe byl vypěstován Bridgmanovou metodou, při které je polykrystal CdTeuzavřen v evakuované křemenné ampuli. Pod krystalem je kadmium (Cd). Celá tato ampule je umístěna v teplotním gradientu tak, aby polykrystalická směs byla roztavena na taveninu o teplotě T_1 , a kadmium mělo teplotu T_2 . Přičemž platí $T_1 > T_2$. Pomocí teploty T_2 lze kontrolovat tlak Cd par nad taveninou CdTe, a tím i poměr Cd : Te vkrystalu. Během růstu krystalu se pohybuje buď s celou ampulí z teplotní zóny teploty T_1 do teplotní zóny T_2 anebo naopak křemenná ampule zůstává nehybná a změnu gradientu vyvolává pohyb pece kolem ampule. Podrobněji je metoda znázorněna na obrázku (4.1).

Obrázek 4.1: Ilustrační schéma růstu krystalu Bridgmanovou metodou, přičemž zde je ke změně gradientu využit pohyb ampule

4.2 Příprava vzorků

4.2.1 Řezání

Vypěstovaný krystal ve formě válce o průměru zhruba 5 *cm* byl rozřezán na planparalelní desky pomocí pily s diamantovým drátem. K přítlaku pily bylo použito závaží a síla přítlaku je dána gravitací.

Destičky byly obroušeny hrubším brusivem tak, aby se zvýraznily hranice jednotlivých zrn monokrystalu.

Z těchto zrn byly vyřezány výsledné monokrystalické vzorky obdélníkového tvaru tak, aby výtěžnost z jednoho řezu byla maximální. K tomuto řezání byla použita jiná pila s ocelovým drátem a jemným brusivem. Tato pila je opatřena mikrometrickým šroubem pro přesné nastavení rozměrů vzorku. K přítlaku byla opět použita gravitace.

4.2.2 Broušení

Vyříznutý vzorek byl opět obroušen ze všech stran v jemném brusivu rozmíchaném s vodou. Bylo třeba brousit opatrně, aby se krystal neodštípl a aby hrany zůstaly kolmé.

Po ukončení broušení byl vzorek opláchnut v roztocích destilovaná voda + aceton a vysušen proudem stlačeného čistého vzduchu.

4.2.3 Leptání a leštění

Protože mechanické broušení vytváří na povrchu porušenou vrstvu, je třeba povrch vzorku chemicky odleptat a případně chemicko-mechanicky vyleštit.

Leptání bylo prováděno v 4% roztoku Br v methanolu. Po skončení byl vzorek opláchnut v roztocích methanol + aceton a vysušen čistým vzduchem.

Chemicko–mechanicky byl vzorek leštěn v 4% roztoku Br v *ethylenglykolu*. Chemicko–mechanické leštění bylo provedeno ve standardní leštící soupravě cca 1 *min*. Po skončení leštění byl vzorek krátce leptán v 4% roztoku Br v *methanolu*.

4.3 Měření vodivosti a koncentrace nosičů metodou Van der Pauwa

4.3.1 Metoda Van der Pauwa

Elektrická vodivost a Hallova konstanta byla měřena metodou *Van der Pauwa*, která je odvozena od klasické šestibodové metody. Metoda Van der Pauwa (obrázek 4.3 a 4.2) je obzvláště vhodná pro měření tenkých planparalelních vzorků nepravidelného tvaru.

Předpokládáme, že na kontaktech nevzniká Schottkyho bariéra [3]. Tedy, že se jedná o ohmické kontakty. Definujeme-li $R_1 = \frac{U_{34}}{I_{12}}$ a $R_2 = \frac{U_{14}}{I_{23}}$ (viz obrázek 4.2), pak platí vztah (4.1)

Obrázek 4.2: Měření měrné elektrické vodivosti σ a zapojení vzorku pro R_1 a $R_2.$ Převzaté z [10]

Obrázek 4.3: Měření Hallovy konstanty R_H . Převzaté z [10]

$$1 \equiv \exp\left(-\frac{\pi d}{\rho}R_1\right) + \exp\left(-\frac{\pi d}{\rho}R_2\right), \qquad (4.1)$$

kde d je tloušťka vzorku.

Potom pro měrnou elektrickou vodivost σ platí

$$\frac{1}{\sigma} = \frac{\pi d}{\ln 2} \left(\frac{R_1 + R_2}{2} \right) f, \qquad (4.2)$$

kdefje opravná funkce na geometrickou ne-symetrii kontaktů definovaná vztahem

$$\cosh\left(\frac{\left(\frac{R_1}{R_2}\right) - 1}{\left(\frac{R_1}{R_2}\right) + 1}\frac{\ln 2}{f}\right) = \frac{1}{2}\exp\left(\frac{\ln 2}{f}\right),\tag{4.3}$$

Hallovu konstantu určíme ze vztahu

$$R_H = \frac{d}{B_Z} \left(\frac{U_{24}^0 - U_{24}^H}{I_{13}} \right), \qquad (4.4)$$

kde B_Z je velikost magnetického pole orientovaného kolmo k rovině kontaktů, U^0 napětí bez sepnutého magnetického pole a U^H napětí se sepnutým polem.

Koncentraci volných nosičů lze pak určit ze vztahu (4.5).

$$n,p = \frac{1}{eR_H},\tag{4.5}$$

kde e je elementární náboj elektronu.

4.3.2 Příprava kontaktů

Optimální tvar vzorku a poloha kontaktů jsou znázorněny na obrázku (4.4).

Obrázek 4.4: Geometrické uspořádání používané při měření Hallovy konstanty a elektrické vodivosti metodou Van der Pauwa. Převzaté z [11]

Všechny vzorky byly chemicky leptány v Br - methanolu před samotnou přípravou kontaktů. Poté byl celý vzorek pokryt fotorezistem, mimo místa, kde jsou uchycovány kontakty způsobem, který je znázorněn na obrázku (4.5).

Obrázek 4.5: Pokrytí vzorku fotorezistem symbolizuje červená barva

Po vytvrzení fotorezistu byl vzorek i s podložkou namočen do 10% vodného roztoku $AuCl_3$ na 1 min. Zlato se vysráží na nechráněném povrchu a vytvoří tak zlatý kontakt. Poté byl vzorek opláchnut v roztocích destilovan voda + aceton a osušen.

4.3.3 Kontaktování

Vzorek se zlatými kontakty byl přilepen tepelně vodivou silikonovou pastou na podložku s vyvedenými zlatými kontakty pro snadné spojení s experimentální aparaturou. Au kontakty na vzorku byli aktivovány kyselinou mléčnou $(CH_3 - CHOH - COOH)$ a

na zlaté plošky byly indiem připájeny stříbrné drátky, které byli k podložce připojeny stříbrnou pastou.

4.3.4 Měřící aparatura

Měření Hallovy konstanty a elektrické vodivosti bylo provedeno na aparatuře (Obrázek 4.6). Díky automatické přepínací kartě **Keithley 7065** bylo možné nechat počítač automaticky přepínat mezi různými kombinacemi vstupního proudu a měřeného napětí na kontaktech vzorku. Nevýhodou byl však fakt, že na kartu lze přiložit maximální napětí 10 V, což umožňovalo měření vysoko odporových vzorků pouze za nízké hodnoty kontaktního napětí. Velikost vstupního proudu, jež přímo ovlivňuje vstupní napětí, byla kontrolována pikoampermetrem **Keithley 485**. K měření výstupního napětí byl použit multimetr **Keithley 2000** a jako zdroj proudu byl použit **Keithley 220**. Celá aparatura byla připojena k počítači.

Obrázek 4.6: Schématické zapojení aparatury pro měření Hallovy konstanty R_H , měrného elektrického odporu ρ , pohyblivosti a koncetraci volných nosičů náboje. Obrázek převzatý z [2]

4.4 Bezkontaktní měření měrného elektrického odporu zařízením COREMA

Pomocí této aparatury lze měřit měrný elektrický odpor v rozmezí hodnot $\rho \in (10^5 - 10^{12}) \Omega cm$ bez nutnosti kontaktovat vzorky, přičemž je možné zároveň lokálně měřit měrný odpor i vytvořit mapu měrného odporu přes celý vzorek [12].

Základem metody je měření změny kapacity mezi dvěma deskami rovinného kondenzátoru (elektrodami). Lokální odpor vzorku R_S je definován vztahem (4.6) a lokální kapacita C_S definovaná vztahem (4.7)

$$R_S = \rho \frac{d}{A}, \tag{4.6}$$

kde d je tloušťka vzorku, $\rho = \frac{1}{\sigma}$ je měrný odpor a A je plocha čtecí elektrody.

$$C_S = \varepsilon_r \varepsilon_0 \frac{A}{d}, \tag{4.7}$$

kde ε_r je relativní permitivita
a ε_0 je permitivita vakua Pak platí vztah

$$C_S R_S = \rho \varepsilon_r \varepsilon_0. \tag{4.8}$$

Pro celkovou kapacitu C platí

$$C = \frac{C_a C_S}{C_a + C_S},\tag{4.9}$$

kde ${\cal C}_a$ je kapacita vzduchové vrstvy. Kapacit
a ${\cal C}$ není konstantní v čase. Pro počáteční kapacitu platí

$$Q(0) = CU, \tag{4.10}$$

kde Q je náboj a U napětí.

S rostoucím časem kapacita C_S klesá díky vybíjení přes odpor vzorku R_S . V okamžiku, kdy se tato kapacita kompletně vybije, platí pro náboj

$$Q(\infty) = C_a U. \tag{4.11}$$

Okamžitý náboj je tedy dán vztahem

$$Q(t) = \frac{C_a^2}{C_a + C_S} U(1 - e^{-\frac{t}{\tau}}) + Q(0), \qquad (4.12)$$

kde vybíjecí konstanta τ je definována

$$\tau = R_S(C_a + C_S). \tag{4.13}$$

Vztahem (4.12) lze nafitovat změřený signál, čímž lze zjistit τ a dosazením do (4.13) nalézt hledané R_s .

4.5 Žíhání vzorků v dvojzónové peci

Vzorek byl umístěn do ampule tak, aby byl oddělen od žíhané látky trubičkou s kapilárou. Ampule byla evakuovaná $(10^{-8} - 10^{-9} bar)$ a zatavena. Pec je tvořena dvěma navzájem nezávislými vinutími odporového drátu, přičemž každé vinutí je kontrolováno vlastním regulátorem. V dvouzónové peci lze pomocí teploty kontrolovat tlak Cd par. Ampule byla umístěna v peci tak, aby se vzorek nacházel na teplotě T_1 a teplota T_2 regulovala tlak kadmiových par. Detailní uspořádání je vyobrazeno na obrázku (4.7).

Obrázek 4.7: Žíhání

4.6 Eliminace inkluzí

Telurové inkluze vzniklé v krystalu s nadbytkem teluru, je možné krystal žíhat v kadmiových parách [2, 13, 14, 15]. Průběh žíhání lze regulovat teplotou žíhaného krystalu a tlakem nasycených Cd par, jež lze regulovat teplotou v nejchladnějším místě zatavené ampule [2]. Takto nad krystalem s přebytkem Te žíhaném v nasycených Cd parách vzniká velký gradient chemického potenciálu mezi krystalem a okolními parami kadmia. Přirozeným dějem (difusí) se tento gradient sníží, což vede pronikání kadmia do vzorku a naopak k unikání přebytečného teluru z krystalu.

Vlivu žíhání se věnovalo mnoho předchozích prací, mezi jinými uveď me například [2, 13, 14, 15, 16, 18].

4.7 Charakterizace inkluzí pomocí infračerveného mikroskopu

Inkluze lze pozorovat infračerveným mikroskopem z důvodu dobré absorbce IC záření v kadmiu i teluru a relativně vysoké propustnosti CdTe.

Inkluze v materiálu byly pozorovány inverzním optickým infračerveným mikroskopem **Olympus-IX70**. Zdrojem infračerveného světla je halogenová lampa, k snímání signálu světla prošlého vzorkem je použita CCD kamera **Pulnix-TM765**. Citlivá oblast, $8.8 \times 6.6 \, mm$, je rastrována (756 × 581) pixely, jejichž velikost je (11 × 11 μm) [19].

Poměr signálu k šumu je nízký $\frac{S}{N} = 50 \, dB$. Signál byl zpracován v programu NISelements AR/BR v. 3.0. Rozlišení obrazu bylo $0.5 \, \mu m$ [2, 19].

Kapitola 5

Výsledky měření a diskuse výsledků

5.1 Vzorky

Během experimentu byly zkoumány vzorky z jednoho krystalu CdTe, který byl dopován indiem. Koncentrace india v materiálu byla $[In] \sim 5 \cdot 10^{15} \, cm^{-3}$.

Pro experiment byly použity vzorky **B39J** a **B39V**, kde **B** je typ růstové pece, **39** je číslo vypěstovaného krystalu a písmeno **J**, respektive **V**, označuje pořadí uříznuté desky od počátku krystalu.

Tyto desky byly rozřezány na monokrystalické vzorky přibližně obdélníkového tvaru. Jejich rozměry jsou uvedeny v tabulkách (5.1 - 5.2).

Vzorky	a	b	d
	[mm]	[mm]	[mm]
$B39J_{1}$	10,18	10, 20	2,15
$B39J_2$	9,57	8,60	2,09
$B39J_3$	8,59	7,62	2,06
$B39J_4$	10, 21	8,81	2,07
$B39J_{5}$	7,72	6, 10	1,99
$B39J_6$	5,22	7,66	1,97

Tabulka 5.1: Velikost vzorků z desky **B39J**

Vzorky	a	b	d
	[mm]	[mm]	[mm]
B39V1	8,87	8,91	1,85
B39V2	8,90	8,75	1,90
B39V3	7,81	7, 27	1,89
B39V4	6,80	8,71	1,88
B39V5	5,85	5,36	1,90

Tabulka 5.2: Velikost vzorků z desky **B39V**

5.2 Měření vodivosti a koncentrace metodou Van der Pauwa

V následující tabulce (5.3) jsou uvedeny hodnoty měrného odporu ρ_1 , respektive ρ_2 , naměřené pro jednotlivé kombinace zapojení (viz obrázek 4.2). ρ_1 odpovídá zapojení ampérmetru na kontakty 1, 2, respektive 2, 3, a tomu odpovídající zapojení ostatních komponent. ρ_2 naopak odpovídá zapojení 3, 4, respektive 1, 4. Stejným myšlenkovým procesem lze získat hodnoty koncentrací n_1 , n_2 a pohyblivostí μ_1 , μ_2 . Z hodnot ρ_i , n_i a μ_i , kde i = 1, 2 lze usuzovat na homogenitu vzorku.

Též je zde uvedena koncentrace nosičů n_1 , respektive n_2 , a jejich pohyblivost μ_1 , respektive μ_2 . Protože tato metoda vyžaduje dokonale planparalelní povrch vzorku, připravené vzorky byly po prvních měřeních zbroušeny v držáku, jež zajišťoval dokonale planparalelní obroušení. Takto opracované vzorky značí dolní index a.

U vzorku $B39V3_a$ je možné pozorovat výrazně jiné hodnoty než u ostatních vzorků. Během měření bylo vidět, že vzorek se chová velmi nehomogenně. Proto hodnoty pohyblivosti a koncentrace nejsou reálné. Z tohoto důvodu nebyl tento vzorek do dalších úvah zahrnut. Naopak vzorky $B39V2_a$, $B39J1_a$ a $B39J2_a$ byly velmi homogenní. U vzorků z J vrstvy byla zjištěna vyšší homogenita, z čehož lze usuzovat, že jsou prostřední části krystalového ingotu kvalitnější.

Vzorek	d	ρ_1	ρ_2	n_1	n_2	μ_1	μ_2
	[mm]	$[\Omega cm]$	$[\Omega cm]$	$[cm^{-3}]$	$[cm^{-3}]$	$\left[\frac{cm^2}{V \cdot s}\right]$	$\left[\frac{cm^2}{V \cdot s}\right]$
B39V1	1,85	$1,41 \times 10^{9}$	$1,52 \times 10^{9}$	$5,3 \times 10^7$	$4, 5 \times 10^{7}$	100	96
B39J1	2,15	$0,97 \times 10^{9}$	$1,01 \times 10^{9}$	$5,8 \times 10^6$	$6,5 \times 10^{6}$	1120	1063
$B39V2_a$	1,90	$1,38 \times 10^{9}$	$1,39 \times 10^{9}$	$4,3 \times 10^6$	$4,3 imes 10^6$	1113	1116
$B39V3_a$	1,89	$3,65 \times 10^{5}$	$3,62 \times 10^{5}$	$3,9 \times 10^{13}$	$3, 1 \times 10^{13}$	0,86	1, 19
$B39J1_a$	1,70	$6,39 \times 10^{9}$	$6,61 \times 10^{9}$	$8,5 imes 10^6$	$18,9 \times 10^{6}$	1150	509
$B39J2_a$	2,09	$0,81 \times 10^9$	$0,82 \times 10^{9}$	$6,7 \times 10^6$	$1,6 \times 10^7$	1180	490

Tabulka 5.3: Měrný elektrický odpor $\rho,$ koncentrace na pohyblivost μ nosičů

Též bylo měřeno snížení odporu $\Delta \rho$ při osvitu vzorku stolní lampičkou, takzvaný foto-odpor. Vysoký rozdíl odporu bez osvětlení z a odporu s osvitem (tabulka 5.4) je nutný parametr u kvalitních detektorů. Nechť $\Delta \rho = \frac{\rho^{temne}}{\rho^{osviceno}}$, kde $\rho^{osviceno}$ je měrný odpor při osvíceném vzorku a ρ^{temne} je měřeno při neosvíceném vzorku. Vysoké $\Delta \rho$ je dobré kritérium k výběru vhodných kandidátů k výrobě detektorů.

Vz	zorek	d	ρ_1^{temne}	$ ho_2^{temne}$	$\rho_1^{Oviceno}$	$\rho_2^{Oviceno}$	$\Delta \rho_1$	Δho_2
		[mm]	$[\Omega cm]$	$[\Omega cm]$	$[\Omega cm]$	$[\Omega cm]$		
B3	$39V2_a$	1,90	$1,38 \times 10^{9}$	$1,39 \times 10^{9}$	$3,49 \times 10^{5}$	$3,48 \times 10^{5}$	$3,95 \times 10^3$	$3,99 \times 10^3$
B3	$39J1_{a}$	1,70	$6,39 \times 10^{9}$	$6,61 \times 10^{9}$	$5,50 \times 10^4$	$1,10 \times 10^{5}$	$1,16 \times 10^{5}$	$6,01 \times 10^{4}$
Ba	$39J2_a$	2,09	$0,81 \times 10^{9}$	$0,82 \times 10^9$	$8,40 \times 10^{4}$	$5,50 \times 10^4$	$9,64 \times 10^{3}$	$1,49 \times 10^4$

Tabulka 5.4: Měrný elektrický odpor ρ při osvíceném vzorku

5.3 Bezkontaktní měření odporu

Bezkontaktní metodou byly změřeny mapy měrného odporu některých vzorků bez osvětlení a s osvětlením. V obrazové příloze je uvedena mapa odporu pro vzorek **B39V2** bez osvětlení (Mapa 1). V mapě je uvedena průměrná hodnota odporu ($Mean = \rho^C$) spolu se svou chybou (Stdv).

$$\rho^C = (2,93 \pm 0.34) \times 10^9 \,\Omega \cdot cm$$

Též jsou zde uvedeny maximální ($Max = \rho^C_{Max})$ a minimální ($Min = \rho^C_{Max}$ hodnoty odporu.

$$\begin{array}{rcl} \rho^C_{Max} &=& 4,17\times 10^9\,\Omega\cdot cm\\ \rho^V_{Min} &=& 2,44\times 10^9\,\Omega\cdot cm \end{array}$$

Je vidět, že extremální hodnoty se od průměrné hodnoty příliš neliší. Lze tedy tvrdit, že vzorek je poměrně homogenní.

Obdobná mapa byla naměřena pro vzorek **B39V2** po osvitu (Mapa 2). Přičemž výsledné hodnoty jsou

$$\rho^{C} = (3, 47 \pm 0.74) \times 10^{6} \,\Omega \cdot cm$$

$$\rho^{C}_{Max} = 8, 40 \times 10^{9} \,\Omega \cdot cm$$

$$\rho^{V}_{Min} = 1,91 \times 10^{9} \,\Omega \cdot cm$$

Z dosažených výsledků dostaneme

$$\Delta \rho = 8,44 \times 10^2 \,\Omega \cdot cm$$

Lze předpokládat, že tento vzorek bude dobrý detektor. Stejné měření bylo provedeno pro vzorek **B39V5** (Mapa 3).

$$\rho^{C} = (2, 73 \pm 0.19) \times 10^{9} \,\Omega \cdot cm$$

$$\rho^{C}_{Max} = 3,36 \times 10^{9} \,\Omega \cdot cm$$

$$\rho^{V}_{Min} = 2,28 \times 10^{9} \,\Omega \cdot cm$$

Osvícený vzorek **B39V5** nebylo možné měřit, protože jeho jeho odpor je tak malý a přesahuje rozlišovací schopnosti metody.

Pokusil jsem se porovnat výsledky obou metod měření elektrického odporu, tedy měření metodou Van der Pauwa a bezkontaktní měření přístrojem COREMA. Jako referenční vzorek byl zvolen planparalelně vyleštěný vzorek B39V5. Označme ρ_C hodnotu měrného odporu naměřenou přístroje COREMA (Mapa 4), ρ_1^H , respektive ρ_2^H jsou hodnoty měrného odporu měřeného metodou Van der Pauwa:

$$\begin{array}{rcl} \rho^{C} &=& 2,73\times 10^{9}\,\Omega cm \\ \rho^{H}_{1} &=& 1,24\times 10^{9}\,\Omega cm \\ \rho^{H}_{2} &=& 1,23\times 10^{9}\,\Omega cm \end{array}$$

Je patrné, že získané hodnoty přístrojem COREMA jsou zhruba 2,2 krát větší než výsledky získané z měření metodou Van der Pauwa, které vykazují velmi dobrou homogenitu vzorku. Dominantní vliv na chybu měření nebyl určen. Pro zpřesnění hodnoty odporu měřeného přístrojem COREMA by bylo nutné podrobněji měřit odpor na větší sadě vzorků. Tato měření však dalece převyšují možnosti této práce a budu se jim nadále věnovat. Chyba je zřejmě částečně způsobena také nepřesnou hodnotou permitivity ε_r pro materiál CdTe, která byla získána z literatury [20]. Pro zpřesnění hodnot odporu získaných přístrojem COREMA by bylo nutné přesněji určit relativní permitivitu ε_r .

5.4 Měření vodivosti a koncentrace nosičů náboje po žíhání

Před žíháním byly proměřeny elektrické vlastnosti vysoko-odporového vzorku B39J2a byl učen typ jeho vodivosti. Poté byl vzorek žíhán v saturovaném tlaku kadmiových parách, za podmínek (697/655 °C +499/472 °C), kde číslo před lomítkem udává teplotu vzorku a hodnota za lomítkem je teplota kadmiových par. Poté na něm byl změřen měrný odpor ρ , pohyblivost μ , koncentrace C nosičů a typ vodivosti. Bylo zjištěno, že po žíhání v parách Cd vzniká na povrchu vzorku vodivá vrstva s tloušťkou $h \simeq 100 \mu m$. Tato vrstva zřejmě vznikla difuzí nečistot z vnitřku vzorku k povrchu během žíhání.

Elektrické vlastnosti byly měřeny jak na vzorku hned po žíhání, tak na vzorku, který byl ze všech stran obroušen o 150 μm a chemicko–mechanicky vyleštěn. Porovnání vlastností vzorku před žíháním a po žíhání, jak neodleptaného vzorku (index NL) tak odleptaného (značeno indexem L) je v tabulce (5.5). Jednou žíhaný vzorek je značen horním indexem Z_I .

V tabulce (5.5) je vidět, jak se vzorek stal více homogenním, jakmile byla odstraněna povrchová vrstva materiálu, ve která bylo nejvíce nečistot. Též je možné si povšimnout, že měrný odpor po prvním žíhání výrazně klesl (9 řádů). Žíháním v saturovaných parách kadmia dochází ke snížení koncentrace vakancí V_{Cd} a k anihilaci jednotlivých komplexů. V indiem dopovaném vzorku zůstává dominantní mělký donor In_{Cd} (mělký znamená, že jeho energetická hladina se nalézá v blízkosti vodivostního pásu). Po ochlazení na pokojovou teplotu proto získáme materiál typu **N**.

Cílem celého experimentu bylo nalezení podmínek žíhání, které vedou k vytvoření vysoko odporového materiálu. Proto bylo nutné vzorek žíhat ve sníženém tlaku par kadmia, nebo v tlaku par teluru, aby došlo k vytvoření dostatečného množství vakancí po kadmiu, které budou kompenzovat mělký donor In_{Cd} .

Proto byl vzorek B39J2 znovu žíhán dvoustupňově za podmínek (700/673 °C + 452/309 °C). Toto žíhání je označeno indexem Z_{II} . Tlak kadmia nad vzorkem za těchto podmínek by výrazně menší než v předchozím případě. Docházelo tedy k difuzi kadmia z vzorku.

Po opětovném žíháním (Z_{II}) odpor stoupl. Navíc typ vodivosti se změnil na **P**. Je tedy pravděpodobné, že vysoko-odoporový vzorek lze vyrobit žíháním vzorku za podmínek z intervalu: (697/655 °C +499/472 °C) - (700/673 °C +452/309 °C). Metodou "půlení intervalu" by principiálně bylo možné nalézt takové podmínky žíhání, aby vznikl vysoko-odporový vzorek s plně kompenzovanými donory a bez kadmiových vakancí. Provedení tohoto experimentu je však časově velmi náročné a dalekosáhle přesahuje možnosti této práce.

Vzorek	Typ	d	$ ho_1$	$ ho_2$	C_1	C_2	μ_1	μ_2
		[mm]	$[\Omega cm]$	$[\Omega cm^3]$	$[cm^{-3}]$	$[cm^{-3}]$	$\left[\frac{cm^2}{V \cdot s}\right]$	$\left[\frac{cm^2}{V \cdot s}\right]$
B39J2	N	2,09	$0,81 \times 10^{9}$	$0,82 \times 10^{9}$	$6,7 \times 10^{6}$	$1,60 \times 10^7$	1180	490
$B39J2_{NL}^{Z_I}$	N	2,09	4,70	4,80	$1,7 imes 10^{15}$	$9,50 imes10^{14}$	770	1377
$B39J2_L^{Z_I}$	N	1,60	4,51	4,52	$9,45 \times 10^{14}$	$9,46\times10^{14}$	1463	1462
$B39J2_{NL}^{Z_{II}}$	P	1,50	$2,85\times 10^2$	$2,99\times 10^2$	$3,91 \times 10^{14}$	$4,34\times10^{14}$	56	49
$B39J2_L^{\overline{Z_{II}}}$	P	1,20	$2,88 \times 10^3$	$2,89\times10^3$	$1,4 \times 10^{14}$	$1,23\times 10^{15}$	15	12

Tabulka 5.5: Měrný elektrický odpor ρ , koncentrace C a pohyblivost μ donorů po žíhání

5.5 Měření inkluzí před a po žíhání pomocí infračerveného mikroskopu

V obrazové příloze je uveden snímek vzorku B39J2 (IČ snímek 5) pořízený pomocí infračerveného mikroskopu. Na tomto snímku jsou patrné telurové inkluze o velikosti přibližně 4 μm . Pozadí tohoto snímku bylo korigováno na nečistoty na snímacím čipu. Po prvním žíhání (Z_I) byl vzorek znovu nasnímán infračerveným mikroskopem. Výsledný snímek je uveden v (IČ snímku 6). Tento snímek bohužel není korigovaný na prachové částečky na snímacím čipu mikroskopu. Na snímku jsou patrné zmenšené telurové inkluze. Bylo zjištěno, že se velikost telurových inkluzí po žíhání v parách kadmia nepatrně zmenšila.

Kapitola 6

Shrnutí a závěr

Cílem práce bylo prověřit možnost úpravy vlastností materiálu CdTe žíháním. K dosažení tohoto cíle bylo třeba systematicky otestovat vlastnosti krystalu. Byly zkoumány dvě destičky z krystalu CdTe dopovaného indiem. Z těchto desek byly upraveny monokrystalické vzorky.

Pomocí infračerveného mikroskopu byly pozorovány telurové inkluze. Dále byly charakterizovány elektrické vlastnosti materiálu pomocí dvou vzájemně nezávislých metod. Pro vybraný vzorek byly též obě metody porovnány. Pokusil jsem se naznačit možné vysvětlení rozdílných výsledků.

Z měřených výsledků vyplývá, že vzorky vyříznuté z prostřední části krystalového ingotu mají lepší vlastnosti než vzorky z konce ingotu. Tento výsledek je zřejmě zapříčiněn segregací nečistot a defektů v konci ingotu.

Dále byla pozorována změna vlastností materiálu po žíhání. Je patrné, že žíhání eliminuje inkluze, na druhé straně se však materiál stává mnohem vodivější, což prakticky vylučuje jeho použití jako detektoru γ -záření. Při žíhání v nižším tlaku kadmiových par došlo k převrácení typu vodivosti a byl vytvořen relativně vodivý materiál typu P. K vytvoření vysoko-odporového materiálu by bylo nutné nají optimální kompromis mezi žíháním v saturovaných parách kadmia a žíháním za nižším tlaku. Nalezení tohoto kompromisu však daleko přesahuje možnosti této práce.

Zpracování této práce mi pomohlo získat hlubší vhled nejen do vnitřní struktury krystalu, ale též do teorie vzniku defektů. Nicméně tyto znalosti jsou stále ještě nedo-statečné, což mě podnítilo k další práci.

Získal jsem základní přehled o experimentálních metodách vhodných pro charakterizaci materiálu CdTe. Hlavní poučení, které si odnáším z této práce, je, že každý získaný výsledek vyvolává celou řadu dalších otázek, jejichž zodpovězení vyžaduje další experimenty.

Seznam obrázků

3.1	Teplotní závislost koncentrace elektronů	11
4.1	Bridgmanova metoda	16
4.2	Měření měrné elektrické vodivosti σ	18
4.3	Měření Hallovy konstanty	18
4.4	Geometrie vzorku	19
4.5	Pokrytí vzorku	19
4.6	Schéma zapojení aparatury	20
4.7	$\check{ m Z}$ íhání	22
1	COREMA - Vzorek B39V2 - bez osvícení	31
2	COREMA - Vzorek B39V2 - osvícen	32
3	COREMA - Vzorek B39J2 - bez osvícení	33
4	COREMA - Referenční vzorek B39V5	34
5	Snímek IČ mikroskopu vzorku B39J2 před žíháním	35
6	Snímek IČ mikroskopu vzorku B39J2 po žíhání	35

Mapa 1: Mapa rezistivity vzorku ${f B39V2}$ bez osvícení

Mapa 3: Mapa rezistivity vzorku **B39J2** bez osvícení, vzorek nebylo možné měřit při osvícení, protože jeho vodivost přesahovala detekční schopnosti metody

IČ snímek 5: Snímek vzorku **B39J2** zaznamenaný infračerveným mikroskopem. Na snímku jsou vidět telurové inkluze o průměru cca $4\,\mu m$

IČ snímek 6: Snímek vzorku **B39J2** po žíhání zaznamenaný infračerveným mikroskopem. Na snímku jsou patrné zmenšené telurové inkluze oproti snímku 5. Větší temné body jsou prachové částice na snímacím čipu mikroskopu, které nebyli na tomto snímku korigovány

Literatura

- [1] SZELES, C.: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. *Physica Status Solidi* (b), ročník 3, 2004: s. 783–790.
- [2] BUGAR, M.: Vliv žíhání na koncentraci přirozených defektů v polovodičích (CdZn)Te. Diplomová práce, MFF UK, 2007.
- [3] URL http://en.wikipedia.org/wiki
- [4] VOTOCEK, L.: Příprava a vlastnosti kontaktů na polovodičích typu CdTe/CdZaTe. Diplomová práce, MFF UK, 2003.
- [5] BERDING, M.: Annealing conditions for intrinsic CdTe. Applied Physics Letters, ročník 74, 1999: str. 552.
- [6] KIM, W.; et al.: Effect of Cd-annealing on the IR transmittance of CdTe wafers grown by the Brigman method. *Journal of Crystal Growth*, ročník 104, 1990: str. 677.
- [7] URL http://alma.karlov.mff.cuni.cz/polovodice/Polovodice.pdf
- [8] FRANC, J.; HOSCHL, P.: Fyzika polovodičů pro optoelektriniku I. URL http://alma.karlov.mff.cuni.cz/polovodice/skriptum.pdf
- [9] ANSELM, A.: Úvod do teorie polovodičů.
- [10] URL http://electron.mit.edu
- [11] URL http://www.eeel.nist.gov
- [12] SemiMap Scientific Instrumants GmbH, Fullastrasse 67, 79 108, Freiburg I. Br. Germany: COREMA.-WT Hardware User Manual. 2008 vydání, 2008.
- [13] VYDYANATH, H.; ELLSWORTH, J.; DEAN, B.; aj.: Recipe to minimize Te precipitation in CdTe and (CdZn)Te crystals. *Journal of Vacuum Science & Technology*, ročník B10(4), č. !, 1992: str. 1476.
- [14] BRION, H.; MEWES, C.; HAHN, I.; aj.: Infrared contrast of inclusion in CdTe. Journal of Crystal Growth, ročník 144, 1993: str. 281.

- [15] SHEN, J.; AIDUN, D.; REGEL, L.; aj.: Effect of thermal annealing on the microstructure of CdTe and (CdZn)Te. *Materials Science and Engineering*, ročník B16, 1993: str. 182.
- [16] LI, B.; ZHU, J.; ZHANG, X.; aj.: Effect of annealing on near-stoichiometric and non-stoichiometric (CdZn)Te wafers. *Journal of Crystal Growth*, ročník 181, 1997: str. 204.
- [17] TRIBOULET, R.; AOUDIA, A.; LUSSON, A.: Journal of Electronic Materials, ročník 24, 1995: str. 1061.
- [18] SHIN, S.; et al.: Characterization of Te precipitates in CdTe crystals. Applied Physics Letters, ročník 43, 1983.
- [19] Manuál ke kameře: Pulnix high resolution CCD camera.
- [20] CAPPER, P.: Properties of narrow Gap Cadmium-based Compounds. Inspec, 1994.