
Charles University in Prague
Faculty of Mathematics and Physics

MASTER’S THESIS
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Katedra: Fyzikálńı ústav Univerzity Karlovy
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Abstract: In this theoretical work, a detailed study of optical properties of excitons in
double quantum wells subject to magnetic and electric fields is presented. Starting from the
well-known Luttinger formulae describing the real valence-band structure of III-V semi-
conductor compounds, we developed an efficient way to solve the Schrödinger equation
of a coulombically-bound pair electron-hole forming an exciton. Derived formulae were
illustrated on relevant figures, giving us an opportunity to better understand the effects of
external fields on the studied system. Dispersion relations, the shift of energy levels in an
electric field, absorption and photoluminescence spectra, and charge density distribution
were calculated and achieved results were discussed in detail.
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Chapter 1

Introduction

In 1972, Charles H. Henry realized that there is a complete analogy between the confine-
ment of light by a slab waveguide and the confinement of electron by the potential well
formed in the conduction band of a double heterostructure, created from two semicon-
ductors with different bandgaps. He calculated that the quantization of energy states in
a quantum well (QW) alters the density of states (and thus optical absorption as well) that
instead of increasing smoothly as in bulk materials, would have a step-like character. His
predictions were experimentally verified in 1973 by R. Dingle on a thin heterostructure,
which was made by W. Wiegmann using molecular beam epitaxy (MBE) [1]. Henry and
his colleagues as well as other physicist all over the world have been further developing the
idea, resulting in a construction of the first quantum-well laser in 1977.

In following years, advanced epitaxial techniques such as MBE or metal-organic chemi-
cal vapour deposition (MOCVD) have made it possible to grow interfaces between two semi-
conductors flat up to one atomic monolayer. The possibility of fabricating a heterostructure
of strictly-defined parameters, a quasi-two-dimensional nature and sharp density of states,
has stimulated both theoretical and experimental research and shortly found various ap-
plications: LEDs, diode lasers (including blue laser), high electron mobility transistors
(HEMTs), infrared photodetectors, etc. The most popular materials for heterostructure
growth are ternary (pseudo-binary) compounds of GaAs and AlAs, since they are perfectly
lattice-matched. By changing the amount x of Al in AlxGa1−xAs, the bandgap width can
be changed linearly for x < 0.45 [2] to set the proper value for optical or optoelectronic
applications.

The most simple heterostructure is a single QW. If there are two QWs close to each
other to make mutual interaction possible, we talk about coupled quantum wells or, in
other words, a double quantum well (DQW). It will be of main interest in this thesis. The
reason for why DQWs have been intensively studied is the strong dependence of optical
and electrical properties of heterostructures, including DQWs, on applied external fields.
The existence of excitons, bound states of electrons and holes, in DQWs is also important
since their binding energy in low-dimensional structures is much larger than in the bulk.

There is a large number of published results related to electrical and optical properties
of excitons in DQWs. Well-known works of Baldereschi and Lipari [3] and Altarelli and
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Chapter 1. Introduction

Lipari [4] from early 1970s are available as well as the latter work of Gorbatsevich and
Tokatly [5]. Excitonic properties in the electric field have been studied by Sanders and
Bajaj in [6], Dignam and Sipe [7] and Soubusta et al. [8]. The effect of the perpendicular
magnetic field has been investigated e. g. by Lyo [9], that of the in-plane magnetic field has
been published by Orlita et al. in [10, 11]. A lot of other works exist.

Apart from many research facilities all over the world, Institute of Physics of Charles
University in Prague in cooperation with Institute of Physics of the Academy of Sciences of
the Czech Republic and Institute of Technical Physics I of Friedrich-Alexander University
in Erlangen, Germany, participates in a long-standing fundamental research of DQW sys-
tems. The aim of this work is to develop an efficient way of solving the Schrödinger equation
of an exciton in a DQW and then calculate theoretical absorption and photoluminescence
spectra. Starting from Grochol [12], who followed the procedure proposed in [5], this ap-
proach is generalized to include the real valence-band structure. The results are presented
in such a way to make it possible to compare them with available experimental data.
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Chapter 2

General properties of III-V
compounds

In this chapter, some remarks concerning crystalline and electrical properties, dispersion
relations and band structure of electrons and holes, as well as a general overview of well-
known models and common techniques of solving related problems in both bulk materials
and heterostructures, will be given. Though it is thoroughly studied in [13], the most
important results are reviewed in the first four sections of this chapter.

2.1 Crystalline and electronic properties

The III-V compounds crystallize in the zinc-blende (sphalerite) structure consisting of two
interpenetrating face-centred cubic lattices, displaced from one another by a fourth of the
one of the cube main diagonals. The elementary cell contains two atoms. The reciprocal
lattice of the Bravais lattice corresponding to a zinc-blende structure is a body centred
cubic lattice, the first Brillouin zone of which is a truncated octahedron, see Fig. 2.1.
Several high symmetry points of the first Brillouin zone have received specific notations,
e. g. the Γ, X or L points, however, the most important of them for us will be the Γ point,
representing the centre of the reciprocal (momentum) space.

In III-V binary compounds like GaAs, there are eight outer electrons per unit cell, which
contribute to the chemical bonds and are responsible for electrical and optical properties.
They hybridize to form tetrahedral bonds between one kind of atom and its four nearest
neighbours. Since there is a large number of unit cells, bonding and antibonding levels,
originating from the interaction between s-like or p-like orbitals of each two neighbouring
atoms, broaden into bands. The bonding s-levels are deeply bound and always occupied
by two electrons per unit cell, the remaining six electrons per unit cell completely fill the
three bonding p-orbitals. The antibonding orbitals are all empty, the lowest-lying one,
always s-like, forms the conduction band of the material.

The top of the valence band in all III-V materials is at the centre of the Brillouin zone
(Γ point). The three valence p-like bands are affected by the spin-orbit coupling, giving rise
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Chapter 2. General properties of III-V compounds

Figure 2.1: The first Brillouin zone of the
reciprocal lattice of a semiconductor with
the zinc-blende structure, [13].

Figure 2.2: Band structure of a direct-
bandgap semiconductor in the vicinity of
the centre of the first Brillouin zone, [13].

to a quadruplet (symmetry Γ8) corresponding to the total angular momentum of J = 3
2 ,

and to a doublet (symmetry Γ7) associated with J = 1
2 .

The conduction band edge of III-V compounds (symmetry Γ6) is found either at the
Γ point or near the L or the X point. In GaAs, it is located at the Γ point and since the
top of the valence band is at the centre of the Brillouin zone as well (see Fig. 2.2), this
compound has the “direct-bandgap” structure, making it a good material for optoelectronic
applications. In AlAs, the conduction band edge occurs near the X point, resulting in
the “indirect-bandgap” structure. Several parameters of these two binary compounds are
summarized in Tab. 2.1.

However, not only binary compounds of various III-V elements could be created, it is
also possible to form ternary (pseudo-binary) solid solutions of III-V (or II-VI) binaries.
Although they are actually not crystalline from the electronic structure point of view (since
there is no translantional symmetry due to the random distribution of atoms at the sites
of the zinc-blende lattice), one may use so called virtual crystal approximation to describe
electronic states of such an alloy. For example: in AB1−xCx alloy, the actual potential
V is replaced by an average potential 〈V 〉 of the form 〈V 〉 = VA + (1 − x)VB + xVC ,
where VA(B,C) are potentials created by A (B, C) atoms separately. Since it is periodic, the
translational invariance is restored, enabling us to introduce Bloch functions, the Brillouin
zone, etc. AlxGa1−xAs is a nice example of such a compound. The bandgap width EAlGaAs

g

at T = 300 K is given by [2]

EAlGaAs
g =

{
1.424 + 1.247x x < 0.45
1.900 + 0.125x + 0.143x2 x > 0.45

eV, (2.1)
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Chapter 2. General properties of III-V compounds

Table 2.1: Low temperature parameters of GaAs and AlAs according to [13, 14, 15].

parameter GaAs AlAs
ε (eV) 1.5192 3.13
∆ (eV) 0.341 0.275
a (nm)† 5.6533 5.6610
mΓ6/m0 0.0665 0.15
mhh/m0 0.34∗ 0.76
mlh/m0 0.094 0.137
mSO/m0 0.15 0.24
bandgap direct indirect

†Values for the room temperature T = 300 K.
∗Mean value as the heavy-hole subband in not rotationally parabolic.

while for the electron effective mass mAlGaAs
e at the room temperature, we have [2]

mAlGaAs
e = (0.063 + 0.083x)m0 x < 0.45. (2.2)

We see that for x < 0.45, the bandgap width, as well as the electron effective mass,
increases linearly, proving that the virtual crystal approximation is well applicable. To
proceed further, let us take a look at the electronic band structure.

2.2 Electronic dispersion relations in the vicinity of
the zone centre

In a bulk crystal, the one-electron Schrödinger equation is [13]:
[

p̂2

2m0
+ V (r) +

~
4m2

0c
2
(σ ×∇V ) · p̂ +Hr

]
ψ(r) = Eψ(r), (2.3)

where m0 is the free-electron mass, σ is the vector of Pauli spin matrices, and V (r) is
the periodic crystalline potential. The third and fourth terms in the latter equation are
relativistic corrections: the spin-orbit coupling, and so called mass-velocity and Darwin
corrections included in the last term, Hr.

The solution of Eq. (2.3) can be written in the Bloch form [13, 16]

ψnk(r) = Nunk(r) exp(i k · r), (2.4)

if N is a normalization constant and unk(r) is a function with the periodicity of the lattice.
Eq. (2.4) is usually normalized over the volume of the crystal.
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Chapter 2. General properties of III-V compounds

Neglecting the relativistic terms other than the spin-orbit coupling, the periodic parts
unk(r) of the Bloch functions are the solutions of

[
p̂2

2m0
+ V (r) +

~
4m2

0c
2
(σ ×∇V ) · p̂ +

~2k2

2m0

+
~k
m0

·
(

p +
~

4m0c2
σ ×∇V

)]
unk(r) = Enkunk(r). (2.5)

Since the k-dependent terms in Eq. (2.5) commute with translation operator and vanish
for k = 0, we can expand the solution of Eq. (2.5) in the following form:

unk(r) =
∑
m

cm(k)um0(r). (2.6)

After the insertion of the latter expansion into Eq. (2.5), multiplication by u∗l0(r) and
integration over a unit cell, one obtains

∑
m

[(
En0 − Enk +

~2k2

2m0

)
δnm +

~k
m0

· 〈n0|p +
~

4m0c2
(σ ×∇V )|m0〉

]
cm(k) = 0, (2.7)

where as usual

〈n0|p +
~

4m0c2
(σ ×∇V )|m0〉 =

∫

unit cell
u∗n0

(
p +

~
4m0c2

(σ ×∇V )

)
um0 d3r. (2.8)

Eq. (2.7) is well suited for a perturbative approach. Supposing that the nth band edge is
non-degenerate (apart from spin), we can assume that cm(k)’s are small in comparison to
cn(k) and that they are proportional to k (and thus vanish for k = 0), since cm(0) = δnm.
Therefore, we have

cm(k) =
~k
m0

· πnm
1

En0 − Em0
(2.9)

in the first order of the perturbation theory, while

Enk = En0 +
~2k2

2m0
+
~2

m2
0

∑

m6=n

|πnm · k|2
En0 − Em0

(2.10)

gives the second order correction to energy, if the vector π is defined as

π = p +
~

4m0c2
(σ ×∇V ). (2.11)

Because we have restricted our considerations to small k’s, under the assumption that the
band edge gaps En0 − Em0 are much larger than Enk − En0, one can rewrite Eq. (2.10) in
the following form:

Enk = En0 +
~2

2

∑

α,β

kα
1

µαβ
n

kβ, α, β = x, y, z, (2.12)
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Chapter 2. General properties of III-V compounds

where
1

µαβ
n

=
1

m0
δαβ +

2
m2

0

∑

n 6=m

πα
mnπ

β
nm

En0 − Em0
(2.13)

is the effective mass tensor of the nth band edge in the vicinity of the zone centre.

2.3 Kane model

To better describe the band structure of III-V semiconductors, another way of solving
Eq. (2.5) is known. Since in III-V compounds the bandgap width is relatively small and
the lowest-lying conduction band and the three topmost valence bands are far enough from
the other bands, according to Eq. (2.10), the influence of further bands is only of a small
effect. Thus, Kane [17] came up with an idea to diagonalize k 6= 0 terms of Eq. (2.5)
in a basis formed from linear combinations of k = 0 eigenfunctions associated with these
four bands (|S↑〉, |S↓〉, |X ↑〉, |X ↓〉, |Y ↑〉, |Y ↓〉, and |Z ↑〉, |Z ↓〉). These functions are
such that the total angular momentum J = L + σ and its projection Jz along the z axis
are diagonal in the new basis. For the S edge, the addition of L = 0 and σ = 1

2 only
gives J = 1

2 (Γ6 symmetry), however, for the P edges, adding L = 1 to σ = 1
2 gives either

J = 3
2 (Γ8 symmetry) or J = 1

2 (Γ7 symmetry). In III-V compounds, the quadruplet J = 3
2

(mJ = ±3
2 , ±1

2) is always higher in energy than the doublet J = 1
2 (mJ = ±1

2). The energy
separation of Γ6 and Γ8 bands at the zone centre is noted E0, that of Γ8 and Γ7 bands is ∆:

E0 = EΓ6 − EΓ8 , (2.14)

∆ = EΓ8 − EΓ7 , (2.15)

compare with Fig. 2.2. With the help of one additional parameter P , which is defined by
equation

P = − i
m0
〈S|p̂x|X〉 = − i

m0
〈S|p̂y|Y 〉 = − i

m0
〈S|p̂z|Z〉, (2.16)

dispersion relations E(k) of the bands under consideration can be found, for more details
please refer to [13]. For illustration, the effective masses of particular band edges obtained
in the Kane model are

1
mΓ6

=
1

m0
+

4P 2

3E0
+

2P 2

3(E0 + ∆)
, (2.17)

1
mΓ7

=
1

m0
− 2P 2

3(E0 + ∆)
, (2.18)

1
ml

Γ8

=
1

m0
− 4P 2

3E0
. (2.19)

Note that mΓ6 > 0 and mΓ7 , ml
Γ8

< 0. The effective heavy-hole mass is the same as the
free-electron mass, mh

Γ8
= m0. To achieve better results, it is necessary to include higher

bands [17].
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Chapter 2. General properties of III-V compounds

2.4 Envelope function approximation

As we have been so far interested in bulk materials only, we will turn our attention to
heterostructures from now on. Modern epitaxial techniques (MBE, MOCVD) have made
it possible to grow interfaces between two semiconductors flat up to one atomic monolayer.
It is common to represent such an ideal interface in terms of a continuously varying position-
dependent band edge that varies slowly in comparison to the lattice constant, assuming
a perfectly bi-dimensional growth. Hence, an electron moving from one material (A) to
the other material (B) across the interface experiences one-electron potential of a perfect
bulk material A, whereas on the other side on the interface, its motion is determined by
one-electron potential of a perfect bulk material B.

We suppose that both materials forming the heterostructure are perfectly lattice-
matched and of the same crystallographic structure, which is true for GaAs/AlGaAs based
heterostructures. There are two key assumptions made for the envelope function approxi-
mation [13]:

• Inside each layer, the wavefunction is expanded to the periodic parts of the Bloch
functions of the edges under consideration:

ψ(r) =
∑

l

f
A(B)
l (r)uA(B)

lk0
(r), (2.20)

where k0 is the point in the Brillouin zone, around which the heterostructure states
are built, and the summation over l runs over all states included in calculations.

• The periodic parts of the Bloch functions are assumed to be the same in each layer
that constitutes the heterostructure:

uA
lk0

(r) ≡ uB
lk0

(r) ≡ ulk0(r). (2.21)

Our objective will be to find f
A(B)
l (r). According to [13], the truncation of summation

in Eq. (2.20) to a finite number of band edges means that the heterostructure states are
built with the host wavevectors kA, kB, which are close to k0. It was proven that in both
GaAs and AlAs, the conduction- and valence-band states are fairly well reproduced by
the Kane model. As the lattice constant is assumed to be the same in both layers, the
heterostructure is translationally invariant, which results in the factorization of f

A(B)
l (r)

into:

f
A(B)
l (r‖, z) =

1√
S

exp(i k‖ · r‖)χA(B)
l (z), (2.22)

where S is the sample area and k‖ = (kx, ky) is a bi-dimensional wavevector, which is
the same in A and B layers. Therefore, the wavefunction (2.20) is a sum of rapid-varying
functions ulk0(r) and slowly-varying envelope functions f

A(B)
l (r).

The heterostructure hamiltonian Ĥ takes the form of [13]

Ĥ =
p̂2

2m0
+ VA(r)θA(r) + VB(r)θB(r), (2.23)
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Chapter 2. General properties of III-V compounds

where VA(B)(r) is one-electron potential of layer A (B) and θA(B)(r) is a step function,
which is unity in layer A (B) and zero otherwhere. If we let this hamiltonian act upon
ψ(r), multiply it by the complex conjugate and integrate over space, we will obtain the set
of eigenvalue equations:

D(0)

(
z,−i~

∂

∂z

)
χ = Eχ, (2.24)

where D(0) is an N×N matrix and χ is an N–dimensional column vector, if N denotes the
number of band edges retained in Eq. (2.20). The D(0) matrix elements D

(0)
lm are functions

of z and ∂
∂z

so that

D
(0)
lm

(
z,

∂

∂z

)
=

(
EA

l0 θA(r) + EB
l0 θB(r) +

~2k2
‖

2m0
− ~2

2m0

∂2

∂z2

)
δlm

+
~k
m0

· 〈l|p̂‖|m〉 − i~
m0
〈l|p̂z|m〉 ∂

∂z
, (2.25)

since
Ĥul0(r) =

(EA
l0 θA(r) + EB

l0 θB(r)
)
ul0(r). (2.26)

The matrix element of p̂‖ in Eq. (2.25) is treated in a usual way. The larger N , the
more accurate the results will be. In practice, N is restricted to eight since studying the
heterostructure states attached to Γ6, Γ7, and Γ8 bands of the host materials. Inclusion of
higher bands is treated as the second order correction in p̂ applied on D(0), hence, instead
of D(0), we have

D = D(0) − ~
2

2

∑

α,β

∂

∂rα

1
Mαβ

∂

∂rβ

, (2.27)

where α, β = x, y, z and Mαβ, an 8× 8 matrix, is given by

1

Mαβ
lm

=
2

m2
0

∑
ν

〈l|p̂α|ν〉 1
Ē − EA

ν0 − Vν(z)
〈l|p̂β|ν〉, (2.28)

while Ē is an average energy of the Γ6, Γ7, Γ8 set in the heterostructure and Vν(z) defines
the energy shift of the νth band edge when going from the A to the B material [13]:

Vν(z) =

{
0 if z corresponds to the A layer,
EB

ν − EA
ν if z corresponds to the B layer.

(2.29)

The problem of the heterostructure energy levels has been reduced to the solution of a set
of second-order partial differential equations for the slowly-varying envelope functions. The
microscopic details of the heterostructure have disappeared being substituted by effective
parameters: the interband matrix elements 〈l|p̂|m〉, the effective mass tensor Mαβ

lm and the
band offsets Vν .

The presented procedure can further be developed assuming different effective masses
in layers A and B of the heterostructure, while restricted to the parabolic bands. It is

12



Chapter 2. General properties of III-V compounds

called the Ben Daniel-Duke model and is well applicable to electronic states in quantum
wells (QWs). One of the results provided by the model is the different effective mass in the
QW plane and in the direction perpendicular to it (i. e. in the growth direction). However,
its applicability to holes is limited. For more details, please see [13]. How to describe the
real structure of the valence band, including so called valence-subband mixing of light- and
heavy-hole states, will be demonstrated in the next section.

2.5 Luttinger hamiltonian

It was shown by Luttinger in his works [18, 19] that the hamiltonian of a hole in the
valence band of a semiconductor with Td symmetry, written in the basis composed of the
eigenfunctions of the total angular momentum, takes the form of a 4× 4 matrix

Ĥh =




Ĥhh b̂ ĉ 0

b̂∗ Ĥlh 0 ĉ

ĉ∗ 0 Ĥlh −b̂

0 ĉ∗ −b̂∗ Ĥhh




∣∣∣∣∣∣∣∣∣∣

|32 , +3
2〉

|32 , +1
2〉

|32 ,−1
2〉

|32 ,−3
2〉

. (2.30)

The ket-vectors on the right side of Eq. (2.30) show the chosen order of the eigenfunctions
which will be kept throughout the work. The terms Ĥhh Ĥlh, b̂, and ĉ are given as follows

Ĥhh =
γ1 − 2γ2

2m0
p̂2

z +
γ1 + γ2

2m0

(
p̂2

x + p̂2
y

)
, (2.31)

Ĥlh =
γ1 + 2γ2

2m0
p̂2

z +
γ1 − γ2

2m0

(
p̂2

x + p̂2
y

)
, (2.32)

b̂ = −
√

3γ3

2m0

[
(p̂yp̂z + p̂zp̂y) + i(p̂xp̂z + p̂zp̂x)

]
, (2.33)

ĉ =

√
3

2m0

[
γ2(p̂2

x − p̂2
y)− iγ3(p̂xp̂y + p̂yp̂x)

]
, (2.34)

where γi are so called Luttinger parameters describing the coupling between Γ8 and all
the hosts’ edges (including Γ6) and which are considered to be position-independent,
p̂j = −i~ ∂

∂rj
, j = x, y, z denotes the corresponding component of the momentum opera-

tor p̂. To simplify our model, we neglect single-particle g-factors of both electrons and
holes. Consequently, the terms (2.33) and (2.34) are both symmetrized, which means we
write 1

2(p̂xp̂y + p̂yp̂x) instead of writing p̂xp̂y, and analogically for p̂xp̂z and p̂yp̂z.
In the presence of external fields, it is necessary to make the substitution

p̂ ↔ p̂− eA (2.35)

to involve the magnetic field. The electric field is included by the addition of eϕ̃, where
e denotes the electronic charge (e = 1.602× 10−16 C), while A marks the magnetic vector

13



Chapter 2. General properties of III-V compounds
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Figure 2.3: In-plane dispersion relations of a hole in a single QW computed for γ1 = 6.85,
γ2 = 2.10, and γ3 = 2.90. The well width is L = 10 nm and the QW bound energies are
chosen to be E

(0)
HH1 = 0, E

(0)
LH1 = −0.01 eV, E

(0)
HH2 = −0.016 eV (a), and E

(0)
HH1 = 0,

E
(0)
LH1 = −0.02 eV, E

(0)
HH2 = −0.04 eV (b).

potential and ϕ̃ is the electric potential. The specific choice of these quantities will be
discussed later. For electrons, the sign of e is opposite.

To demonstrate the valence-subband mixing, energy levels in a single rectangular quan-
tum well have been calculated using the Luttinger hamiltonian (2.30) for the following set
of parameters: γ1 = 6.85, γ2 = 2.10, and γ3 = 2.90. To preserve the standard valence-band
scheme, the energies shown in Fig. 2.3 are taken negative. Solid line depicts the eigenvalues
of Eq. (2.30), whereas dashed line is used for parabolic dispersion relations, which are the
eigenvalues of the diagonal part of Eq. (2.30). Strong valence-subband mixing is responsible
for an upward-bending of the light-hole dispersion line, resulting in the negative effective
mass of a light-hole in the vicinity of the origin. Valence-subband coupling also prevents
the dispersion lines from crossing one another, giving rise to the anti-crossing effect.
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Chapter 3

Excitons in III-V compounds

Electrons in the conduction band are electrically charged particles. The same holds for
holes in the valence band. When a semiconductor with direct bandgap is shone by light with
a wavelength near the bandgap width, these oppositely charged particles are generated.
Because of the Coulomb interaction, electron-hole bound states can be created. Such states
are called excitons.

3.1 Excitons in idealized bulk materials

To show how the Coulomb interaction affects crystalline states, analogously to [13], we
consider a bulk semiconductor, the band structure of which can be approximated by a single
spherical conduction band with dispersion relation

εc(k) = Eg +
~2k2

2mc

, (3.1)

separated by the bandgap Eg from a single spherical valence band with dispersion relation

εv(k) = −~
2k2

2mv

, (3.2)

where mc and mv are corresponding effective masses. The ground state of the semicon-
ductor is a state with completely filled valence band and empty conduction band. If an
electron with a wavevector kv is promoted to the conduction band, one place in the valence
band is left unoccupied. The whole situation can equally be viewed as a fully filled valence
band plus a hole with a wavevector kh = −kv, characterized by a positive mass mh = −mv

and a positive charge +e [13]. Without the Coulomb interaction, the energy of the first
excited crystalline state would be Eg. But as the coulombic interaction modifies the energy
spectrum, the energy of the first excited state is determined by the solution of the equation

[
p̂2

e

2me

+
p̂2

h

2mh

− e2

4πε|re − rh|
]
ψ(re, rh) = (E − Eg)ψ(re, rh), (3.3)

15



Chapter 3. Excitons in III-V compounds

where we have denoted me ≡ mc, while ε is the static dielectric constant of the semicon-
ductor. The structure of Eq. (3.3) is the same as of the Schrödinger equation describing
the hydrogen atom and is treated in the same way. New coordinate system is defined:

r = re − rh, (3.4)

R =
mere + mhrh

me + mh

, (3.5)

r is then the relative distance between particles and R is the centre-of-mass position vector.
The corresponding quantum-mechanical operators are given by the equations

p̂ = −i~
∂

∂r
, (3.6)

P̂ = −i~
∂

∂R
. (3.7)

After the introduction of the reduced mass µ of the electron-hole pair

µ =
memh

me + mh

, (3.8)

it is straightforward to rewrite Eq. (3.3) in the following form:
[

P̂2

2M
+

p̂2

2µ
− e2

4πεr

]
ψ(r, R) = (E − Eg)ψ(r, R), (3.9)

if M = me + mh marks the total mass of the exciton. The structure of the latter equation
gives us a clue, in which form one should be looking for the solution of Eq. (3.9). Since
P = ~K is a good quantum number, we have

ψ(r, R) =
1√
W

exp(iK ·R)ϕ(r), (3.10)

where W is the volume of the crystal. After the substitution to Eq. (3.9), we are finally
given [

p̂2

2µ
− e2

4πεr

]
ϕ(r) = Eϕ(r), (3.11)

a simple equation which has to be solved to obtain the excitonic energy spectrum, while

E = Eg +
~2K2

2M
+ E . (3.12)

From the similarity to the quantum-mechanical description of the hydrogen atom, solutions
of Eq. (3.11) are hydrogen-like wavefunctions. For the ground state, we have [13]

ϕ(r) =
1√
πa3

B

exp(−r/aB), (3.13)

E = − µe4

32π2ε2~2
, (3.14)
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Figure 3.1: Idealized quantum well structure.

where aB = 4πε~2/µe2 is the excitonic effective Bohr radius. Eqs. (3.13)–(3.14) then
determine the first excited crystalline state, the energy of which is smaller than the bandgap
width Eg, E < Eg.

Therefore, the exciton can be viewed as a fictitious particle with mass M = me + mh

composed of an electron and a hole orbiting around each other and whose centre-of-mass
moves with kinetic energy ~2K2/2M .

3.2 Excitons in idealized heterostructures

We have demonstrated how the Coulomb interaction modifies the energy spectrum of bulk
materials. As it is of our interest in this thesis, let us show how the situation changes when
proceeding from bulk crystals to quantum well structures.

Consider a slab of material A inserted between two layers of material B, see Fig. 3.1.
Let us further assume that both materials have the same dielectric constant ε, effective
masses me and mh are equal in A and B and that dispersion relations in the valence and
conduction bands are spherical and thus given by Eqs. (3.1)–(3.2). Under these assump-
tions, the Schrödinger equation of the system is [13]

[
p̂2

e

2me

+
p̂2

h

2mh

− e2

4πε|re − rh| + Ue + Uh

]
ψ(re, rh) = (E − Eg)ψ(re, rh), (3.15)

where Ue and Uh are step-like quantum-well confining potentials for electrons and holes
along the z axis.1 The whole procedure performed in the previous section can be repeated
once again, but with one difference now: it cannot be used in the z direction since the
structure of Eq. (3.15), modified by the presence of Ue, Uh, is different from that of Eq. (3.3).
Nevertheless, in the x, y directions, we can do so. We introduce the in-plane relative
distance r‖ and the in-plane centre-of-mass position vector R‖ by formulae

r‖ = re‖ − rh‖, (3.16)

R‖ =
mere‖ + mhrh‖

me + mh

, (3.17)

1In a rectangular QW of infinite depth, these are constant inside the well, but zero otherwhere.
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Chapter 3. Excitons in III-V compounds

where re‖ = (xe, ye) and rh‖ = (xh, yh) are the in-plane position vectors of an electron and
a hole. It is easy to rewrite Eq. (3.15) into a new coordinate system, giving
[

P̂2
‖

2M
+

p̂2
‖

2µ
− e2

4πε
√

ρ2 + (ze − zh)2
+ Ue + Uh

]
ψ(r‖, R‖, ze, zh) = (E−Eg)ψ(r‖, R‖, ze, zh),

(3.18)
which implies that the factorization of ψ(r‖, R‖, ze, zh) reads [13]

ψ(r‖, R‖, ze, zh) =
1√
S

exp(iK‖ ·R‖) ϕ(r‖, ze, zh), (3.19)

if S is the sample area, ρ = |r‖|, and p̂‖, P̂‖ are the quantum-mechanical operators as-
sociated with r‖, R‖. Two methods have been attempted to solve Eq. (3.18) [13]: either
by using Gaussian basis sets or non-linear variational parameters. In the second case,
ϕ(r‖, ze, zh) is written in the form [20]

ϕ(r‖, ze, zh) = Nχe(ze)χh(zh) exp
(
−

√
ρ2 + (ze − zh)2/ς

)
, (3.20)

where N is a normalization constant, ς is the variational parameter, and χe(ze) and χh(zh)
are the eigenfunctions of the conduction- and valence-band QWs, respectively.

The presented procedure is simple and easy to follow, however, it does not reflect the
real valence-band structure, since the actual situation is a little more complicated. We will
be concerned in this problem below.

3.3 Excitons in actual double quantum wells

In the following sections, we will derive important equations with the main goal to describe
optical properties of excitons in DQWs, schematically depicted in Fig. 3.2. Let us start
fair from the beginning.

3.3.1 Excitonic hamiltonian

To construct the hamiltonian of an exciton in a DQW that reflects the real structure of the
valence band, we need nothing more than it has been written so far. Such a hamiltonian
Ĥ consists of five parts: the hole Ĥh and the electronic Ĥe non-interacting hamiltonians,
step-like DQW potentials Ue, Uh for electrons and holes, and the Coulomb interaction V .
Therefore, after substituting from Eq. (2.30)

Ĥ = Ĥh +(Ĥe +Ue +Uh +V )1 =




Ĥhh + Ĥ b̂ ĉ 0
b̂∗ Ĥlh + Ĥ 0 ĉ

ĉ∗ 0 Ĥlh + Ĥ −b̂

0 ĉ∗ −b̂∗ Ĥhh + Ĥ


, (3.21)
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Figure 3.2: Simple scheme of a DQW structure and orientations of the coordinate system
and external electric and magnetic fields.

where the symbol 1 stands for the 4× 4 identity matrix and Ĥ = Ĥe + Ue + Uh + V . The
electronic hamiltonian Ĥe is as usual given by

Ĥe =
p̂2

e

2me

=
p̂2

ze

2me

+
p̂2

xe
+ p̂2

ye

2me

, (3.22)

with the same “perpendicular” and “in-plane” effective mass.
The hamiltonian (3.21) acts on the four-component wavefunction

Ψ(re, rh) = c| 32 ,+ 3
2 〉(re, rh)u| 32 ,+ 3

2 〉(rh)ue(re) + c| 32 ,+ 1
2 〉(re, rh)u| 32 ,+ 1

2 〉(rh)ue(re)

+ c| 32 ,− 1
2 〉(re, rh)u| 32 ,− 1

2 〉(rh)ue(re) + c| 32 ,− 3
2 〉(re, rh)u| 32 ,− 3

2 〉(rh)ue(re), (3.23)

which is the solution of the time-independent Schrödinger equation

ĤΨ(re, rh) = EΨ(re, rh). (3.24)

Functions u| 32 ,± 1
2 ( 3

2 )〉(rh) are the periodic parts of the Bloch functions at the centre of the
Brillouin zone (Γ point) describing valence-band light (heavy) hole states with Γ8 symme-
try,2 function ue(re) describes the electronic Γ6 states in the conduction band. It can be
found in [13] that

u| 32 ,+ 3
2 〉 =

1√
2
|(X + iY )↑〉, (3.25)

u| 32 ,+ 1
2 〉 = −

√
2
3
|Z↑〉+

1√
6
|(X + iY )↓〉, (3.26)

2These are the eigenfunctions of the total angular momentum, which is, as well as its projection along
the z axis, diagonal in this basis.
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u| 32 ,− 1
2 〉 = −

√
2
3
|Z↓〉 − 1√

6
|(X − iY )↑〉, (3.27)

u| 32 ,− 3
2 〉 =

1√
2
|(X − iY )↓〉, (3.28)

where |X〉, |Y 〉, and |Z〉 functions describe the crystal states for energies which correspond
to the top of the occupied valence band. They are associated with wavefunctions which
transform in the same way as the atomic x, y, and z functions under the symmetry oper-
ations that map the local tetrahedron (Td symmetry group) onto itself. Arrows ↑ and ↓
show the spin orientation. For the electronic part, we have

ue = i|S↑〉 or i|S↓〉, (3.29)

but from now on, we neglect the electron spin in our calculations. Function |S〉 describes
the crystal state for energies which correspond to the bottom of the lowest-lying empty
conduction band and transforms just like the previous functions do.

It was mentioned before that an external magnetic field is involved by performing the
substitution (2.35) in hamiltonian (3.21). Our choice of the vector potential A, analogous
to that proposed in [5], is

A = yB‖ez +
1
2
ez × rB⊥, (3.30)

describing the general orientation of the magnetic field with magnitude B⊥ in the growth
direction and B‖ in the DQW plane. The reason for such a choice will be clarified later.

Denoting the electric potential by symbol ϕ̃, an electric field acting on an electron
(a hole) is described by term ±eϕ̃ added to the hamiltonian, if the lower sign holds for
electrons and the upper one for holes. The homogenous electric field E in the z direction,
E = Eez, is then characterized by the potential ϕ̃ = −Ez. Therefore, for electrons we have
ezeE , while −ezeE is the corresponding term for holes.

We can now straightforwards rewrite the formulae (3.22) and (2.31)–(2.34), giving

Ĥe =
1

2me

[(
p̂xe −

1
2
eB⊥ye

)2

+

(
p̂ye +

1
2
eB⊥xe

)2

+
(
p̂ze + eB‖ye

)2

]

+ ezeE + Ue(ze) (3.31)

for the electronic part and

Ĥhh =
γ1 + γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+
γ1 − 2γ2

2m0
(p̂zh

− eB‖yh)2 − ezhE + Uh(zh), (3.32)

Ĥlh =
γ1 − γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+
γ1 + 2γ2

2m0
(p̂zh

− eB‖yh)2 − ezhE + Uh(zh), (3.33)
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b̂ = −
√

3γ3

2m0

{[(
p̂yh

− 1
2
eB⊥xh

)
(p̂zh

− eB‖yh) + (p̂zh
− eB‖yh)

(
p̂yh

− 1
2
eB⊥xh

)]

+ i

[(
p̂xh

+
1
2
eB⊥yh

)
(p̂zh

− eB‖yh) + (p̂zh
− eB‖yh)

(
p̂xh

+
1
2
eB⊥yh

)]}
, (3.34)

ĉ =

√
3

2m0

{
γ2

[(
p̂xh

+
1
2
eB⊥yh

)2

−
(

p̂yh
− 1

2
eB⊥xh

)2
]
− iγ3

[(
p̂xh

+
1
2
eB⊥yh

)

·
(

p̂yh
− 1

2
eB⊥xh

)
+

(
p̂yh

− 1
2
eB⊥xh

)(
p̂xh

+
1
2
eB⊥yh

)]}
(3.35)

for the hole part of the excitonic hamiltonian. We have involved DQW potentials Ue and
Uh into Eqs. (3.31)–(3.33). Formulae (3.34) and (3.35) can be further modified to despatch
the compound derivatives. It is also often way to substitute γ2 and γ3 in Eq. (3.35) by
their arithmetic mean to simplify this term, setting γ5 = 1

2(γ2 + γ3) we finally obtain

b̂ = −
√

3γ3

2m0

{
2i

(
p̂xh

+
1
2
eB⊥yh

)
(p̂zh

− eB‖yh) +
[
2(p̂zh

− eB‖yh)p̂yh

−eB⊥xhp̂zh
+ e2B⊥B‖xhyh + ie~B‖

]}
, (3.36)

ĉ =
γ5

√
3

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

− i

(
p̂yh

− 1
2
eB⊥xh

)2
]

=
γ5

√
3

2m0

{(
p̂xh

+
1
2
eB⊥yh

)2

−
(

p̂yh
− 1

2
eB⊥xh

)2

− i

[
2p̂xh

p̂yh
− eB⊥(xhp̂xh

− yhp̂yh
)− 1

2
e2B2

⊥xhyh

]}
. (3.37)

3.3.2 Tight-binding basis

Before we proceed further, similarly to [5], we introduce the magnetic field dependent
“single-particle” tight-binding basis functions |e(η), j〉, where j = 1, 2 is the QW number
and η ∈ {h0, h1, l} marks the hole state in an isolated QW:3

|e, j〉 = ϕj
e(ze) exp

(
−i

ze − zj

~
eB‖ye

)
, (3.38)

|h0, j〉 = ϕj
h0(zh) exp

(
i
zh − zj

~
eB‖yh

)
, (3.39)

|h1, j〉 = ϕj
h1(zh) exp

(
i
zh − zj

~
eB‖yh

)
, (3.40)

|l, j〉 = ϕj
l (zh) exp

(
i
zh − zj

~
eB‖yh

)
, (3.41)

3It is obvious that we have restricted our considerations to the three topmost hole energy levels, which
are assumed to be the ground and the first excited heavy-hole states and the ground light-hole state.
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where ϕj
e(η)(ze(h)) is the tight-binding basis function describing an electron (a hole) in the

jth well located at zj in the absence of external fields. To describe excitonic effects, we
introduce the “two-particle” tight-binding basis constructed from the functions given above
(Eqs. (3.38)–(3.41)), containing twelve basis functions

|e, 1〉 |l, 1〉 |e, 1〉 |l, 2〉 |e, 2〉 |l, 1〉 |e, 2〉 |l, 2〉
|e, 1〉 |h0, 1〉 |e, 1〉 |h0, 2〉 |e, 2〉 |h0, 1〉 |e, 2〉 |h0, 2〉
|e, 1〉 |h1, 1〉 |e, 1〉 |h1, 2〉 |e, 2〉 |h1, 1〉 |e, 2〉 |h1, 2〉

. (3.42)

It will be demonstrated later that such a choice of the basis enables us to separate parallel
and transverse motion and to derive the matrix Schrödinger equation for wavefunctions
depending only on the in-plane coordinates xe(h), ye(h).

At this point, it is necessary to set up a new notation to make following formulae
well-arranged and simpler. Thus instead of (3.42), we write

|1α1〉 |1α2〉 |2α1〉 |2α2〉
|1β1〉 |1β2〉 |2β1〉 |2β2〉
|1γ1〉 |1γ2〉 |2γ1〉 |2γ2〉

. (3.43)

Here, α substitutes l, β marks h0, and finally γ stands for h1.
We know from previous text that the wavefunction (3.23), which the excitonic hamilto-

nian (3.21) acts on, is four-component. Each component depends on six coordinates: three
electronic (xe, ye, ze) and three hole (xh, yh, zh). To reduce the number of independent
variables, we further expand these components in the following manner:

c| 32 ,+ 3
2 〉(re, rh) =

∑
i,j=1,2

[
a+

iβj(re‖, rh‖)|iβj〉+ a+
iγj(re‖, rh‖)|iγj〉], (3.44)

c| 32 ,+ 1
2 〉(re, rh) =

∑
i,j=1,2

d+
iαj(re‖, rh‖)|iαj〉, (3.45)

c| 32 ,− 1
2 〉(re, rh) =

∑
i,j=1,2

d−iαj(re‖, rh‖)|iαj〉, (3.46)

c| 32 ,− 3
2 〉(re, rh) =

∑
i,j=1,2

[
a−iβj(re‖, rh‖)|iβj〉+ a−iγj(re‖, rh‖)|iγj〉], (3.47)

where re(h)‖ = (xe(h), ye(h)) is the in-plane position vector. In Eqs. (3.44)–(3.47), only
the basis functions (3.43) depend on ze(h) coordinate. Thus, the number of independent
variables has been reduced to four (in-plane) coordinates. If we let the hamiltonian (3.21)
act on such an expansion, we can derive equations for the set of 24 unknown functions
a±iβ(γ)j(re‖, rh‖), d±iαj(re‖, rh‖) — just like promised — depending on the in-plane coordinates
xe(h), ye(h) only. This is the goal of the next advance. But before we do this, it is necessary
to choose the tight-binding basis functions ϕj

e(η)(ze(h)). Our choice consists of

ϕj
e(h0,l)(ze(h)) =

√
2
L

cos
π

L
(ze(h) − zj), (3.48)

ϕj
h1(zh) =

√
2
L

sin
2π

L
(zh − zj), (3.49)
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where, once again, zj is the coordinate of the jth QW centre and L is the well width.
Although functions (3.48)–(3.49) describe a particle in the rectangular QW of infinite
depth, which means that the probability of finding such a particle outside the well equals
zero, it still remains a good approximation to our system.

The non-zero terms of the 24 × 24 matrix hamiltonian are summarized as follows,
function χ in these formulae stands for the coefficients a+

iβ(γ)j(re‖, rh‖), d+
iαj(re‖, rh‖) in

expansions (3.44)–(3.47). We introduce the notation

Ee(B‖) = 〈ϕ1(2)
e | p̂2

ze

2me

+ Ue(ze) +
e2B2

‖
2me

(ze − z1(2))
2|ϕ1(2)

e 〉, (3.50)

te(B‖) = −〈ϕ1(2)
e | p̂2

ze

2me

+ Ue(ze) +
e2B2

‖
2me

(ze − z2(1))
2|ϕ2(1)

e 〉, (3.51)

Eh0(1)(B‖) = 〈ϕ1(2)
h0(1)|

γ1 − 2γ2

2m0
p̂2

zh
+ Uh(zh) +

γ1 + γ2

2m0
e2B2

‖(zh − z1(2))
2|ϕ1(2)

h0(1)〉, (3.52)

th0(1)(B‖) = −〈ϕ1(2)
h0(1)|

γ1 − 2γ2

2m0
p̂2

zh
+ Uh(zh) +

γ1 + γ2

2m0
e2B2

‖(zh − z2(1))
2|ϕ2(1)

h0(1)〉,
(3.53)

El(B‖) = 〈ϕ1(2)
l |γ1 + 2γ2

2m0
p̂2

zh
+ Uh(zh) +

γ1 − γ2

2m0
e2B2

‖(zh − z1(2))
2|ϕ1(2)

l 〉, (3.54)

tl(B‖) = −〈ϕ1(2)
l |γ1 + 2γ2

2m0
p̂2

zh
+ Uh(zh) +

γ1 − γ2

2m0
e2B2

‖(zh − z2(1))
2|ϕ2(1)

l 〉 (3.55)

for the energy levels in the z direction and the tunneling matrix elements and

w =
γ1 + γ2

m0
eB‖〈ϕ1(2)

h0 |zh − z1(2)|ϕ1(2)
h1 〉, (3.56)

g = −γ3

√
3

m0
〈ϕ1(2)

h1 |p̂zh
|ϕ1(2)

l 〉, (3.57)

f = −γ3

√
3

m0
eB‖〈ϕ1(2)

h1 |zh − z1(2)|ϕ1(2)
l 〉, (3.58)

F = −γ3

√
3

2m0
e2B2

‖〈ϕ1(2)
h0 |(zh − z1(2))

2|ϕ1(2)
l 〉. (3.59)

for some auxiliary quantities. Since it does not change the qualitative results, we ne-
glect the intrawell Stark effect. The tunneling matrix elements are considered to be field-
independent, te(h0,h1,l)(B‖) ≡ te(h0,h1,l). Such simplifications enable us to write three terms
coming from the electronic hamiltonian Ĥe (Eq. (3.31)):

Ĥ1
e χ ≡ 〈e, 1| Ĥeχ |e, 1〉 =

{
1

2me

[(
p̂xe −

1
2
eB⊥ye

)2

+

(
p̂ye +

1
2
eB⊥xe

)2
]

+ Ee(B‖) + ez1E
}

χ, (3.60)
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Ĥ2
e χ ≡ 〈e, 2| Ĥeχ |e, 2〉 =

{
1

2me

[(
p̂xe −

1
2
eB⊥ye

)2

+

(
p̂ye +

1
2
eB⊥xe

)2
]

+ Ee(B‖) + ez2E
}

χ, (3.61)

Ĥ3
e χ ≡ 〈e, 1| Ĥeχ |e, 2〉 = 〈e, 2| Ĥeχ |e, 1〉∗ = −te exp

(
i
deB‖
~

ye

)
χ, (3.62)

another seven terms originating from Ĥhh (Eq. (3.32)):

Ĥ1
hhχ ≡ 〈h0, 1| Ĥhhχ |h0, 1〉 =

{
γ1 + γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ Eh0(B‖)− ez1E
}

χ, (3.63)

Ĥ2
hhχ ≡ 〈h0, 1| Ĥhhχ |h1, 1〉 =

[
w

(
p̂yh

− 1
2
eB⊥xh

)
− eZE

]
χ, (3.64)

Ĥ3
hhχ ≡ 〈h0, 1| Ĥhhχ |h0, 2〉 = 〈h0, 2| Ĥhhχ |h0, 1〉∗ = −th0 exp

(
−i

deB‖
~

yh

)
χ, (3.65)

Ĥ4
hhχ ≡ 〈h1, 1| Ĥhhχ |h1, 1〉 =

{
γ1 + γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ Eh1(B‖)− ez1E
}

χ, (3.66)

Ĥ5
hhχ ≡ 〈h1, 1| Ĥhhχ |h1, 2〉 = 〈h1, 2| Ĥhhχ |h1, 1〉∗ = −th1 exp

(
−i

deB‖
~

yh

)
χ, (3.67)

Ĥ6
hhχ ≡ 〈h0, 2| Ĥhhχ |h0, 2〉 =

{
γ1 + γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ Eh0(B‖)− ez2E
}

χ, (3.68)

Ĥ7
hhχ ≡ 〈h1, 2| Ĥhhχ |h1, 2〉 =

{
γ1 + γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ Eh1(B‖)− ez2E
}

χ, (3.69)
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and finally three terms corresponding to Ĥlh (Eq. (3.33)):

Ĥ1
lhχ ≡ 〈l, 1| Ĥlhχ |l, 1〉 =

{
γ1 − γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ El(B‖)− ez1E
}

χ, (3.70)

Ĥ2
lhχ ≡ 〈l, 2| Ĥlhχ |l, 2〉 =

{
γ1 − γ2

2m0

[(
p̂xh

+
1
2
eB⊥yh

)2

+

(
p̂yh

− 1
2
eB⊥xh

)2
]

+ El(B‖)− ez2E
}

χ, (3.71)

Ĥ3
lhχ ≡ 〈l, 1| Ĥlhχ |l, 2〉 = 〈l, 2| Ĥlhχ |l, 1〉∗ = −tl exp

(
−i

deB‖
~

yh

)
χ, (3.72)

d = z2 − z1 is the interwell distance and Z = 〈ϕ1(2)
h0 |zh|ϕ1(2)

h1 〉. Only two different non-zero
terms proceed both from b̂ (Eq. (3.36)) and ĉ (Eq. (3.37)):

b̂1χ ≡ 〈h1, 1| b̂χ |l, 1〉 = g

[
i

(
p̂xh

+
1
2
eB⊥yh

)
+

(
p̂yh

− 1
2
eB⊥xh

)]
χ, (3.73)

b̂2χ ≡ 〈l, 1| b̂χ |h1, 1〉 = g∗
[

i

(
p̂xh

+
1
2
eB⊥yh

)
+

(
p̂yh

− 1
2
eB⊥xh

)]
χ, (3.74)

while

ĉ1χ ≡ 〈h0, 1| ĉχ |l, 1〉 =
γ5

√
3

2m0

{(
p̂xh

+
1
2
eB⊥yh

)2

−
(

p̂yh
− 1

2
eB⊥xh

)2

− i

[
2p̂xh

p̂yh
− eB⊥(xhp̂xh

− yhp̂yh
)− 1

2
e2B2

⊥xhyh

]}
χ + Fχ, (3.75)

ĉ2χ ≡ 〈h1, 1| ĉχ |l, 1〉 = f

[
i

(
p̂xh

+
1
2
eB⊥yh

)
+

(
p̂yh

− 1
2
eB⊥xh

)]
χ. (3.76)
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The problem we deal with has turned into a solving of the system of 24 coupled partial
differential equations for coefficients of expansions (3.44)–(3.47). Such a system can be
described by 24× 24 matrix hamiltonian

Ĥ =

(
Ĥ++ Ĥ+−

Ĥ−+ Ĥ−−

)
, (3.77)

whose diagonal parts are

Ĥ++ =

=




Ĥ1β1 Ĥ2
hh Ĥ3

hh 0 Ĥ3
e 0 0 0 0 0 0 0

Ĥ1γ1 0 Ĥ5
hh 0 Ĥ3

e 0 0 b̂1 0 0 0

Ĥ1β2 Ĥ2
hh + V5 0 0 Ĥ3

e 0 0 0 0 0

Ĥ1γ2 0 0 0 Ĥ3
e 0 b̂1 0 0

Ĥ2β1 Ĥ2
hh + V6 Ĥ3

hh 0 0 0 0 0

Ĥ2γ1 0 Ĥ5
hh 0 0 b̂1 0

Ĥ2β2 Ĥ2
hh 0 0 0 0

h. c. Ĥ2γ2 0 0 0 b̂1

Ĥ1α1 Ĥ3
lh Ĥ3

e 0

Ĥ1α2 0 Ĥ3
e

Ĥ2α1 Ĥ3
lh

Ĥ2α2




,

(3.78)

and

Ĥ−− =

=




Ĥ1α1 Ĥ3
lh Ĥ3

e 0 0 −b̂2 0 0 0 0 0 0

Ĥ1α2 0 Ĥ3
e 0 0 0 −b̂2 0 0 0 0

Ĥ2α1 Ĥ3
lh 0 0 0 0 0 0 −b̂2 0

Ĥ2α2 0 0 0 0 0 0 0 −b̂2

Ĥ1β1 Ĥ2
hh Ĥ3

hh 0 Ĥ3
e 0 0 0

Ĥ1γ1 0 Ĥ5
hh 0 Ĥ3

e 0 0

Ĥ1β2 Ĥ2
hh + V5 0 0 Ĥ3

e 0

h. c. Ĥ1γ2 0 0 0 Ĥ3
e

Ĥ2β1 Ĥ2
hh + V6 Ĥ3

hh 0

Ĥ2γ1 0 Ĥ5
hh

Ĥ2β2 Ĥ2
hh

Ĥ2γ2




.

(3.79)
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Since Ĥ is hermitian, Ĥ = Ĥ†, the following relations hold:

Ĥ++ =
(
Ĥ++

)†
, Ĥ−− =

(
Ĥ−−)†

, Ĥ+− =
(
Ĥ−+

)†
. (3.80)

That is why we show only the upper diagonal parts of matrices (3.78) and (3.79), while
the symbol “h. c.” stands for the hermitian conjugation. Finally, Ĥ+− is given by

Ĥ+− =




ĉ1 0 . . . . . . . . . . . . . . . . . . 0
ĉ2 0 . . . . . . . . . . . . . . . . . . 0
0 ĉ1 0 . . . . . . . . . . . . . . . . 0
... ĉ2 0 . . . . . . . . . . . . . . . . 0
... 0 ĉ1 0 . . . . . . . . . . . . . . 0
... 0 ĉ2 0 . . . . . . . . . . . . . . 0
0 . 0 ĉ1 0 . . . . . . . . . . . . 0
0 . 0 ĉ2 0 . . . . . . . . . . . . 0
0 . . . 0 ĉ1 ĉ2 0 . . . . . . . . 0
0 . . . . . . . . 0 ĉ1 ĉ2 0 . . . 0

0 . . . . . . . . . . . . 0 ĉ1 ĉ2 0
...

0 . . . . . . . . . . . . . . . . 0 ĉ1 ĉ2




, (3.81)

from which Ĥ−+ can be obtained using (3.80). The hamiltonian (3.77) acts on the wave-
function Φ, whose 24 components are4

Φ(re‖, rh‖) = (a+
1β1, a

+
1γ1, a

+
1β2, a

+
1γ2, a

+
2β1, a

+
2γ1, a

+
2β2, a

+
2γ2, d

+
1α1, d

+
1α2, d

+
2α1, d

+
2α2,

d−1α1, d
−
1α2, d

−
2α1, d

−
2α2, a

−
1β1, a

−
1γ1, a

−
1β2, a

−
1γ2, a

−
2β1, a

−
2γ1, a

−
2β2, a

−
2γ2), (3.82)

each one depending on re‖, rh‖.
The diagonal parts of Eqs. (3.78)–(3.79) are summarized as follows:

Ĥ1β1 = Ĥ1
e + Ĥ1

hh + V1,

Ĥ2β1 = Ĥ2
e + Ĥ1

hh + V2,

Ĥ1γ1 = Ĥ1
e + Ĥ4

hh + V3,

Ĥ2γ1 = Ĥ2
e + Ĥ4

hh + V4,

Ĥ1α1 = Ĥ1
e + Ĥ1

lh + V1,

Ĥ2α1 = Ĥ2
e + Ĥ1

lh + V2,

Ĥ1β2 = Ĥ1
e + Ĥ6

hh + V2,

Ĥ2β2 = Ĥ2
e + Ĥ6

hh + V1,

Ĥ1γ2 = Ĥ1
e + Ĥ7

hh + V4,

Ĥ2γ2 = Ĥ2
e + Ĥ7

hh + V3,

Ĥ1α2 = Ĥ1
e + Ĥ2

lh + V2,

Ĥ2α2 = Ĥ2
e + Ĥ2

lh + V1.

(3.83)

4From now on, it is necessary to preserve the chosen order of these components.
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The coulombic terms are calculated using

V1 =
∫ (

ϕ1(2)
e

)2(
ϕ

1(2)
h0(l)

)2
V (re − rh) dzedzh,

V2 =
∫ (

ϕ1(2)
e

)2(
ϕ

2(1)
h0(l)

)2
V (re − rh) dzedzh,

V3 =
∫ (

ϕ1(2)
e

)2(
ϕ

1(2)
h1

)2
V (re − rh) dzedzh,

V4 =
∫ (

ϕ1(2)
e

)2(
ϕ

2(1)
h1

)2
V (re − rh) dzedzh,

V5 =
∫ (

ϕ1
e

)2
ϕ2

h0ϕ
2
h1V (re − rh) dzedzh,

V6 =
∫ (

ϕ2
e

)2
ϕ1

h0ϕ
1
h1V (re − rh) dzedzh,

(3.84)

where the Coulomb interaction V takes the standard form of V (r) = −e2/(4πε0εr|r|). On
calculation of Eq. (3.84), a little more attention will be paid later.

A common way how to further treat with the excitonic hamiltonian, written in in-plane
coordinate system, is to perform the centre-of-mass transformation.

3.3.3 Centre-of-mass transformation

Since the Coulomb interaction V between an electron and a hole forming an exciton depends
on the relative distance of these particles only, it is advantageous to proceed with new
coordinates r, R, which describe the in-plane relative distance and the in-plane centre-of-
mass coordinate of the electron-hole pair, instead of treating with re‖, rh‖. The coordinates
r, R are defined by well-known formulae (3.16) and (3.17):

r = re‖ − rh‖ (3.85)

and
R =

mere‖ + mhrh‖
me + mh

. (3.86)

However, a little problem arises. Whereas the first of these two formulae could be used
in our case, we have to take care of the second since there is only one hole mass in
it. To describe both light- and heavy-hole excitons, we cannot simply use Eq. (3.86) when
substituting mh with one of mlh or mhh. We can neither use Eq. (3.86) twice, with different
masses, since it would not be a correct transformation, nor restrict our considerations just
on one, light- or heavy-hole, exciton, since we would neglect some interesting effects arising
from the valence-subband mixing. We handle this situation by introducing the generalized
centre-of-mass transformation

R = µre‖ + λrh‖, µ + λ = 1, (3.87)
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keeping in mind that the coefficients µ, λ will be determined later, probably by our pursuit
for the most possible simplification of obtained equations.

It could be derived from Eq. (3.85) and (3.87) that

re‖ = R + λr,

rh‖ = R− µr,
(3.88)

from which it follows
p̂e‖ = p̂ + µP̂,

p̂h‖ = −p̂ + λP̂.
(3.89)

In the last equations, p̂ is the momentum operator corresponding to r, P̂ the momentum
operator associated with R.

Just like proposed in [21] and generalized in [5], we will look for the solution (3.82) of
(3.77) in the following form:

Φ(re‖, rh‖) = (u+
1β1, u

+
1γ1, u

+
1β2e+

2 , u+
1γ2e+

2 , u+
2β1e−2 , u+

2γ1e−2 , u+
2β2, u

+
2γ2, v

+
1α1, v

+
1α2e+

2 , v+
2α1e−2 , v+

2α2,

v−1α1, v
−
1α2e+

2 , v−2α1e−2 , v−2α2, u
−
1β1, u

−
1γ1, u

−
1β2e+

2 , u−1γ2e+
2 , u−2β1e−2 , u−2γ1e−2 , u−2β2, u

−
2γ2)

· exp

[
i

(
Kx − eB⊥

2~
y

)
X + i

(
Ky +

eB⊥
2~

x

)
Y

]
, (3.90)

where the symbol e±2 denotes the additional phase factor

e±2 = exp

(
±i

deB‖
~

Y

)
(3.91)

and the functions u±iβ(γ)j, v±iαj depend on the relative coordinates x, y only. We have mana-
ged to reduce the number of independent variables from six at the beginning to two at
this moment. We can also derive rules that the operators p̂ and P̂ must obey while acting
on components of (3.90). If we denote by symbol e1 the phase factor on the third line of
Eq. (3.90), then for any function χ depending on relative and centre-of-mass coordinates
x, y, X, Y in such a way that it could be factorized into χ(x, y, X, Y ) = u(x, y)e1e±2 , one
can write

p̂xχ = [(p̂xu) + 1
2eB⊥Y u]e1e±2 ,

p̂yχ = [(p̂yu)− 1
2eB⊥Xu]e1e±2 ,

p̂2
xχ = [(p̂2

xu) + eB⊥Y (p̂xu) + 1
4e

2B2
⊥Y 2u]e1e±2 ,

p̂2
yχ = [(p̂2

yu)− eB⊥X(p̂yu) + 1
4e

2B2
⊥X2u]e1e±2

(3.92)

for the operator p̂ and

P̂xχ = (~Kx − 1
2eB⊥y)ue1e±2 ,

P̂yχ = (~Ky + 1
2eB⊥x± deB‖)ue1e±2 ,

P̂ 2
xχ = (~Kx − 1

2eB⊥y)2ue1e±2 ,

P̂ 2
y χ = (~Ky + 1

2eB⊥x± deB‖)
2ue1e±2

(3.93)
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for the operator P̂. When a component of (3.90) does not have e±2 phase factor, ±deB‖ in
Eq. (3.93) should be neglected.

It is straightforward to rewrite the formulae (3.60)–(3.76) in terms of the new coordinate
system, which gives

Ĥ1
e ue1e±2 =

{
1

2me

[(
p̂x − 1

2
eB⊥y

)2

+

(
p̂y +

1
2
eB⊥x

)2

+ 2µ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ µeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ µ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Ee(B‖) + ez1E
}

ue1e±2 , (3.94)

Ĥ2
e ue1e±2 =

{
1

2me

[(
p̂x − 1

2
eB⊥y

)2

+

(
p̂y +

1
2
eB⊥x

)2

+ 2µ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ µeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ µ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Ee(B‖) + ez2E
}

ue1e±2 , (3.95)

Ĥ3
e ue1e−2 = −te exp

(
i
deB‖
~

λy

)
ue1 (3.96)

for the electronic part of the hamiltonian. For the heavy-hole part, we have

Ĥ1
hhue1e±2 =

{
γ1 + γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Eh0(B‖)− ez1E
}

ue1e±2 , (3.97)

Ĥ2
hhue1e±2 =

{
w

[
−

(
p̂y − 1

2
eB⊥x

)
+ λ(~Ky ± deB‖)

]
− eZE

}
ue1e±2 , (3.98)

Ĥ3
hhue1e+

2 = −th0 exp

(
i
deB‖
~

µy

)
ue1, (3.99)

Ĥ4
hhue1e±2 =

{
γ1 + γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Eh1(B‖)− ez1E
}

ue1e±2 , (3.100)
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Ĥ5
hhue1e+

2 = −th1 exp

(
i
deB‖
~

µy

)
ue1, (3.101)

Ĥ6
hhue1e±2 =

{
γ1 + γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Eh0(B‖)− ez2E
}

ue1e±2 , (3.102)

Ĥ7
hhue1e±2 =

{
γ1 + γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ Eh1(B‖)− ez2E
}

ue1e±2 . (3.103)

The terms arising from the light-hole part are

Ĥ1
lhue1e±2 =

{
γ1 − γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ El(B‖)− ez1E
}

ue1e±2 , (3.104)

Ĥ2
lhue1e±2 =

{
γ1 − γ2

2m0

[(
p̂x +

1
2
eB⊥y

)2

+

(
p̂y − 1

2
eB⊥x

)2

− 2λ
[
~Kxp̂x + (~Ky ± deB‖)p̂y

]
+ λeB⊥

[
(~Ky ± deB‖)x− ~Kxy

]

+ λ2
[
~2K2

x + (~Ky ± deB‖)
2
]
]

+ El(B‖)− ez2E
}

ue1e±2 , (3.105)

Ĥ3
lhue1e+

2 = −tl exp

(
i
deB‖
~

µy

)
ue1. (3.106)

Remember, u = u(x, y) in all foregoing formulae. Furthermore, b̂ terms are given as follows

b̂1ue1e±2 = g

{
i

[
−

(
p̂x +

1
2
eB⊥y

)
+ λ~Kx

]

+

[
−

(
p̂y − 1

2
eB⊥x

)
+ λ

(
~Ky ± deB‖

)]}
ue1e±2 , (3.107)
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b̂2ue1e±2 = g∗
{

i

[
−

(
p̂x +

1
2
eB⊥y

)
+ λ~Kx

]

+

[
−

(
p̂y − 1

2
eB⊥x

)
+ λ

(
~Ky ± deB‖

)]}
ue1e±2 , (3.108)

and finally for ĉ terms, we have

ĉ1ue1e±2 =

√
3γ5

2m0

{[(
p̂x +

1
2
eB⊥y

)2

−
(

p̂y − 1
2
eB⊥x

)2

− 2λ
[
~Kxp̂x − (~Ky ± deB‖)p̂y

]− λeB⊥
[
(~Ky ± deB‖)x + ~Kxy

]

+ λ2
[
~2K2

x − (~Ky ± deB‖)
2
]
]
− i

[
2

[
p̂xp̂y −

(
λ~Kx − 1

2
eB⊥y

)
p̂y

−
(

λ(~Ky ± deB‖) +
1
2
eB⊥x

)
p̂x

]
− λeB⊥

[
(~Ky ± deB‖)y − ~Kxx

]

− 1
2
e2B2

⊥xy + 2λ2~Kx(~Ky ± deB‖)

]}
ue1e±2 + Fue1e±2 , (3.109)

ĉ2ue1e±2 = f

{
i

[
−

(
p̂x +

1
2
eB⊥y

)
+ λ~Kx

]

+

[
−

(
p̂y − 1

2
eB⊥x

)
+ λ

(
~Ky ± deB‖

)]}
ue1e±2 . (3.110)

Let us mention once again that if a component of (3.90) does not have e±2 phase factor,
±deB‖ should be neglected in Eqs. (3.94)–(3.110).

Though we have reduced our system to the two-dimensional set of differential equations
(in x, y variables), it still remains analytically unsolvable problem. To overcome this,
we will expand u, v components of (3.90) (we will call them in-plane components since
u = u(x, y), v = v(x, y) depend only on in-plane relative distance between an electron and
a hole) to a proper basis to be given a numerically solvable set of algebraic equations. But
before we do that, let us give a more detailed discussion of particular terms in Eq. (3.84).

3.3.4 Coulombic terms

It was shown in the previous text that six different coulombic terms in our choice of
tight-binding basis exist. These are summarized in Eq. (3.84). Each of these terms is
calculated by performing the indicated two-dimensional integration. Since V (re − rh) ∝
1/

√
x2 + y2 + (ze − zh)2 and the integration runs over ze and zh, the resulting function is

even in x, y. Moreover, it is proportional to x2 + y2 = r2 and thus even in r.
Though the forementioned two-dimensional integration cannot be done analytically and

we will treat it numerically, a little simplification can be performed: using the substitution

η = ze − zh,

ξ = ze + zh

(3.111)
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Figure 3.3: The effect of transformation (3.111) on the integration area in ze, zh and η, ξ
coordinate systems for the computation of coulombic terms.

one can reduce it to a one-dimensional problem. We are about to demonstrate the whole
procedure on the first term of (3.84), V1. After substitution from (3.48) and use of some
well-known trigonometric formulae, we can write

V1(r) =
∫

Ω1

(
ϕ1(2)

e

)2(
ϕ

1(2)
h0(l)

)2
V (re − rh) dzedzh

= − 1
L2

∫

Ω1

cos2 π

L
(ze − z1(2)) cos2 π

L
(zh − z1(2))

dzedzh

4πε0εr

√
r2 + (ze − zh)2

= − 1
L2

∫

Ω2

1
2

[
cos2 π

L
(ξ ± d) + 2 cos

π

L
(ξ ± d) cos

π

L
η + cos2 π

L
η
] dξdη

4πε0εr

√
r2 + η2

= − 1
2L

∫ L

−L

(
1 + 2 cos2 π

L
η
) dη

4πε0εr

√
r2 + η2

.

(3.112)

Few comments are necessary: the third line was achieved from the second one using the
transformation (3.111), one half behind the integration mark comes from the jacobian of
such a transformation. Remember, z1(2) = ∓d

2 . The integration area Ω1 is a square, Ω2 is
more difficult, both are depicted for the general case in Fig. 3.3.5 The last line of Eq. (3.112)
is the resulting one-dimensional integral, which has to be calculated numerically. Another
terms in Eq. (3.84) would be treated in the same way.

5In Fig. 3.3, zi marks the QW-centre for electrons, zj is the corresponding quantity for holes.
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3.3.5 Expansion of in-plane components

It would bring some difficulties to find the exact solution of (3.77). It was shown in [12]
that if we substitute the Coulomb potential with the parabolic one, the analytic solution
is found easily. To be more specific, for the “in-plane” potential V of the form

V (x, y) = C
(
x2 + y2

)− S, (3.113)

the eigenfunctions φ(x, y), which solve the equation
[
Ĥ1

e +Ĥ1
hh+V (x, y)

]
φ(x, y) = Eφ(x, y)

if we substitute for Ĥ1
e from (3.94) and for Ĥ1

hh from (3.97), assuming B⊥ = B‖ = 0, are

φnm(x, y) = NHn

(√
2Ax

)
Hm

(√
2Ay

)
exp

[−A
(
x2 + y2

)]
exp

[
i G(Kxx + Kyy)

]
, (3.114)

where N is a normalization constant, Hn(m) is the Hermite polynomial of order n(m), and

A =
1
4~

√
8memhC

me + mh

, G =
λme − µmh

me + mh

, (3.115)

giving the eigenvalues

E = Ee(0) + Eh0(0)− S +
~2

2(me + mh)

(
K2

x + K2
y

)
+ ~

√
2C(me + mh)

memh

, (3.116)

analogous to the solution of the linear harmonical oscillator. Latter procedure can be
repeated for another diagonal terms of the excitonic hamiltonian, giving similar results.

In the presence of an external magnetic field, there are no problems with the in-plane
component, B‖. The solution (3.114) holds true if we substitute Ky with Ky ± deB‖/~.
However, the presence of the perpendicular field, B⊥, changes the form of corresponding
equations and the solution (3.114) is no longer valid (within the meaning of the exact
solution).

Nevertheless, we adopt the functions (3.114) as a good basis set since they are not the
solution of (3.77) anyway: first of all, they are the eigenfunctions of its diagonal part only
if B⊥ = 0 and the parabolic potential is present; secondly, the parabolic potential (3.113) is
just a simplification of the “real” Coulomb potential given by terms analogous to (3.112),
valid only under some other assumptions (detailed discussion could be found in [12]).

We expand the in-plane components u±iβ(γ)j, v±iαj of the wavefunction (3.90) in the
following manner:

u(v)±iβ(γ,α)j(x, y) =
nmax,mmax∑

n,m=0

c±iβ(γ,α)j(n, m)φnm(x, y)

=
nmax,mmax∑

n,m=0

c±iβ(γ,α)j(n,m)Hn

(√
2Ax

)
Hm

(√
2Ay

)
exp

[−A
(
x2 + y2

)]

· exp
[
i G(Kxx + Kyy)

]
. (3.117)
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In Eq. (3.115), hole mass mh appears in both formulae for A, G coefficients. Furthermore,
A is a function of C, which is, in our case, unknown parameter. Since we consider both
light and heavy holes, we set mh equal to the arithmetic mean of these values, mh =
(mlh+mhh)/2. To improve the method while expanding the solution to a basis set composed
of functions which are not the eingenfunctions of the diagonal part of (3.77), we choose
parameter C as variational. Starting with some initial value, we find that value for which
the energy of the excitonic ground level is the lowest.

Since the expansion (3.117) is independent in the x, y directions, we also tried two-
dimensional variational method, which means that instead of having one parameter C (from
which the corresponding value of A is calculated), we work with two separate parameters,
Cx, Cy. From these quantities, two values Ax, Ay are obtained, while the expansion (3.117)
takes form:

u(v)±iβ(γ,α)j(x, y) =
nmax,mmax∑

n,m=0

c±iβ(γ,α)j(n, m)φ2D
nm(x, y)

=
nmax,mmax∑

n,m=0

c±iβ(γ,α)j(n,m)Hn

(√
2Axx

)
Hm

(√
2Ayy

)
exp

(−Axx
2
)
exp

(−Ayy
2
)

· exp
[
i G(Kxx + Kyy)

]
. (3.118)

A comparison between these two approaches will be given later.

3.3.6 Wavefunction overview

The whole information about the quantum-mechanical system is contained in its wave-
function. The eigenvalues of the excitonic hamiltonian (3.77) (energy levels of the system)
together with the corresponding eigenvectors give us all we have to know before calculating
some experimentally-important results, such as optical spectra. Hence, before we proceed
later, it is of major importance to realize how actually the total wavefunction Ψex of the
system we deal with looks like.

Several transformations and substitutions have been made. If we take a look back into
the text and follow the procedure backwards, we hope one can easily find that

Ψex(re, rh) = N exp
[
i
(
ke‖ · re‖ + kh‖ · rh‖

)]
Ψ(re, rh), (3.119)

where N is a normalization constant. It is necessary to substitute for Ψ from (3.23). After
that, we have

Ψex(re, rh) = N exp
[
i
(
ke‖ · re‖ + kh‖ · rh‖

)]
ue(re)

[
c| 32 ,+ 3

2 〉(re, rh)u| 32 ,+ 3
2 〉(rh)

+ c| 32 ,+ 1
2 〉(re, rh)u| 32 ,+ 1

2 〉(rh) + c| 32 ,− 1
2 〉(re, rh)u| 32 ,− 1

2 〉(rh) + c| 32 ,− 3
2 〉(re, rh)u| 32 ,− 3

2 〉(rh)
]
.

(3.120)
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Remember, the expansions for functions c| 32 ,± 1
2 ( 3

2 )〉 are given by Eqs. (3.44)–(3.47). More-
over, each coefficient there was factorized from (3.82) into (3.90). Finally, the in-plane
components u±iβ(γ)j, v±iαj from (3.90) are expanded according to (3.117) for one-dimensional
or in accordance with (3.118) for two-dimensional variational method, using the Hermite-
Gauss basis set (3.114). We must give up our efforts to put all the expansions into one
formula since it would be very long and not provide an easy survey.

3.3.7 Optical spectra

In this section, we will give short theory of absorption and photoluminescence and show
how to apply it to our problem. At the end, the important formulae for calculation of
optical spectra will be derived.

The Einstein coefficients link together spontaneous and stimulated emission and ab-
sorption. Therefore, let us calculate the probability Pv→c of transition from the initial
state |v〉 in the valence band to the unoccupied conduction-band state |c〉, in other words,
the probability of electron-hole recombination accompanied by emission of a photon with
energy E. Similarly to [22], by the Fermi golden rule, we have

Pv→c ∝ |〈v|Hint|c〉|2 δ
(
Ev(kv)− Ec(kc)− E)

)
, (3.121)

where Ev and Ec are the energies of the initial and final state, respectively, and Hint is
the interaction hamiltonian between light and the studied system, usually written in the
dipole approximation. If we denote by index i the electronic subbands in the conduction
band and by j the hole subbands in the valence band, the total luminescence intensity L
is then determined as a summation over all initial and final states, i. e. over indices i, j
and momenta kv, kc:

L(E) ∝
∑
i,j

∑

kv ,kc

f c
FD

(
Eci

(kc)
)[

1− f v
FD

(
Evj

(kv)
)] |〈ci|Hint|vj〉|2

· δ(Eci
(kc)− Evj

(kv)− E)
)
. (3.122)

In the latter formula, we have included the population of valence (∝ 1 − f v
FD) and con-

duction (∝ f c
FD) band states, usually described by the Fermi-Dirac distribution function

f
c(v)
FD (E) =

[
1 + exp

(
(E − E

c(v)
F )/kBT

)]−1
, if E

c(v)
F denotes the quasi-Fermi level in the

conduction (valence) band, kB is the Boltzmann constant, and T temperature. To simplify
Eq. (3.122), it is essential to calculate the matrix element of the interaction hamiltonian,
〈ci|Hint|vj〉. In the envelope function approximation, we have

〈r |ci〉 ∝ χi
e,ke‖(z)uc(r) exp

(
i ke‖ · r‖

)
,

〈r |vj〉 ∝
∑

ν

χj
ν,kh‖(z)uν(r) exp

(
i kh‖ · r‖

)
,

(3.123)

where the summation over ν runs over light- and heavy-hole states, |32 ,±1
2(3

2)〉. Assuming
that the envelope function varies slowly in comparison to the rapid-oscillating periodic
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parts of the Bloch functions, one can further write

〈ci|Hint|vj〉 ∝
∑

ν

〈uc|Hint|uν〉 δke‖,kh‖

∫ +∞

−∞

(
χi

e,ke‖(z)
)∗

χj
ν,kh‖(z) dz. (3.124)

The first term in Eq. (3.124) determines the strength of the corresponding optical tran-
sition. It can be found in [13] that for the light propagation parallel to the z axis, the
intensity of light polarized in the x, y direction is three times higher for the heavy hole-
electron transitions than for the light hole-electron transitions, hence we take:

I| 32 ,± 3
2 〉 = 〈uc|Hint|u| 32 ,± 3

2 〉〉 =
1√
2
,

I| 32 ,± 1
2 〉 = 〈uc|Hint|u| 32 ,± 1

2 〉〉 =
1√
6
.

(3.125)

These quantities will be used later in the computation of the optical spectra. The second
term in Eq. (3.124) demonstrates the momentum conservation in the optical transition.
Finally, the last term is the electron-hole overlap integral. To calculate it, we have to write
formulae for χi

e,ke‖ and χj
ν,kh‖ . In the tight-binding approximation, these are given by

χi
e,ke‖(z) = c1,i

e,ke‖ϕ
1
e(z) + c2,i

e,ke‖ϕ
2
e(z),

χj
ν,kh‖(z) =

{
c1,j,±
h0,kh‖ϕ

1
h0(z) + c2,j,±

h0,kh‖ϕ
2
h0(z) + c1,j,±

h1,kh‖ϕ
1
h1(z) + c2,j,±

h1,kh‖ϕ
2
h1(z) if ν = |32 ,±3

2〉,
c1,j,±
l,kh‖ϕ

1
l (z) + c2,j,±

l,kh‖ϕ
2
l (z) if ν = |32 ,±1

2〉.
(3.126)

For the functions ϕe(h0(1),l)(ze(h)), see Eqs. (3.48) and (3.49). If we substitute the latter
formula together with (3.124) into (3.122), after some trivial math, one can find that

L(E) ∝
∑
i,j

∑

k

fFD

(
Ei

e(k)
)[

1− fFD

(
Ej

h(k)
)]∣∣∣∣

∑
σ=±

I| 32 , 3
2 σ〉

(
c1,i
e,kc

1,j,σ
h0,k + c2,i

e,kc
2,j,σ
h0,k

)

+ I| 32 , 1
2 σ〉

(
c1,i
e,kc

1,j,σ
l,k + c2,i

e,kc
2,j,σ
l,k

)∣∣∣∣
2

δ
(
Ei

e(k)− Ej
h(k)− E)

)
. (3.127)

It can be seen that by the rules of tight-binding approximation, the overlap integral between
the ground electronic QW bound state and the first excited heavy-hole state equals zero.

Since the products cr,i
e,kc

s,j,σ
η,k are described by the expansion coefficients a±rβ(γ)s, d±rαs of

Eqs. (3.44)–(3.47), replacing Ei
e(k) − Ej

h(k) by the nth excitonic energy level En(k) and
substituting the distribution functions fFD in (3.127) with the Boltzmann exponential
factor e−En(k)/kBT , finally it is obtained

L(E) ∝
∑

n

∑

k

e−En(k)/kBT

∣∣∣∣
∑
σ=±

I| 32 , 3
2 σ〉

(
aσ,nk

1β1 +aσ,nk
2β2

)
+I| 32 , 1

2σ〉
(
dσ,nk

1α1 +dσ,nk
2α2

)∣∣∣∣
2

δ
(
En(k)−E

)
.

(3.128)
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The meaning of k will be clarified later. It is usual to describe the inhomogeneous broad-
ening of the spectral line using either Lorentz-shaped line or Gaussian function, or the
convolution of Lorentz-shaped line with the Boltzmann distribution function, instead of
the delta function in Eq. (3.128). We use the second approach, having

Cm(E) =
∆m

πkBT

∫ +∞

0

e−E′/kBT dE ′

(E − Em − E ′)2 + ∆2
m

(3.129)

analogously to [8]. Therefore, the resulting formula, luminescence spectra will be calculated
with, reads

L(E) ∝
∑

n

∑

k

e−En(k)/kBT

∣∣∣∣
∑
σ=±

I| 32 , 3
2σ〉

(
aσ,nk

1β1 + aσ,nk
2β2

)
+ I| 32 , 1

2 σ〉
(
dσ,nk

1α1 + dσ,nk
2α2

)∣∣∣∣
2

Cnk(E).

(3.130)
Since the Boltzmann exponential factor in Eqs. (3.129), (3.130) is redundant for the

computation of absorption spectra as all states are assumed to be unoccupied, Cm(E)
reduces to

Lm(E) =
∆m

π

1
(E − Em)2 + ∆2

m

. (3.131)

If we then replace Cnk(E) in (3.130) by (3.131) with m = nk, the final formula, absorption
spectra computation will be driven by, arises:

A(E) ∝
∑

n

∑

k

∣∣∣∣
∑
σ=±

I| 32 , 3
2σ〉

(
aσ,nk

1β1 + aσ,nk
2β2

)
+ I| 32 , 1

2 σ〉
(
dσ,nk

1α1 + dσ,nk
2α2

)∣∣∣∣
2

Lnk(E). (3.132)

Achieved results will be presented in Chapter 4.

3.3.8 Probability density

Nice figures demonstrating the real-space charge density distribution can be obtained com-
puting the probability density. By the rules of quantum mechanics, it is achieved by eval-
uating the square of the absolute value of the wavefunction describing the studied system.
Important details concerning our excitonic wavefunction were summarized in Sec. 3.3.6.
From the facts shown there, we can easily derive that in the envelope function approxima-
tion, the radial6 charge density is given by

|Ψ(x, y)|2 =
2∑

i,j=1

∑
σ=±

(|aσ
iβj|2 + |aσ

iγj|2 + |dσ
iαj|2

)
, (3.133)

where one must not forget to construct the coefficients a(d)±iβ(γ,α)j from the expansions
discussed in Sec. 3.3.6.

6It means written in in-plane coordinates x, y.
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3.3.9 Numerical treatment

As the complexity of the problem does not enable us to find the solution analytically, we
are thrown upon the use of numerical methods. These have been developing for years by
mathematicians all over the world and now a lot of the common mathematical tasks we
can come across during solving physical problems are solved. The only question that is
to be answered is the choice of the proper method, keeping in mind the requirements for
numerical precision or time consumption.

Most of the optimized codes are available on-line, e. g. a large collection of Fortran
subroutines that compute the eigenvalues and eigenvectors for special types of matrices is
contained in the EISPACK library. Other important codes can be found in [23].

The three most important tasks that our problem contains are: (1) the variational com-
putation of the optimal basis parameters, (2) the construction of the matrix hamiltonian
in the chosen basis of the Hermite-Gauss functions (3.114), and (3) the diagonalisation of
the resulting matrix.

For one-dimensional variational method, the Brent algorithm is used, two-dimensional
one is performed using AMOEBA subroutine. Details for both methods are to be found in
[23]. The computation of matrix terms is performed using Romberg integration method,
details can be found in [23]. The upper limits nmax, mmax of the expansions (3.117) and
(3.118) fulfil the conditions nmax ≤ 9, mmax ≤ 9, since greater values would prolong the
computation too much. To diagonalise the matrix hamiltonian, we used the EISPACK
CH-subroutine, designed for complex hermitian matrices. This method calls the recom-
mended sequence of subroutines to find the eigenvalues and eigenvectors: first of all, the
input matrix is reduced to a real symmetric tridiagonal matrix. In the next step, the tridi-
agonal matrix is diagonalised using the QL method, the eigenvalues are written on output.
As the last operation, the eigenvectors are formed by back transforming the corresponding
real symmetric tridiagonal matrix from the previous step. On output, the eigenvalues and
eigenvectors are provided.
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Results and discussion

In this chapter, the calculated results will be demonstrated. We start with the dispersion
relations, showing the energy dependence on the centre-of-mass momentum. On the sim-
plest possible model, an exciton located in a DQW when no external fields are present, the
most important effects are illustrated, giving us an opportunity to predict the behaviour
when more precise calculations are performed. The effect of an electric field in the growth
direction and a magnetic field in both perpendicular and parallel orientations is discussed.
Finally, absorption and photoluminescence spectra are computed and illustrated on rele-
vant figures.

It could be found in [5] that the energy minimum is always located at Kx = 0. Hence
we do not discuss the Kx dependency in detail. The following parameters are used in all
calculations throughout the work:

me = 0.067m0, γ1 = 6.85, γ2 = 2.10, γ3 = 2.90,

from which it follows that

mhh‖ = 0.112m0, mhh⊥ = 0.377m0, mlh‖ = 0.211m0, mlh⊥ = 0.090m0,

where m0 = 9.109×10−31 kg is the free-electron mass. For electron, the “in-plane” and the
“perpendicular” masses are assumed to be equal. Moreover, for both electrons and holes,
we suppose that the masses are the same both in the well and the barrier. Notice that the
in-plane heavy-hole mass is less that the in-plane light-hole mass (so called mass reversal).

The permittivity of GaAs/AlGaAs, the well width, and the distance between QWs
forming the DQW are as follows:

εr = 12.9, L = 10 nm, d = 10 nm,

assuming ε0 = 8.854 × 10−12 F/m. The bandgap width and the energies of bound states
in separate QWs are

Eg = 1.5 eV, Ee0 = 42 meV, El0 = 22 meV,

Eh00 = 4 meV, Eh10 = 29 meV,
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Chapter 4. Results and discussion

while for the tunneling matrix elements, we have

te = 3 meV, tl = 2 meV,

th0 = 0.010 meV, th1 = −0.012 meV.

The minus sign in th1 originates from the definition of the corresponding matrix term.
Throughout the whole previous chapter, we paid attention to derived equations, look-

ing for a chance to simplify them by setting the parameters µ, λ of the transformation
(3.87) properly. However, no advantageous choice satisfying the condition µ + λ = 1 was
discovered. Thus, we chose the symmetric gauge µ = λ = 1

2 .

4.1 Energy dependencies

Dispersion relations both with and without external fields, the effect of the valence-subband
mixing on expansion coefficients, the shift of energy levels in external fields, and a com-
parison between bases of different extensions are studied in this section.

4.1.1 Dispersion relations

Basic information about the excitonic energy levels is provided by dispersion relations.
These show the energy dependence on the “generalized” centre-of-mass momentum intro-
duced by Eq. (3.87). As mentioned above, since the Kx dependence is not of our main
interest, only the E = E(Ky) dependence is discussed.

4.1.1.1 Dispersion relations in the absence of external fields

Starting with 1 × 1 basis,1 which means that the results will be more qualitative than
quantitative, the situation for no external fields is shown in Fig. 4.1. The relations are
even in Ky and four important effects that play the main role for the form of depicted lines
are illustrated: band anti-crossing, valence-subband mixing, mass reversal, and light-hole
negative effective mass near the origin. Let us inspect them in detail.

As mentioned in the previous chapter, the presence of non-zero matrix elements origi-
nating from Luttinger b̂ and ĉ terms modifies the energy spectrum. If these terms are
neglected, the anti-crossing effect does not take place, the dispersion relations intersect
each other and the situation is similar to that depicted in Fig. 4.1 with dashed lines. Solid
lines show the situation when b̂ and ĉ terms are considered. It is obvious that though
the degeneracy of most levels is partially lifted, all levels remain twofold degenerate. This
“spin” degeneracy, which cannot be lifted when no external fields are applied, corresponds
to mJ = ±1

2 and mJ = ±3
2 hole subbands.

The valence-subband mixing is also obvious in Fig. 4.1 at first sight, if we take a look at
the two lowest-lying levels. Although it may seem that they are degenerate at the origin,

1Expansions (3.117) of the matrix hamiltonian are restricted to the lowest level separately in both the
x and the y directions.
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Figure 4.1: Dispersion relations of an exciton in a DQW without external fields. Solid
lines show the situation when b̂ and ĉ terms are non-zero whilst dashed lines illustrate the
situation when these vanish.

they are actually not. This arises from the energy axis scale that is too large to realize the
gap between them, approximately given by 2th0 = 2 × 0.01 meV = 0.02 meV, since both
these levels correspond to heavy-hole excitonic states. However, farther from the origin,
starting approximately at Ky ≈ 0.2 nm−1 and from there on, the character of these levels
changes. The strength of heavy-hole contributions falls as the strength of light-hole ones
rises. This can be seen in Fig. 4.2 on the Ky dependence of the expansion coefficients
(square of their absolute values) associated with light- and heavy-hole excitonic states of
the tight-binding expansions (3.44)–(3.47).

Since the heavy-hole contribution weakens whereas the light-hole one becomes more
important with increasing Ky, the gap between the two lowest-lying levels, given in the
first case approximately by 2th0, changes to 2tl = 2 × 2 meV = 4 meV, a significantly
greater value, in the second case, as can been seen directly from Fig. 4.1.

If we are concerned about the excitonic binding energies, a simple estimate can be
made from Fig. 4.1 using parameters introduced at the beginning of this chapter. If we
denote by ∆E = Eg + Ee0 + Eh00 = 1.546 eV the energy separation of the ground levels
in a single QW and since the energy Ed

hh of the direct heavy-hole excitonic level with
Ky = 0 is Ed

hh = 1.5370 eV, the corresponding binding energy Bd
hh is approximately given

by Bd
hh = ∆E − te − Ed

hh = 6.0 meV, if the value th0 of the heavy-hole tunneling matrix
element has been neglected in comparison to te. Analogously, as the energy E ind

hh of the
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Figure 4.2: The effect of the valence-subband mixing on the tight-binding expansion
coefficients when no external fields are applied.

indirect heavy-hole exciton is E ind
hh = 1.5446 eV, using the formula Bind

hh = ∆E + te −E ind
hh ,

the corresponding binding energy reads Bind
hh = 4.4 meV. Discussion of these values, as well

as a comparison with existing results, will be given in Chapter 5.
The change in the dispersion relations character is also accompanied by the change

in the slope of the corresponding curves. The curvature near the origin determines the
effective mass. The greater the mass is, the less slope obtained. Comparing slopes of the
two lowest-lying levels near the origin and for Ky > 0.2 nm−1, one can conclude that the
effective mass for smaller Ky is less than that for greater Ky: another nice illustration of
the described phenomenon, the valence-subband mixing, now demonstrated by the mass
reversal effect, as mhh‖ < mlh‖.

Finally, the last effect we are about to discuss is the negative light-hole effective mass.
This effect, connected to Luttinger b̂ and ĉ terms (see Fig. 4.1), demonstrates once again
the strong coupling between valence subbands. The dispersion lines of light-hole excitons,
influenced by near-located heavy-hole excitonic levels with a hole in the first excited state,
turn down and fall until they are far enough that the interaction with heavy-hole excitonic
levels with a hole in the ground state turns them up again.

It may seem that the proximity of the light-hole excitonic states and the heavy-hole ex-
citonic levels with an excited hole is a real effect. However, this situation is just accidental,
resulting from the chosen set of parameters used for variational computation. Expanding
the solution to the larger basis, this effect would vanish, leaving the levels distant enough.
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Chapter 4. Results and discussion

Table 4.1: Dependence of the variational parameter C, the related quantity A, and the
excitonic radius R on Ky for 1× 1 basis.

Ky (nm−1) −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

C (10−6 kg/s2) 3.796 3.733 3.443 3.269 3.265 3.269 3.443 3.733 3.796
A (10−3 nm−2) 2.712 2.690 2.583 2.517 2.515 2.517 2.583 2.690 2.712

R (nm) 13.6 13.7 13.9 14.1 14.1 14.1 13.9 13.7 13.6

Let us take a look at the variational method itself. As the variational calculation is
performed for each Ky from the selected interval, the optimal value of variational parameter
C and the corresponding value of A (see Eq. (3.115)) may change. For some values of
−0.4 nm−1 ≤ Ky ≤ 0.4 nm−1, this can be found in Tab. 4.1; R is the radius of the ground-
state exciton.2 Since no external fields are present, the value of C varies very slowly. It
will be demonstrated later that if an electric (or especially a magnetic field) is applied,
the dependence is much stronger. Further discussion of obtained values of R will be given
in Chapter 5.

4.1.1.2 Dispersion relations in the presence of an external electric field

Another very important situation, an exciton in a DQW in the presence of an external
electric field, can be nicely illustrated on our simplified model, based on 1 × 1 basis ex-
pansion. Dispersion relations for the electric field E = 30 kV/cm are depicted in Fig. 4.3.
Evidently, there are more lines then in Fig. 4.1. If one tried to count them, the number
of 24 would be achieved. The presence of an external electric field breaks the symme-
try of our quantum-well system, resulting in the splitting of twofold degenerate energy
levels for Ky 6= 0. The Kramer’s degeneracy is lifted away off the origin.3 Such a split
off clearly originates from the term Ĥ2

hh of the excitonic hamiltonian. As it is given by
Eq. (3.64), the only way how to make it non-zero is to turn on the in-plane magnetic field,
or — just like in this situation — to apply an electric field on the sample. Consequently,
the excitonic hamiltonian, a 24× 24 matrix in 1× 1 basis, cannot be decomposed into two
identical 12 × 12 non-interacting blocks as in the situation when no fields were applied.
The matrix is irreducible, giving 24 different eigenvalues. However, as only the electric
field is applied and there is no additional magnetic field, the dispersion relations remain
even in Ky, E(Ky) = E(−Ky).

Though an electric field is applied in the growth direction (along the z axis), it affects
energy levels in x, y plane. The splitting for Ky = ±0.4 nm−1 reaches for the lowest-

2Though the quantity R, connected to the variational parameter A through the formula R = 1/
√

2A
(2 in the denominator comes from |Ψ|2), does not exactly express the excitonic radius but the “width”
of Gaussian functions used to construct a wavefunction, its increase would obviously rise the value of
excitonic radius and we will use it in this sense.

3For more details about the Kramer’s degeneracy, please see [13].
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Figure 4.3: Dispersion relations of an exciton in a DQW for the electric field
E = 30 kV/cm in the growth direction.

lying levels approximately 4 meV. The character of several energy levels is summarized in
Tab. 4.2, where the greatest contribution to eigenvectors for the corresponding eigenvalue
is shown. Notice that for Ky = 0, all levels are twofold degenerate. Remember, we adopted
notation α for light holes, β for the heavy-hole ground state, and finally, γ stands for the
first excited heavy-hole state. The second line shows the energy of the level, the third line
keeps the state of major contribution, correspondence to either direct (d) or indirect (i)
exciton is to be read from the fourth line. The last line shows the absolute value of the
greatest expansion coefficient. While for Ky = 0, the listed states are dominant as mixing
is very weak, for non-zero Ky, the coupling strengthens, resulting in levels composed of
both light- and heavy-hole excitons. This can be seen as the decrease of the absolute value
of the strongest expansion coefficients shown in Tab. 4.2.

It is also notable that the lowest-lying states consist of indirect excitons, for the chosen
orientation of the electric field with an electron in the left well and a hole in the right well.
Moreover, we can conclude that an electric field applied on a DQW structure does not
prefer any total angular momentum orientation since states with both mJ = +1

2(3
2) and

mJ = −1
2(3

2) are represented in different eigenvectors equally.
Just like in previously discussed situation, we can take notice of variational calculations.

As the dispersion relations are even in Ky, nothing different can be expected from the
dependence of C and A on the centre-of-mass momentum. This is shown in Tab. 4.3. We
tried the two-dimensional variational method as well. However, there was no significant
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Table 4.2: The strongest contributions to eigenvector expansions for several selected
energy levels for E = 30 kV/cm and Ky = 0 (a), and Ky = ±0.3 nm−1 (b).

(a)

level 1 2 3

E (eV) 1.5108 1.5293 1.5377
state 1β2± 1α2± 1γ2±

type i i i
|coeff.| 0.9762 0.9918 0.9756

(b)

level 1 2 3 4 5 6

E (eV) 1.5196 1.5246 1.5316 1.5382 1.5473 1.5478
state 1α2± 1α2± 1β2± 1β2± 1α1± 2α2±

type i i i i d d
|coeff.| 0.4570 0.5295 0.5959 0.5612 0.4519 0.4542

Table 4.3: Dependence of the variational parameter C, the related quantity A, and the
excitonic radius R on Ky for E = 30 kV/cm in 1× 1 basis.

Ky (nm−1) −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

C (10−6 kg/s2) 0.551 0.515 0.460 0.454 0.459 0.454 0.460 0.515 0.551
A (10−3 nm−2) 1.033 0.999 0.944 0.938 0.943 0.938 0.944 0.999 1.033

R (nm) 22.0 22.4 23.0 23.1 23.0 23.1 23.0 22.4 22.0

effect on dispersion relations. The only effect observed was the slight change in the value
of expansion coefficients as Cx and Cy parameters were almost equal. Furthermore, the
two-dimensional procedure is more time-consuming than the one-dimensional. Therefore,
we chose faster method and performed the calculations using one-dimensional algorithm.

The binding energy Bind
hh of the ground indirect heavy-hole exciton with Ky = 0 is

evaluated using the same procedure as in the previous paragraph, giving Bind
hh = ∆E −

te − edE − Eind
hh = 2.2 meV, where edE = 30 meV and Eind

hh is the energy of level 1 in
Tab. 4.2a. The decrease in binding energy of the ground excitonic level in an electric field
in comparison to the situation when no fields were present is comprehensible: while in the
currently-studied situation, the ground level is formed from indirect states, in the second
case it is composed of direct ones. Since the binding energy is lower, the excitonic radius
is larger, see Tabs. 4.1 and 4.3.
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Figure 4.4: Dispersion relations of an exciton in a DQW for the situation when the
in-plane magnetic field of magnitude B‖ = 10 T is applied.

4.1.1.3 Dispersion relations in the presence of the in-plane magnetic field

To demonstrate the effect of the in-plane magnetic field on our system, the dispersion
relations were calculated for 1× 1 basis. In Fig. 4.4, the situation for B‖ = 10 T is shown.

There is no doubt that the degeneracy splitting takes place. Thus instead of 12 lines
as in the absence of external fields (see Fig. 4.1), the situation is similar to that discussed
above (see Fig. 4.3): 24 lines showing the energy dependence exist. However, for the lowest
energy levels, the splitting does not reach such values as it did in the presence of an electric
field. For Ky = ±0.4 nm−1, it is at about 1 meV, the lines are close to each other.

Just like in all forementioned situations, we can identify energy levels of our choice.
The results achieved for Ky = 0 can be found in Tab. 4.4, those for Ky = ±0.24 nm−1

are listed in Tab. 4.5. It should be noted that for Ky = 0, the four lowest-lying levels
associated with direct heavy-hole excitons are almost degenerate while for non-zero Ky,
this “degeneracy” disappears. Strong valence-subband mixing takes place, resulting in the
change of character of the lowest levels. For Ky = ±0.24 nm−1, the two states of minimal
energy are created predominantly from indirect excitons, which is clearly demonstrated in
the increase of excitonic radius depicted in Fig. 4.5a.

It was derived in Chapter 3 that if the in-plane magnetic field of magnitude B‖ is
applied, the indirect-exciton dispersion branches are shifted away off the origin by±deB‖/~,
giving rise to two lateral local extrema. For B‖ = 10 T, this quantity equals approximately

47



Chapter 4. Results and discussion

Table 4.4: The strongest contributions to eigenvector expansions for lowest energy levels
for B‖ = 10 T and Ky = 0.

level 1 2 3 4 5 6

E (eV) 1.5387 1.5387 1.5387 1.5388 1.5487 1.5490

state
1β1±

2β2±
1β1±

2β2±
1β1±

2β2±
1β1±

2β2±
1β2±

2β1±
1β2±

2β1±

type d d d d i i
|coeff.| 0.4913 0.4915 0.4919 0.4921 0.4534 0.4658

Table 4.5: The strongest contributions to eigenvector expansions for several selected
energy levels for B‖ = 10 T and Ky = ±0.24 nm−1.

level 1 2 3 4 5 6

E (eV) 1.5442 1.5443 1.5476 1.5480 1.5495 1.5499

state
{ Ky = −0.24 nm−1

Ky = +0.24 nm−1
1β2±

2β1±
1β2±

2β1±
1β1±

2β2±
2β2±

1β1±
1β1±

2β2±
2β2±

1β1±

type i i d d d d
|coeff.| 0.6862 0.6985 0.5061 0.4966 0.3909 0.4029

±0.15 nm−1. Such an effect could be seen for higher energy levels (e. g. on a bunch of
lines between 1.55 and 1.56 eV in Fig. 4.4), but for the lowest-lying levels, it is not so
demonstrated because of the strong mixing and influence of adjacent states.

It the text above, we have likened the degeneracy splitting in a DQW subject to the
in-plane magnetic field to the situation when the electric field in the growth direction is
applied. However, there is one difference worth mentioning: while for E 6= 0, B‖ = 0,
it does not depend on the sign of Ky (see Tab. 4.2b), when E = 0, B‖ 6= 0, the parity
of states is different for Ky > 0 and Ky < 0. This is nicely illustrated in Tab. 4.5 and
Fig. 4.5b: for Ky < 0, states with an electron in the left QW and a hole in the right QW
are preferred, whereas for Ky > 0, states with a hole in the left QW and an electron in
the right QW are of advantage. For the opposite sign of Ky than it is preferred, the value
of corresponding coefficients decreases rapidly. However, such behaviour should not be
surprising. The Lorentz force FL, the force of main importance when studding electrically
charged moving particles, is given by

FL = qv ×B, (4.1)

where q marks the electric charge of a particle moving with speed v in the magnetic field B.
As we are concerned in excitons moving in the direction of the y axis, only the second
coordinate of v is non-zero, v = vey. Hence, assuming that B = B‖ex, after substitution

48



Chapter 4. Results and discussion

-0.4 -0.2 0.0 0.2 0.4

17

21

25

29

 

 
R

 (n
m

)

K
y
 (nm-1)

 R
 
 (1D)

 R
x
 (2D)

 R
y
 (2D)

(a)

-0.4 -0.2 0.0 0.2 0.4

0.00

0.05

0.10

0.15

0.20 (b)

 

 

ab
s(

co
ef

fic
ie

nt
)2  (a

. u
.)

K
y
 (nm-1)

 1 1±
 2 2±
 1 2±
 2 1±

0 2 4 6 8 10
0

2

4

6

8

10

Y
 A

xi
s 

Ti
tle

X Axis Title

0 2 4 6 8 10
0

2

4

6

8

10

Y
 A

xi
s 

Ti
tle

X Axis Title

Figure 4.5: Excitonic radii from both one- and two-dimensional variational methods (a)
and the squares of the absolute values of the greatest expansion coefficients (b) as functions
of Ky for B‖ = 10 T in 1× 1 basis.

to Eq. (4.1), it follows that the Lorentz force exerts in the z direction. Changing the
orientation of the magnetic field or Ky direction, B ↔ −B or Ky ↔ −Ky, the Lorentz
force changes its orientation, too: if it exerted in the z+ direction, now it is in the direction
of z−, and vice versa. Thus, the change of parity is a simple effect of the Lorentz force.

Detailed inspection would bring us the identification of matrix-hamiltonian terms re-
sponsible for observed splitting. Since it obviously comes from the valence-subband mixing,
one can conclude that Luttinger b̂ and ĉ terms are of effect. Actually, because of the sub-
stitution Ky ↔ Ky ± deB‖/~ applied on indirect excitonic states in the presence of the
in-plane magnetic field, many matrix terms, which vanish in the absence of external fields,
are now non-zero, enabling the mixing. Through the tunneling matrix elements, all terms
of the hamiltonian (3.77) are then coupled. However, there is just one more effect that
comes into question. The Lorentz force. Its effect on the system is similar to the effect of
the electric field in the growth direction. As it exerts along the z axis, it leaves the matrix
Ĥ2

hh term non-zero, allowing the coupling as well.
As the effect of the magnetic field is stronger than that of the electric field, bringing

along the change in parity of eigenfunctions for Ky ≷ 0, one can assume that some effect on
the polarisation of an exciton could take place, too.4 Two-dimensional variational method
used for the computation of optimal values of basis parameters gives us a good tool for
this as excitonic radii in perpendicular directions are provided on output. The results of
such calculations are depicted in Fig. 4.5a, where Rx denotes the radius along the x axis
while Ry marks the corresponding quantity in the direction of the axis y. For comparison,
the value of one-dimensional variational parameter R is shown. We see that the exciton
affected by the in-plane magnetic field is squeezed in the propagation direction whereas

4By this we understand stretching in one direction while shrinking in the other.
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Figure 4.6: Dispersion relations of an exciton in a DQW subject to both the in-plane
magnetic field of magnitude B‖ = 10 T and the electric field E = 10 kV/cm in the growth
direction.

spread along the axis showing field orientation, and the following relation evidently holds:
Rx > R > Ry.

4.1.1.4 Dispersion relations in the presence of both the electric and the in-
plane magnetic field

All results presented so far had one feature in common: dispersion relations were even in
Ky, E(Ky) = E(−Ky). To get rid of such behaviour, both electric and magnetic fields
have to be applied on a DQW structure. The decrease in symmetry renders dispersion
relations asymmetric in Ky, as depicted in Fig. 4.6. As the electric field separates direct
and indirect excitonic states in energy and the in-plane magnetic field shifts the dispersion
branches of indirect excitons away off the origin by ±deB‖/~, the ground level is formed
from indirect excitonic states with an electron and a hole spatially separated in opposite
QWs in accordance with the orientation of the electric field, see Tabs. 4.6–4.7. Moreover,
B‖ = 10 T gives deB‖/~ ≈ 0.15 nm−1 in excellent agreement with the position of the
ground level global minimum. In the absence of an electric field, the energies of lateral
minima of indirect-exciton dispersion lines would be equal (see Fig. 4.4). On the contrary,
when an external electric field is applied, one of these minima lowers while the second one
rises, leaving the energy separation ∆ε among them proportional to the magnitude of the

50



Chapter 4. Results and discussion

Table 4.6: The strongest contributions to eigenvector expansions for several energy levels
for B‖ = 10 T, E = 10 kV/cm, and Ky = 0.

level 1 3 5 7 9 11

E (eV) 1.5370 1.5391 1.5401 1.5456 1.5561 1.5566
state 1β2± 1β1± 2β2± 1α2± 2α2± 1α1±

type i d d i d d
|coeff.| 0.5823 0.7030 0.5920 0.5677 0.4443 0.5571

Table 4.7: The strongest contributions to eigenvector expansions for several energy levels
for B‖ = 10 T, E = 10 kV/cm, and Ky = −0.15 nm−1 (a) or Ky = 0.15 nm−1 (b).

(a)

level 1 3 5 7 9 10

E (eV) 1.5326 1.5440 1.5449 1.5496 1.5531 1.5537
state 1β2± 1β1± 1β1± 1α2± 2α2± 1α1±

type i d d i d d
|coeff.| 0.7045 0.6517 0.7003 0.6493 0.5511 0.5092

(b)

level 1 3 5 7 9 10

E (eV) 1.5424 1.5436 1.5447 1.5519 1.5533 1.5536
state 2β2± 1β1± 2β2± 2α2± 1α1± 2α2±

type d d d d d d
|coeff.| 0.4480 0.6759 0.4864 0.5363 0.4384 0.5312

intensity of an electric field, E . For the chosen parameters, we have ∆ε = edE = 0.01 eV,
just like found in Fig. 4.6.

Although there are only 24 lines shown in Fig. 4.6 as restricted to the smallest basis,
determination of their character by sight would cause some problems. There is no doubt
that the two lowest-lying ones describe the indirect excitons with an electron in the left
QW and a hole in the right QW for Ky < 0 and in the vicinity of the origin. However,
even for the ground state for Ky > 0, the character of levels changes with varying Ky as
strong coupling mixes the states. For some values of Ky, it is illustrated in Tabs. 4.6–4.7.
To distinguish between direct and indirect excitonic states experimentally, one would have
to perform a series of measurements in electric fields of different magnitudes. Through the
shift of levels, one could easily identify the indirect excitons. This will be of our interest
in the following section.
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4.1.2 Energy levels shift in external fields

We have studied the dependence of energy on the centre-of-mass momentum so far. Anot-
her interesting field of interest, one step closer to the calculation of optical spectra, would
surely be the energy dependence on applied external fields. We will focus our attention on
such a problem in this section.

4.1.2.1 Energy levels shift in an external electric field

Because it is necessary to obey both the energy and the momentum conservation laws,
optically active excitons are those with Ky ≈ 0. To construct the demanded dependencies,
we have to compute the system of energy levels just once for one particular set of external
fields, however, this has to be repeated many times with varying values of E , B⊥, or B‖
from the chosen interval. To demonstrate some effects, which are typical for excitons in
DQWs and which arise from the substance of the problem itself, in the simplest possible
form, energy dependence on an external electric field from 0 to 30 kV/cm was calculated
for 1× 1 basis. The results are depicted in Fig. 4.7.

For E = 0, one can notice that the level positions correspond to that shown in Fig. 4.1
for Ky = 0. But if an electric field is applied on a structure, levels shift: some of them
increase, some of them lower in energy. Field-induced splitting of several levels is also
notable. To understand the processes we are facing, a little help of Fig. 4.8 would be
appreciated. In a simple model of a DQW structure with only two levels both in the
conduction and valence bands,5 four transitions are possible. Two correspond to direct
(2, 3) and two are associated with indirect (1, 4) excitons. In the absence of external
fields, all levels would be flat-banded. However, the presence of an electric field slants the
energy levels structure, resulting in preferable localization of electrons and holes. As the
electric field in Fig. 4.8 points from left to right, electrons are localized more in the left QW
(level E1), whereas holes are preferred to be in the right one (level H1). The population
of higher states (levels E2, H2) is lower. The localization strengthens with increasing field.
Transitions 1, 2, 3, and 4 in the figure are numbered by the increasing energy of transition.
The lowest energy (1, E1–H1) marks the indirect exciton composed of an electron and
a hole both in the ground states, the second-lowest energy (2, E1–H2) corresponds to the
direct exciton with an electron in the ground state but a hole on the higher level, the third
energy level (3, E2–H1) is associated with direct exciton as well, but now with an electron
in the higher state and a hole on the ground level, and finally the highest-energy level
(4, E2–H2) represents the bounding state between an electron and a hole both in excited
states. Because of the Coulomb interaction, the energy of a transition is less than the gap
between particular levels in a DQW.

Looking at Fig. 4.8 once again, it is easy to realize that whereas the energy of direct
excitons is nearly unaffected by an electric field, the energy of indirect excitons shifts

5If QWs forming the DQW were separate, only one energy level (the ground level) both in the valence
and the conduction band would exist. As the wells are close to each other, the tunneling effect gives rise
to two levels in the valence band and two levels in the conduction band of a DQW structure.
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Figure 4.7: Shift of energy levels in an external electric field calculated for 1× 1 basis.
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Figure 4.8: Transitions in a DQW structure subject to an external electric field, [22].
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Table 4.8: Character of particular excitonic levels in a DQW for E = 14 kV/cm and
Ky = 0 calculated in 1× 1 basis.

level 1 2 3 4 5 6

E (eV) 1.5272 1.5390 1.5402 1.5447 1.5525 1.5563
state 1β2± 1β1± 2β2± 1α2± 1γ2± 2β1±

type i d d i i i
|coeff.| 0.9682 0.9796 0.9668 0.9593 0.9699 0.9778

level 7 8 9 10 11 12

E (eV) 1.5572 1.5579 1.5647 1.5659 1.5745 1.5819
state 1α1± 2α2± 1γ1± 2γ2± 2α1± 2γ1±

type d d d d i i
|coeff.| 0.9610 0.9443 0.9796 0.9685 0.9773 0.9778

linearly: E1–H1 decreases with increasing electric field, E2–H2 linearly increases. If we
take a look back at Fig. 4.7, we see that the actual situation is more complicated than in
the simplified model. There are more than four levels, but the structure remains unchanged.
It is easy to identify direct and indirect levels. If one would not be sure, Tab. 4.8 is of use.
Remember, since Ky = 0 and no magnetic field is present, all levels are twofold degenerate.

The reason for why the energy of direct excitons nearly does not change can be found
by analyzing the form of Eqs. (3.60)–(3.76). Since Ĥ

1(3)
e and Ĥ

1(3)
lh or Ĥ

1(4,6,7)
hh are linear

in E and z1(2) = ±d
2 , for direct excitons the linear contribution vanishes whereas for indirect

ones is added.

4.1.2.2 Energy levels shift in both the electric and the in-plane magnetic field

The effect of the in-plane magnetic field on E = E(E) dependence is demonstrated in
Fig. 4.9. The decrease in symmetry induces the degeneracy splitting. For E = 0, energy
level positions are in agreement with energies depicted in Fig. 4.4 for Ky = 0. With
increasing electric field, the degeneracy is lifted although the corresponding levels (those
that were degenerate for B‖ = 0) keep going close to each other. If we take a look at
Tab. 4.9, one might think that these lines are still degenerate and the “splitting” originates
from numeric errors. However, detailed inspection proved that although predominant
expansion coefficients are almost equal, these levels correspond to different eigenvalues
since the matrix hamiltonian is irreducible and cannot be decomposed into non-interacting
blocks.6

6In some other cases, e. g. for Ky = 0, E = 0, but B⊥ 6= 0, the hamiltonian written in greater than 1×1
basis (2× 2, etc.) is formed of two blocks. However, these are not identical, giving different eigenvalues.

54



Chapter 4. Results and discussion

-0.4 -0.2 0.0 0.2 0.4
1.535

1.540

1.545

1.550

 

 

 

 1x1
 2x2
 3x3
 4x4
 5x5
 6x6

0 5 10 15 20 25 30
1.515

1.535

1.555

1.575

1.595

1.615

 

E
ne

rg
y 

(e
V

)

K
y
 (nm-1)

 

E
ne

rg
y 

(e
V

)

Electric field (kV/cm)

Figure 4.9: Shift of energy levels in an external electric field in the presence of the in-plane
magnetic field B‖ = 10 T calculated for 1× 1 basis.

Analogously to previously discussed situation (B‖ = 0), the lowest-lying levels are cre-
ated mostly from indirect excitonic states. But as all levels are split, the absolute values of
expansion coefficients are not as high as in Tab. 4.8. Nevertheless, the strongest contribu-
tions displayed in Tab. 4.9 are still predominant in all cases. Higher levels are associated
with direct excitons, at first in accordance with the field orientation (an electron in the left
QW and a hole in the right QW), then in the opposite order. The highest energy levels are
composed of indirect excitons of the opposite arrangement than the lowest-level excitons.

To summarize results achieved in this section, it is necessary to highlight the degeneracy
splitting for E > 0, B‖ > 0. This effect originates from non-zero off-diagonal matrix terms
associated with Luttinger b̂ and ĉ operators calculated in the chosen basis (see Eqs. (3.107)–
(3.110)).7 If these terms were neglected, it would be possible to decompose the matrix
hamiltonian to four blocks, two of which would correspond to heavy-hole excitons (mJ =
±3

2) and the other two to light-hole ones (mJ = ±1
2), leaving all levels in Fig. 4.9 twofold

degenerate. As they are included, the decomposition is not possible and the degeneracy is
lifted.

7Though the presented results were computed in 1×1 basis, this conclusion holds true even if expanded
to a larger basis set.
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Table 4.9: Character of several excitonic levels in a DQW for E = 28 kV/cm, B‖ = 10 T,
and Ky = 0 calculated in 1× 1 basis.

level 1 2 3 4 5 6

E (eV) 1.5186 1.5194 1.5285 1.5292 1.5395 1.5395
state 1β2± 1β2± 1α2± 1α2± 1β1± 1β1±

type i i i i d d
|coeff.| 0.6648 0.7026 0.5568 0.5961 0.6945 0.6945

level 19 20 21 22 23 24

E (eV) 1.5725 1.5737 1.5842 1.5878 1.6083 1.6107
state 2β1± 2β1± 2α1± 2α1± 2γ1± 2γ1±

type i i i i i i
|coeff.| 0.6401 0.6720 0.5935 0.5850 0.6044 0.5800

It is well-known that the presence of the perpendicular magnetic field enables the
creation of Landau levels, [24]. To describe this effect in our model, at least 2 × 2 basis
has to be used. With a larger basis, more energy levels are obtained from diagonalisation,
making relevant figures much more complicated. Thus, no results for B⊥ 6= 0 will be given
here. The situation will be studied later in Sec. 4.2.

4.1.3 Comparison of different bases

Before we proceed to optical spectra computation, it is very important to compare the re-
sults that bases of various sizes can provide, with the biggest attention paid to differences
in energy. As variational method is used to determine the best value(s) of basis param-
eter(s) by minimizing the energy of the ground level,8 it is clear that the larger basis we
take, the lower ground level energy will be achieved. The question is: does the change of
basis size affect qualitative and/or quantitative results, and if the answer is positive, how
much? To answer the first question, the help of Figs. 4.10–4.11 will be of use. In the first
one, the dispersion relations of the ground excitonic level in the absence of external fields
for various bases are depicted, the second figure shows the same when the perpendicular
magnetic field is applied on a DQW.

Let us focus on Fig. 4.10 for a start. We see that there is a huge qualitative difference
between the results achieved for 1×1 and 3×3 bases. There are no lateral minima for 1×1
basis, whereas two minima exist for 3× 3 basis set. On the contrary, for larger bases, the
qualitative difference of particular lines vanishes. Quantitatively, for Ky ≈ 0, the energies

8To remind to those who do not remember, one parameter C is used for one-dimensional variational
method; two parameters Cx, Cy are used for two-dimensional one. Both C and Cx, Cy are related to the
excitonic radius R.
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Figure 4.10: Dispersion relations of the ground excitonic level in the absence of external
fields calculated for various bases.
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Figure 4.11: Dispersion relations of the ground excitonic level in the presence of the
perpendicular magnetic field B⊥ = 10 T calculated for various bases.
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Figure 4.12: Comparison between dispersion relations of several lowest-lying energy levels
in the absence of external fields calculated for 2× 2 and 6× 6 bases (a) and 5× 5 and 6×6
bases (b), and in the presence of the perpendicular magnetic field of magnitude B⊥ = 10 T
computed for 2× 2 and 6× 6 bases (c) and 5× 5 and 6× 6 bases (d).

of 1 × 1 and 2 × 2 calculations nearly coincide and the same is true for 3 × 3, 4 × 4 and
5 × 5, 6 × 6 ground levels. However, there is always a little gap between these pairs of
lines as variational method finds the better values of basis parameters always when the
basis extension increases to be given by two odd numbers. We can suppose that for larger
bases, the qualitative character of obtained levels will not change and the energy difference
between them will decrease. This can be seen in Figs. 4.12a, b even for higher levels.

Analogous discussion can be performed for what is depicted in Fig. 4.11 and nearly all
conclusions can be reproduced. Once again, we see that the biggest qualitative difference
appears between 1×1 and 2×2 bases as smaller bases are not a proper choice for calculations
when the perpendicular magnetic field is applied (since the Landau levels are not involved).
With larger bases, the situation improves: various lines in Fig. 4.11 differ less and less and
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Table 4.10: Energy of the ground excitonic level computed for various bases in the
presence of the in-plane magnetic field B‖ = 10 T for Ky = 0.

basis 1× 1 2× 2 3× 3 4× 4 5× 5
E (eV) 1.5387 1.5385 1.5383 1.5382 1.5378

basis 6× 6 7× 7 8× 8 9× 9 10× 10
E (eV) 1.5378 1.5377 1.5377 1.5376 1.5376

starting from 6× 6 basis, the difference is small even between higher levels. To experience
this, see Figs. 4.12c, d.

Later, as we will be computing optical spectra, Ky ≈ 0 will be used. Therefore, it
will be helpful if we take a look at the results we can obtain for different bases when Ky

is supposed to be zero. These are listed in Tab. 4.10 for such a case when the in-plane
magnetic field is applied. Whereas the energies of the ground level obtained for smaller
bases differ in the fifth significant digit, for larger bases, it is one order better, providing
us satisfactory precision. Thus, it is not surprising that the data in Tab. 4.10 illustrate the
same findings as before: the larger bases, the better results that differ the less.

Now we have enough knowledge to conclude: to show the qualitative character of
studied dependencies, smaller bases (4× 4, 5× 5, etc.) are sufficient. However, to provide
results able to explain the experimental data both qualitatively and quantitatively, the
larger basis used, the better agreement can be expected. That is why we will perform
optical spectra calculations in the largest possible basis that our program allows: 10× 10
basis composed of the Hermite-Gauss functions (3.114) up to the 9th order in x, y.

4.2 Optical spectra

In this section, we will present calculations of optical spectra obtained from our model.
Starting with the situation in the absence of external fields, absorption and PL spectra in
the presence of an external electric field and a magnetic field of in-plane and perpendicular
orientations will be shown. But as it will be depicted in all studied situations, let us start
with the calculation of optical spectra when no fields are applied on a DQW.

4.2.1 Optical spectra in the absence of external fields

It is true that because both the energy and the momentum conservation laws have to
be obeyed, optically active excitons are those with Ky ≈ 0. In foregoing chapters, we
have studied dispersion relations and discussed the effects of bases of different extensions
on various quantities. In Sec. 3.3.7, short theory of absorption and photoluminescence
was given and two important formulae, Eq. (3.130) and (3.132), were derived. We will
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use them now to calculate optical spectra from the corresponding dispersion relations,
assuming Ky = 0.

For bases from 2 × 2 to the largest possible 10 × 10 basis, absorption spectra were
computed using Eq. (3.132). It is clear that the larger basis we take, the better results
we achieve, but it turned out that for larger bases, levels of excited excitons appear in
spectra as well. These are analogues to the excited states of the hydrogen atom and
their presence originates from the larger number of basis functions used for calculations.
However, for greater energies, eigenvectors constructed mainly from excited states (those
with large indices of basis functions) appear, causing that calculations with various bases
slightly differ. To handle this, we tried to restrict the computation only to those energy
levels, eigenvectors of which have the strongest contributions from basis functions of the
lowest indices.9 Absorption spectra computed for various bases but restricted only to the
ground levels (n = m = 0 in Eq. (3.114)) are depicted in Fig. 4.13a, Fig. 4.13b illustrates
the situation when no restrictions are assumed.

Let us give some remarks on these figures. The “width” of all peaks was chosen to be
∆ = 0.5 meV, intensities of heavy-hole excitonic transitions are three times higher than
those of light-hole ones, just according to Eq. (3.125). There is a little shift in positions of
dominant peaks with increasing basis extension for both cases (a) and (b), but it should
not amaze us since it has already been discussed. As minimum energy levels are included,
the spectrum is the simplest in the first case (a), where excited levels are suppressed. On
the contrary, the richest spectrum corresponds to the situation when all energy levels are
included into calculations (b). In Fig. 4.13, the character of transitions corresponding to
major peaks is shown: from left to right, the three peaks of the lowest energy are associated
with direct heavy-hole excitons, indirect heavy-hole excitons and direct light-hole excitons,
respectively, both heavy-hole ones with a hole in the ground state. The studied cases have
one feature in common: the intensity of the first peak is the highest, intensities of another
two are almost equal. In Fig. 4.13a, the following two peaks (for 10 × 10 basis) originate
from indirect light-hole excitonic states. It is notable that for smaller bases, there is only
one peak instead of these two. However, in Fig. 4.13b, the situation differs. There are
several small peaks between the peaks of direct and indirect light-hole excitons. Since
they are not present in Fig. 4.13a, they evidently come from higher (excited) states whose
strongest eigenvector contributions correspond to basis functions with n + m ≥ 1. Some
of these peaks are marked with an asterisk in Fig. 4.13b. Two peaks of indirect light-hole
excitons are also visible at the same position as in Fig. 4.13a (≈ 1.56 eV).

Let us mention just one curious thing: in Fig. 4.13a (and a little in Fig. 4.13b as well),
there are two peaks in the position of the direct light-hole excitonic level in the absorption
spectrum calculated for 6 × 6 basis, whereas for other basis extensions, only one peak
appears. We suppose that such behaviour is just accidental, caused by some random effects

9To make it clear, two steps are carried out: (1) matrix hamiltonian is constructed in any basis,
eigenvalues and eigenvectors are obtained, (2) only those eigenvalues and eigenvectors, which fulfil the
above-mentioned conditions, are used to calculate optical spectra.

60



Chapter 4. Results and discussion

1.530 1.540 1.550 1.560 1.570

A
bs

or
pt

io
n 

in
te

ns
ity

 (a
. u

.)

Energy (eV)

2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

1h
02

, 2
h0

1

1l
1,

 2
l2

1l
2,

 2
l1

}

1h
01

, 2
h0

2

(a)

1.530 1.540 1.550 1.560 1.570

1l
1*

, 2
l2

*

2x2
3x3
4x4
5x5
6x6
7x7
8x8
9x9

A
bs

or
pt

io
n 

in
te

ns
ity

 (a
. u

.)

Energy (eV)

10x10

1h
01

, 2
h0

2

1h
02

, 2
h0

1

1l
1,

 2
l2

1h
01

*,
 2

h0
2*

}

1l
2,

 2
l1

}

(b)

1h
01

*

Figure 4.13: Comparison of absorption spectra in the absence of external fields com-
puted for different bases and restricted to the ground states (a) and with no restrictions
assumed (b), ∆ = 0.5 meV.
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Figure 4.14: Photoluminescence spectrum calculated for 10 × 10 basis considering only
ground levels and when all levels are included, ∆ = 0.5 meV, T = 45 K.

which we are not able to trace up and which cause the increase in transition probability of
a peak that is not significant otherwise.

To summarize: in the absence of external fields, the presence of excited levels in
higher energies affects absorption spectra calculated for larger bases. In actual, experi-
mentally measured, spectra, these levels are localized below the absorption edge of the
two-dimensional electron-hole gas. The absorption edge is determined by the bandgap
width and the energies of ground states in DQWs in the valence and conduction bands:
for our set of parameters, it is approximately 1.543 eV. However, the first excited states
in Fig. 4.13 are localized higher. This is the natural consequence of the chosen method,
variational computation, which is well applicable for the ground level, but gives worse re-
sults for higher states. Nevertheless, up to 1.550 eV, there is no doubt that our theoretical
absorption spectra are prepared to be compared with available experimental data.

We must not forget to mention photoluminescence spectra. These are shown in Fig. 4.14,
where a comparison between the “full” spectrum and the spectrum constructed from the
ground levels only is to be found. Just like in the text above, the broadening of PL peaks
equals ∆ = 0.5 meV, temperature was set to T = 45 K (this choice will be clarified
later). Whereas the absorption spectra in Fig. 4.13 were slightly different, the PL spectra
in Fig. 4.14 are almost identical. The reason for this can be found in Eq. (3.130): the
Boltzmann exponential factor e−E/kBT strongly reduces the magnitude of a corresponding
contribution to PL spectrum for higher energies. That is why only the first three peaks are
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recognizable while another are suppressed. Apparently, visible peaks must be associated
with the same transitions as in Fig. 4.13, so that from left to right, the peaks of direct
heavy-hole excitons, indirect heavy-hole excitons, and direct light-hole excitons, respec-
tively, appear in Fig. 4.14. Since the strength of transition is not determined by expansion
coefficients only but the exponential weight factor affects it, too, the first peak, the highest
in magnitude in absorption spectra, remains dominant in PL spectra as well. The another
two peaks vanish in the tail of the first one.

4.2.2 Optical spectra in the perpendicular magnetic field

After we have studied optical spectra in the absence of external fields, we can proceed
further and have a look at the situation when the perpendicular magnetic field is applied
on a DQW structure. We know from the theoretical part of this work that the magnetic field
lowers the symmetry. It implies that the degeneracy is being lifted, as proven on splitting
of dispersion lines (see Sec. 4.1.1). In the corresponding section, we have demonstrated
the effect of the in-plane magnetic field, however, the perpendicular magnetic field has not
been studied yet since it requires more precise calculations with larger basis than in the
field of interest there.

For the introduction of the perpendicular magnetic field, associated with the substitu-
tion (2.35), bases from 2× 2 on are necessary since A, given by Eq. (3.30), is linear in x, y
for homogeneous magnetic field. In our calculations, we use 10× 10 basis to show changes
in absorption spectra when varying the strength of a magnetic field from 0 to 20 T. A com-
parison between 5× 5 basis and 10× 10 basis calculations will be given as well. Without
further hesitation, let us take a look directly at Fig. 4.15.

As we face a figure of this type for the first time, let us describe its structure at first. On
the horizontal axis, the magnitude of the applied external magnetic field is shown; on the
vertical axis, the energy could be read. Such a figure actually consists of many absorption
spectra ranged vertically side by side and is very useful to illustrate field-induced effects.
The colour scale determines the strength of transition (the more red, the stronger it is)
and will be used in all similar figures from now on. The absorption spectrum obtained in
the absence of external fields coincides with the vertical axis on the left of each figure.

The top left Fig. 4.15a is the most important result of this section as it contains the
absorption spectrum in the presence of the perpendicular magnetic field computed for
10×10 basis using the whole set of energy levels obtained from diagonalisation. Once again,
∆ = 0.5 meV. The top right Fig. 4.15b depicts the absorption spectrum constructed with
an additional condition n = m = 0 for energy levels, which means that only the ground
states are considered. Figs. 4.15a and 4.15b differ only for higher energy, the structure
of low-energy transitions is the same. To give a comparison to Fig. 4.15a, the bottom
left Fig. 4.15c showing 5 × 5 basis calculations from all levels is presented. It is of major
interest to demonstrate effects associated with the off-diagonal Luttinger hamiltonian terms
as well. For that case, the help of the bottom right Fig. 4.15d will be useful since it reflects
calculations with b̂ = ĉ ≡ 0.
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Figure 4.15: Absorption spectra in the presence of the perpendicular magnetic field
computed for 10 × 10 basis from all energy levels (a) and with restriction to the ground
levels only (b). Calculations for 5× 5 basis including all levels (c) and the same situation
when neglecting Luttinger b̂ and ĉ terms (d), ∆ = 0.5 meV.
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Figure 4.16: Absorption spectra in the presence of the perpendicular magnetic field
computed in 10× 10 basis for mJ > 0 and mJ < 0 states separately, ∆ = 0.5 meV.

There is no doubt that Figs. 4.15a, c obtained for different bases are almost identical.
We see that if we are concerned about the lowest energy levels only (with energies up to
1.560 eV), 5×5 basis is sufficient to provide both qualitative and quantitative results. Just
a small difference at around 1.548 eV is not interesting since our goal is to describe ground
levels for strong fields.

Looking at Figs. 4.15a, d, there is one distinction apparent at first sight. If the full-
structure excitonic hamiltonian is considered (including all terms originating from b̂ and
ĉ operators), the ground level is being split for B⊥ ? 5 T. On the contrary, nothing
happens when the off-diagonal Luttinger terms are neglected. When split, the lower level
is associated with the direct heavy-hole exciton with a hole in the ground state. However,
in contrast to situations without magnetic field, the total angular momentum comes into
play as the strongest contributions are created from states with mJ = −3

2 , while for the
upper level, direct heavy-hole excitonic states with mJ = +3

2 are dominant. To better
illustrate such behaviour, absorption spectra computed separately for mJ < 0 and mJ > 0
states are shown in Fig. 4.16. More information about dagger-marked levels of Fig. 4.15a
is summarized in Tab. 4.11.

The lowest levels correspond to direct heavy- and light-hole excitons, heavy-hole ones
with a hole in the ground state since the first excited hole state lies much higher. For
weak fields, indirect heavy-hole excitonic states are localized between the states of direct
heavy- and light-hole excitons, but for stronger fields, the intensity of indirect transitions
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Table 4.11: The strongest contributions to eigenvector expansions for several energy levels
of the absorption spectrum in Fig. 4.15a for B⊥ = 3 T (a) and B⊥ = 13 T (b).

(a)

level 1 2 3 4 5 6

E (eV) 1.5368 1.5371 1.5445 1.5449 1.5470 1.5481

state
1β1−

2β2−
1β1+

2β2+
1β2−

2β1−
1β2+

2β1+
1α1+

2α2+
1α1−

2α2−

|coeff.| 0.6347 0.6405 0.5923 0.6014 0.5455 0.4084

(b)

level 1 2 3 4 5 6

E (eV) 1.5417 1.5452 1.5485 1.5518 1.5545 1.5561

state
1β1−

2β2−
1β1+

2β2+
1α1+

2α2+
1β2−

2β1−
1α1−

2α2−
1β2+

2β1+

|coeff.| 0.6198 0.6763 0.5824 0.5692 0.6079 0.6696

decreases due to the strong mixing around B⊥ ≈ 5 T on behalf of light-hole excitonic
states. Moreover, for fields B⊥ ≈ 5 T, the two lowest levels start to draw apart. The
splitting for B⊥ = 13 T reaches approximately 3.5 meV and increases with B⊥. From
Tab. 4.11 and Fig. 4.16, it is evident that for the chosen orientation of the perpendicular
magnetic field, heavy-hole excitonic states with mJ = −3

2 are preferred whereas light-hole
states with mJ = +3

2 are of advantage. It was proven that for the opposite orientation of
the magnetic field (i. e. B⊥ < 0), the sign of mJ changes for corresponding levels as well.

4.2.3 Optical spectra in the perpendicular magnetic field when
an external electric field is present

As we have successfully achieved results in the perpendicular magnetic field, we can natu-
rally proceed and show how these spectra change when an additional external electric field
in the growth direction is applied. To handle this, we set E = 10 kV/cm and perform all
the calculations in 10 × 10 basis once again. To construct the corresponding absorption
spectra, the spectral line broadening of ∆ = 0.3 meV was used to illustrate more compli-
cated structure of the lowest levels. The results are depicted in Fig. 4.17: in Fig. 4.17a,
calculations with 10 × 10 basis are demonstrated, whereas Fig. 4.17b shows 5 × 5 basis
calculations with the off-diagonal Luttinger terms being neglected.

If the valence-subband mixing is forbidden (b̂ = ĉ ≡ 0), the corresponding absorp-
tion spectra indicate simpler structure than in the case when it is allowed. In contrast to
Fig. 4.15a, there are four lines in Fig. 4.17a for stronger field (B⊥ ? 5 T) instead of two,
however, it should not be surprising: the presence of an electric field separates direct exci-
tonic states with particles localized in the left/right QWs in accordance to what stated in
Sec. 4.1.1, while the perpendicular magnetic field splits every peak to form levels composed
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Figure 4.17: Absorption spectra in the presence of the perpendicular magnetic field and
the electric field E = 10 kV/cm in the growth direction computed for 10× 10 basis (a) and
5× 5 basis when the off-diagonal Luttinger b̂ and ĉ terms are neglected (b), ∆ = 0.3 meV.

mainly of mJ = −3
2 or mJ = +3

2 states. This is nicely illustrated just in Fig. 4.17a; in
Tab. 4.12, detailed information about dagger-marked levels is available. With the increas-
ing strength of a magnetic field, the direct heavy-hole excitonic levels 1β1+ and 2β2− are
getting closer since their slopes are different. As they are crossing over each other, it is
accompanied by the increase in the intensity of transition. However, this effect originates
from the normalization of spectra rather than from some physical reasons.

Although an electric field is present, giving rise to indirect excitonic states, indirect
transitions are not as strong as direct ones and in Fig. 4.17a, they are hardly visible though
marked with daggers. In weak magnetic fields, the strongest transition is associated with
direct heavy-hole excitons. For energies around 1.539 eV, there are two peaks which exist
only for the weakest field: they consist of 2β2± states with indispensable contribution
from 2β1±. When they separate out of the ground direct heavy-hole excitonic level, their
intensity decreases fast. As lately as 1β1± and 2β2± levels start drawing apart (around
B⊥ ≈ 2 T), the major peak of 2β2± remains dominant until it is split by the projection
mJ of the hole total angular momentum in stronger magnetic field.

To conclude: the main difference in absorption spectra in the presence of an additional
electric field in contrast to its absence is the splitting of dominant direct excitonic levels
(with opposite values of mJ) into the peaks representing direct excitons with particles (i. e.
an electron and a hole) localized in the left or right QWs.
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Table 4.12: The strongest contributions to eigenvector expansions for several energy levels
of the absorption spectra in Fig. 4.17 for B⊥ = 7 T, E = 10 kV/cm when the off-diagonal
Luttinger terms are present (a) and in the absence of these terms (b).

(a)

level 1 2 3 4 5 6

E (eV) 1.5345 1.5361 1.5391 1.5404 1.5413 1.5427
state 1β2− 1β2+ 1β1− 1β1+ 2β2− 2β2+

|coeff.| 0.8144 0.8524 0.9312 0.9682 0.8158 0.8351

(b)

level 1 2 3

E (eV) 1.5361 1.5406 1.5429
state 1β2± 1β1± 2β2±

|coeff.| 0.8604 0.9708 0.8432

4.2.4 Optical spectra in an electric field when the perpendicular
magnetic field is present

We have studied absorption spectra so far. Since we are concerned in the lowest energy
levels only and we did not do it before, we can focus our attention on computation of
photoluminescence spectra as well. Both absorption and PL spectra were calculated for
10 × 10 basis in the presence of the perpendicular magnetic field B⊥ = 10 T for various
strengths of an external electric field from 0 to 20 kV/cm to illustrate the shift of indirect
excitonic levels. Absorption spectra are depicted in Fig. 4.18, photoluminescence spectra
are shown in Fig. 4.19. Just like in all previous situations, a comparison between the full-
structure hamiltonian computation and the computation without the off-diagonal Luttinger
terms is available, see Figs. 4.18a, b.

It is obvious that the presence of non-zero b̂ and ĉ terms makes the absorption spectrum
more difficult. However, the substantial difference is the splitting of direct excitonic levels
with holes of opposite total angular momentum projections: 1β1+, 1β1− and 2β2+, 2β2−.
For E = 5 kV/cm, all the lowest-lying energy levels are composed of direct excitonic states
(see Tab. 4.13), but in those which act like indirect levels in Fig. 4.18a (the position of
which shifts in an electric field, e. g. dagger-marked levels 1 and 3), the strong contri-
bution from indirect states appears. With the increasing magnitude of an electric field,
these contributions are becoming more and more important until they are predominant for
intensities from 10 kV/cm on.

In Figs. 4.18a, b, there is a nice demonstration of the anti-crossing effect. In the tight-
binding approximation (see Sec. 3.3.2), non-zero off-diagonal matrix terms prevent some
levels from crossing each other (e. g. |1β1〉 and |1α1〉). However, the overlap integral of
wavefunctions representing states in different QWs (e. g. |1β1〉 and |2α2〉) equals zero as
they are localized strictly inside the wells, rendering the off-diagonal terms, responsible for
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Figure 4.18: Absorption spectra in the presence of an electric field and the perpendicular
magnetic field B⊥ = 10 T computed for 10 × 10 basis (a) and 5 × 5 basis when the
off-diagonal Luttinger b̂ and ĉ terms are neglected (b), ∆ = 0.3 meV.
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Figure 4.19: Photoluminescence spectra in the presence of an electric field and the per-
pendicular magnetic field B⊥ = 10 T computed for 10× 10 basis, T = 45 K, ∆ = 0.5 meV.

69



Chapter 4. Results and discussion

1.535 1.545 1.555 1.565

B
per

 = 18 T

B
per

 = 15 T

B
per

 = 12 T

B
per

 = 9 T

B
per

 = 6 T

 

 

A
bs

or
pt

io
n 

in
te

ns
ity

 (a
. u

.)

Energy (eV)

 m
J
 < 0

 m
J
 > 0

B
per

 = 3 T

1.525 1.537 1.549 1.561

18 kV/cm

15 kV/cm

12 kV/cm

9 kV/cm

6 kV/cm

3 kV/cm

 

P
ho

to
lu

m
in

es
ce

nc
e 

in
te

ns
ity

 (a
. u

.)

Energy (eV)

 m
J
 < 0

 m
J
 > 0

Figure 4.20: Photoluminescence spectra in the presence of the perpendicular magnetic
field B⊥ = 10 T for various strengths of the electric field computed in 10 × 10 basis for
mJ > 0 and mJ < 0 states separately, T = 45 K, ∆ = 0.5 meV.

the band anti-crossing, being zero as well. Thus, peaks associated with these levels can
cross each other without any effect on the spectrum.

Except for more complicated structure of Fig. 4.18a, the substance remains the same
as in Fig. 4.7, where the effect of an external electric field on excitonic levels was demon-
strated for the smallest basis: levels corresponding to indirect excitons shift whereas direct
excitonic levels stay unaffected by an external field, their position does not shift.

The additional information about excitonic levels in a DQW is provided by PL spectra.
Because the level population is important for photoluminescence, only the lowest levels
can contribute to measured signal: in our model, the population of a level of energy E
is proportional to e−E/kBT, as can be seen from Eq. (3.130). The higher temperature, the
more levels are populated. This is one reason for why we chose T = 45 K instead of
low (helium) temperature. Computed PL spectra are depicted in Fig. 4.19, proving our
notions of behaviour of direct and indirect excitons in external fields. As the two lowest
levels correspond to indirect heavy-hole excitons (for E = 5 kV/cm, the energy of 1β2−

peak is approximately 1.535 eV, that of 1β2+ is 1.538 eV) with an electron in the left QW
and a hole in the right one, their energy decreases with increasing intensity of an electric
field. Since the position of direct heavy-hole excitonic levels is around 1.540 eV and does not
change, the distance between the levels of indirect and direct excitons increases, resulting
in the decrease of direct excitonic PL peak intensity on behalf of the intensity of indirect
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Table 4.13: The strongest contributions to eigenvector expansions for several energy levels
of the absorption spectrum in Fig. 4.18a for E = 5 kV/cm, B⊥ = 10 T.

level 1 2 3 4 5 6 7 8 9

E (eV) 1.5392 1.5405 1.5416 1.5427 1.5455 1.5468 1.5483 1.5522 1.5540
state 2β2− 1β1− 2β2+ 1β1+ 1β2− 2α2+ 1β2+ 2α2− 1α2+

|coeff.| 0.7761 0.9158 0.8536 0.9731 0.7297 0.6029 0.8482 0.6075 0.7207

ones, caused by the Boltzmann exponential factor. PL spectra calculated separately for
mJ < 0 and mJ > 0 states are shown in Fig. 4.20.

4.2.5 Optical spectra in an electric field when the in-plane mag-
netic field is present

In the previous section, we have computed optical spectra in an electric field and an addi-
tional presence of the perpendicular magnetic field. To demonstrate that the orientation of
the magnetic field is very important and that the system behaves differently if we change
its direction, absorption and photoluminescence spectra in the presence of the in-plane
magnetic field B‖ = 10 T were calculated for various values of E . The results are shown in
Figs. 4.21–4.22. Let us comment the situation in Fig. 4.21 at first.

It was proven before that optical spectra constructed in 10 × 10 basis do not differ
from those achieved for 5 × 5 basis for lower energies and that the results of 5 × 5 basis
calculations are applicable both qualitatively and quantitatively. Therefore, the following
optical spectra were calculated using smaller basis for the benefit of faster computation and
less hard-drive space requirements.10 At first sight we see that the structure of the lowest
levels is different than in the presence of the perpendicular field. The lowest levels are not
split by the total angular momentum of a hole as they were in Fig. 4.18. There is only one
dominant peak at around 1.537 eV associated with heavy-hole excitons and from which the
indirect excitonic branch separates in stronger fields. Levels around 1.550 eV correspond
to light-hole excitons and excited heavy-hole states, just like described in Sec. 4.2.1. For
E = 15 kV/cm, a large “bunch” of states is formed around 1.553 eV, dominant contribu-
tions arise from direct light-hole excitons with a little assistance of heavy-hole ones. For
a comparison to the situation without the off-diagonal Luttinger terms, please refer to
Fig. 4.21b.

In the PL spectra in Fig. 4.22, we see nearly non-shifting peak of direct heavy-hole
excitons placed at 1.537 eV, from which indirect excitonic levels separate: in the presence
of a magnetic field at first those, in the expansions of which the ground state eigenfunc-
tions are predominant, then those with contributions from higher excited states as well. In

10Detailed information about the main program, several additional utilities and the ways how these
programs work and treat with acquired data, is given in Appendix A.

71



Chapter 4. Results and discussion

0 5 10 15 20

1.535

1.545

1.555

1.565

(a)

 

Electric field (kV/cm)

E
ne

rg
y 

(e
V

)

0 5 10 15 20

1.535

1.545

1.555

1.565

(b)

 

E
nergy (eV

)

 

Electric field (kV/cm)

0 5 10 15 20

1.535

1.540

1.545

1.550

1.555
(a)

 

E
ne

rg
y 

(e
V

)

Electric field (kV·cm-1)

0 5 10 15 20

1.540

1.550

1.560

(b)

E
nergy (eV

)

 

Electric field (kV·cm-1)

Figure 4.21: Absorption spectra in the presence of an electric field and the in-plane
magnetic field B‖ = 10 T computed for 5 × 5 basis with (a) and without (b) the off-
diagonal Luttinger b̂ and ĉ terms, ∆ = 0.5 meV.
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Figure 4.22: Photoluminescence spectra in the presence of an electric field and the in-
plane magnetic field B‖ = 10 T computed for 5× 5 basis, T = 45 K, ∆ = 0.5 meV.
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contrast to Fig. 4.19, the intensity of direct transitions is much higher than the intensity
of indirect ones.

We have presented the most important results of our work. Further discussion will be
given in Chapter 5. At the whole end of this chapter, let us demonstrate the last category
of results in our field of interest.

4.3 Probability density

In Sec. 3.3.8, we have derived a simple formula, Eq. (3.133), which can be used for compu-
tation of the probability density |Ψ(x, y)|2, a quantity that describes the real-space charge
density distribution of an exciton. We are about to demonstrate typical forms of |Ψ(x, y)|2
in four interesting situations.

In Figs. 4.23a, b, the probability density of the ground excitonic level in the presence of
the in-plane magnetic field for two values of Ky is shown. The ground level of an exciton
with Ky = 0 is created from direct excitonic states. With increasing Ky, the contribution
from direct states slowly decreases on behalf of that from indirect ones. For Ky = 0.2 nm−1,
the contributions from direct and indirect states are almost equal, the charge density
distribution is wider and not so high. Such a trend proceeds until the dominant component
of the ground level originates from indirect states and the corresponding probability density
distribution is lower in height but wider in width than that of the direct exciton.

The full potential of our program, which is capable to perform the calculations in the
presence of both a tilted magnetic field (i. e. B⊥ 6= 0, B‖ 6= 0) and an electric field in the
growth direction, is demonstrated on the second pair of figures, Figs. 4.23c, d, where the
difference in charge densities of the ground-level excitons in strong external fields is shown.
Since the dispersion relations in such a case are not even, the energy of the exciton in
Fig. 4.23c differs from the energy of the exciton in Fig. 4.23d. As the electric field of chosen
orientation slants the dispersion lines from right to left, the state with Ky = −0.2 nm−1

is of lower energy and therefore more stable and with more localized probability density
distribution than that with Ky = 0.2 nm−1. The excitonic state in Fig. 4.23d is not as
stable as in Fig. 4.23c, it is deformed by external fields, resulting in the shift of the charge
density maximum away off the origin and different radii in perpendicular directions.
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Figure 4.23: Charge density of the excitonic ground state for B‖ = 10 T and Ky = 0 (a)
or Ky = 0.2 nm−1 (b), and for E = 20 kV/cm, B‖ = 5 T, B⊥ = 10 T, and Ky = −0.2 nm−1

(c) or Ky = 0.2 nm−1 (d).
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Chapter 5

Summary

In this chapter, we will summarize and further discuss important results achieved and
presented in the previous chapters of this thesis.

We started our work with the Luttinger hamiltonian (2.30), introduced by Luttinger
and Kohn in [19] and revised by Luttinger in [18]. This hamiltonian describes the “real”
structure of the valence band of III-V semiconductors with Td symmetry, since both light
and heavy holes as well as the valence-subband mixing are taken into consideration. After
the addition of the electronic hamiltonian (3.22) and confining DQW potentials for elec-
trons and holes, we followed a common way of solving exciton-related problems. As the
excitonic hamiltonian (3.21), written in the tight-binding basis (3.42), is a set of 24 coupled
partial differential equations, its structure is very complex and one could do nothing but
solve it numerically. Although a numerical solution is usually being expanded to the basis
formed from the eigenfunctions of the diagonal part of the corresponding matrix hamilto-
nian, we were not able to find the analytic solution even of the diagonal part of Eq. (3.77)
(since the particular equations were complicated). Therefore, we followed the procedure
proposed in [12] and through the substitution of the Coulomb potential by the parabolic
potential (3.113), we obtained the basis composed of the Hermite-Gauss functions (3.114)
with one unknown parameter A. This parameter is related to the radius of an exciton.
Similarly to [25], we used variational method to determine the optimal value of A. The
variational procedure, as well as the whole program and associated utilities, was written
in Fortran language. More details, which will not be of our interest here, are to be found
in Sec. 3.3.9 and Appendix A.

Although the Hermite-Gauss functions are not the eigenfunctions of the diagonal part
of the excitonic hamiltonian, we chose sufficiently large extension of the basis (including
functions up to the 9th order in x, y) to be given as precise results as possible. The largest
basis we used was composed of 10×10 = 100 functions. However, with the increasing basis
extension, time taken for calculations rises as well. Time requirements of the computation
are divided into two major parts: (1) the construction of the matrix hamiltonian, including
the calculation of all matrix elements, and (2) the diagonalisation of the matrix obtained in
the previous step. For smaller bases, both procedures are almost equally time-consuming
(and performed promptly), but for larger bases, time requirements of the diagonalisation
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exceed those of the construction. If N denotes the rank of the matrix hamiltonian, they
are proportional to N2 for the construction, but are of higher order for the diagonalisation.
Therefore, before proceeding to the diagonalisation, we always tried to decompose the
matrix to several blocks. If it was possible and the matrix was block-diagonal, the particular
blocks were diagonalised separately to speed up the whole process.

The applicability of the chosen basis has already been discussed in Chapter 4. We saw
that the results achieved for different bases were qualitatively the same, but the quantitative
character altered. The stronger fields we are interested in, the larger basis is necessary to
be used. The same holds if we are concerned in higher energies. Nevertheless, keeping these
remarks in mind, it was proven that the basis composed of the Hermite-Gauss functions is
well applicable both with and without the presence of external electric and magnetic fields.

Now we will focus our attention on the structure of the excitonic hamiltonian. We
have mentioned before that to speed up all the calculations, we always searched for the
block structure of the constructed matrix hamiltonian. In the absence of external fields,
every energy level is twofold degenerate even for Ky 6= 0. This degeneracy is not lifted
even if the off-diagonal Luttinger terms are assumed to be non-zero. However, if there are
external fields applied on a studied DQW sample, the situations changes. The presence
of either an electric or a magnetic field of any orientation lowers the symmetry, resulting
in the splitting of energy levels as demonstrated in Figs. 4.3–4.4, 4.9, and many others.
In some special cases, the matrix hamiltonian cannot be decomposed into several blocks
and all its columns and rows are coupled together. But there are some other situations,
in which such decomposition can be performed, although under certain conditions, the
obtained blocks could be different, giving different eigenvalues. This appears for example
for Ky = 0, E = 0, but B⊥ 6= 0. For B⊥ = 10 T, the energy difference of every two
successive eigenvalues is of order 0.1 meV and increases with increasing magnetic field. As
the electronic hamiltonian has a simple form given by Eq. (3.31), this evidently originates
from the hole part of the excitonic hamiltonian.

The effect of an external electric field in the growth direction has been demonstrated
on our system, resulting in the Kramer’s degeneracy splitting, see Fig. 4.3. Our results
are in very good qualitative agreement with those achieved by Sanders and Bajaj in [6],
although these authors performed their calculations for DQWs of different parameters.
Though the field is applied along the z axis, it effects the dispersion relations in the
perpendicular plane, xy. If one would be interested in the reason for such behaviour, after
some investigation, everyone would find that not only the off-diagonal Luttinger b̂ and ĉ
terms are responsible, but the existence of higher excited heavy-hole QW state is important
as well. In the presence of an electric field, the non-zero Ĥ2

hh term enables the coupling
of the whole matrix hamiltonian and makes it impossible to decompose the matrix into
several blocks. Strong valence-subband mixing then implies the degeneracy lifting.

It is well-known that the electric field separates indirect and direct excitonic levels.
Whereas the energy of indirect ones decreases/increases linearly with the field magnitude,
the position of direct levels does not change. We have observed this effect in Fig. 4.7,
absorption spectra have proved it, too. With the help of Fig. 4.8, it was not hard to
understand that for the chosen orientation of the electric field, the ground level was formed
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from the indirect heavy-hole exciton with an electron in the left QW and a hole in the right
QW. The next level corresponded to either direct heavy-hole exciton or indirect light-hole
excitonic level, depending on the strength of applied field. The indirect heavy-hole level
with the opposite localization of an electron and a hole was found to be higher in energy.
It was also discovered that the electric field does not prefer any total angular momentum
orientation: in all energy levels, states with mJ = ±3

2 or mJ = ±1
2 are represented equally.

To get rid of such behaviour, the magnetic field has to be turned on.
We have calculated the binding energies of the ground-level excitons with Ky = 0 in

a DQW both with and without an external electric field (see Sec. 4.1.1). Our results, giving
6.0 meV for the binding energy of the direct heavy-hole exciton in the absence of external
fields and 2.2 meV for indirect heavy-hole exciton when an electric field is present, are
confirmed by the corresponding excitonic radii provided by variational method: 14.1 nm in
the first case and 23.0 nm in the second case. These results cannot be simply compared with
those presented in [12], where the value of 12.2 nm for the direct heavy-hole exciton was
achieved, since slightly different parameters (especially effective masses) were used there.
Nevertheless, it is obvious that the less-bounded exciton is the one of the larger radius.

Now we proceed further and discuss some important remarks on optical spectra. We
have demonstrated the effect of basis extension on absorption spectra computed in the
absence of external fields. Once again, we have seen that the larger basis is taken, the
more levels appear in spectra. The position of the three lowest-lying peaks and their
identification gave the same results in all studied situations, no matter if only the ground
levels or the full energy spectrum were used for calculations. As we have identified these
peaks as being associated with direct heavy-hole excitons, indirect heavy-hole excitons,
and direct light-hole excitons, respectively, our conclusions seem to be correct. In higher
energy, there are many less-significant peaks corresponding to excited excitonic states. It
has already been discussed that these peaks are localized above the absorption edge of the
two-dimensional electron-hole gas. Though it is wrong, it is the natural result of variational
method, which works well for the ground state, but gives worse results for excited levels.
It is because the optimal “width” (radius) is found for the ground-state Gaussian function,
but the damping of the wavefunction is too large to describe less-bounded excited states,
since higher basis functions, given as a multiple of a polynomial and the ground-state basis
function, converge too slowly.

Although the presence of excited excitons alters the character of theoretical absorp-
tion spectra calculated in different bases, it is not a substantial change because of two
reasons: in actual experimental absorption spectra measured at low temperatures, (1) the
ground-level peak is the strongest one, while the others vanish in the increasing signal from
the background; (2) above the absorption edge, “sharp” excitonic peaks are localized in
the continuum of states of the two-dimensional electron-hole gas, which complicates their
identification. On the contrary, because only the lowest levels are visible, there is no such
a problem in photoluminescence. Therefore, in the absence of external fields, the chosen
method is well-suitable for description of the lowest excitonic levels, while for higher ones,
its applicability decreases.
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When studying a DQW subject to the perpendicular magnetic field, the Zeeman split-
ting is usually being considered. Van Kesteren et al. derived in [26] that such a contribu-
tion, linear in magnetic field, is given by

HZ = µBgeS ·B− 2µB

(
κJ + qJ3

) ·B, (5.1)

where the first term corresponds to electrons and the second one is associated with holes,
while S represents the spin of an electron, J marks the total angular momentum of a hole,
µB is the Bohr magneton, ge is the Landé g-factor and κ and q are the two more Luttinger
parameters. The total Landé g-factor of an exciton, gex, is in accordance to [27] written as
a sum of particular contributions, gex = ge + gh, where gh, the Landé g-factor of a hole, is
connected to κ and q. Since we included the Zeeman splitting terms neither for electrons
nor for holes but the splitting still takes place (see the text bellow), this is supposed to be
an additional contribution to the g-factor. As κ = q ≡ 0, this contribution arises from the
Luttinger terms (3.36)–(3.37) in the presence of an external magnetic field.

We have computed absorption and photoluminescence spectra for several important
situations and depicted them “in cascade” to show changes when varying the strength of
external fields. To demonstrate new findings of this work and to give a comparison to
existing results, optical spectra both with and without the off-diagonal Luttinger b̂ and ĉ
terms have been calculated. Let us discuss the particular situations one after another.

In the presence of the perpendicular magnetic field, the first important difference
appeared. Whereas when the off-diagonal terms were neglected, there was only one ground
level, energy of which was rising with increasing B⊥, if b̂ and ĉ terms were considered, the
ground level split for fields stronger that 5 T. It was discovered that this level corresponds
to direct heavy-hole excitonic states and that the presence of the perpendicular magnetic
field separates states with mJ = 3

2 and mJ = −3
2 with an energy gap of approximately

3 meV for B⊥ = 13 T, leaving the mJ = −3
2 level energetically lower. If our results are

correct, the ground level splitting would have to be observed with the help of circularly
polarized light, since the selection rules for mJ = 3

2 and mJ = −3
2 are different. However,

we have discussed in the text above that any distinct behaviour of states with opposite
sign of mJ , induced by the magnetic field, originates from the hole part of the excitonic
hamiltonian only and that no Zeeman terms are considered in our work. This may cause
the difference between theoretically predicted and experimentally measured spectra.

The similar behaviour accompanied us later. When an additional electric field in the
growth direction was applied on a DQW structure, there was no doubt about the separation
of direct and indirect excitons. But as the magnetic field was present, too, states with
mJ = ±3

2 or mJ = ±1
2 were no longer twofold degenerate, but the degeneracy was lifted

because of the same reason as mentioned before.
On the contrary, when studying optical spectra in the presence of the perpendicular

magnetic field for various strengths of an external electric field, absorption spectra change
its character as position of energy levels is determined by the electric field. Once again,
indirect excitonic levels shift linearly while direct ones are not affected. Moreover, a nice
demonstration of the anti-crossing effect is to be seen in Fig. 4.18. In contrast to the
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in-plane magnetic field, the perpendicular field does separate energy levels by the hole
total angular momentum projection, mJ .

We have calculated photoluminescence spectra as well. Since the intensity of higher
levels is decreased by the Boltzmann exponential factor e−E/kBT , not only the electron-hole
overlap integral affects the strength of optical transitions. We have performed the compu-
tations for higher temperature T = 45 K, same as in [8], to provide sufficient population
even for several higher states to have not only the ground level visible in spectra. As the
energy of indirect excitons lowers with increasing electric field, the intensity of the corre-
sponding peak increases on behalf of the intensity of direct excitonic peak, since the energy
separation between them rises and thus the relative intensity is decreased exponentially.
However, for stronger electric field, the increasing intensity of indirect excitonic peak is not
usually experimentally observed as the exciton becomes dissociated by electron tunneling
outside the DQW [8].

We have already discussed that variational method is generally well applicable to
ground-level states, but with increasing energy, its applicability decreases. We have seen
that in the absence of external fields, the character of optical spectra is mostly determined
by ground and higher excited excitonic levels, whereas e. g. when the strong perpendicular
magnetic field is applied, the transitions associated with excitonic levels originating from
the Landau levels of electrons and holes are of the most importance. However, the trans-
formation from a wavefunction describing well the states in the absence of external fields
to that which is efficient for states in strong fields, remains unclear. It would be interesting
to pay more attention on such a problem as a part of further theoretical research.

The last category of results we have presented in the previous chapter was associated
with the visualisation of the probability density distribution. Analogously to [12], we have
depicted the charge density of ground-level excitons for notable situations to illustrate
and better understand the effects we are facing. From there on, we can easily imagine any
process when direct and indirect excitons are merging into one another, since such a change
is accompanied by shrinking or stretching of the charge density distribution. Furthermore,
the effect of external fields on the excitonic radius was nicely illustrated. It was proven that
the probability density of direct excitons is localized in a small area whereas that of indirect
ones is spatially more spread. Moreover, the presence of both electric and magnetic fields
for excitons with non-zero Ky breaks the axis symmetry, making radii in perpendicular
directions different and shifting the maximum of the charge density distribution away off
the origin.

We have discussed the most important results of this thesis. Since it is a theoretical
work, the experimental proof of predicted effects is necessary. We know that the prepara-
tion of DQW samples satisfying all the strict requirements is not a simple process. Hence,
keeping this in mind, we have written the main program and all other utilities in such
a form that all presented calculations can be performed any time again with such a set of
parameters, which would best characterize available samples.
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Conclusions

As the last chapter of our thesis, we will briefly conclude the most important results
achieved when studying general properties of excitons in DQW structures.

We started from the well-known Luttinger hamiltonian of a hole in the valence band and
after the addition of the electronic hamiltonian, confining DQW potentials for electrons
and holes and the introduction of bounding Coulomb potential, the excitonic hamiltonian
was derived. To find its eigenvalues and eigenvectors, we expressed the hamiltonian in
the tight-binding basis, which enabled us to separate parallel and transverse motion (with
respect to a DQW plane) and to derive the Schrödinger equation depending on the in-plane
components only. After the centre-of-mass transformation, the form of which was discuss
since we had to generalize it to include both light and heavy holes, the final set of 24
coupled partial differential equations was obtained.

To solve such a complicated problem, the numerical solution was preferred as we did not
manage to find the analytical one. The expansion to the basis composed of the Hermite-
Gauss functions was chosen and a Fortran code was written to construct and then diag-
onalise the matrix hamiltonian. As the basis functions contained one variable parameter
(or two parameters in 2D variational computation), its value was determined by varia-
tional method to be given the lowest energy of the ground excitonic level. Comparisons
between bases of different extensions and between the results of 1D and 2D variational
calculations were given. Not only the main program, but many other utilities as well, were
written in Fortran language to compute desired quantities from the output provided by
the diagonalisation method.

Dispersion relations and the shift of energy levels in external fields were presented and
described, confirming the validity of our model. However, the most important results pro-
ceeded from optical spectra calculations. Absorption and photoluminescence spectra were
computed and depicted for several interesting situations both with and without external
fields: the electric field in the growth direction and/or the in-plane and the perpendic-
ular magnetic field. The achieved results were discussed in detail. Probability density
distribution, showing the real-space charge density of an exciton, was illustrated as well.
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Appendix A

Main program and other utilities

We have spoken about the way data for construction of figures are acquired. Among
all other programs, that one called DQW is of most importance. Let us give you some
additional information about how it works and how to set up the program to compute
what we are interested in.

A.1 Acquiring data for energy dependencies

Although a Fortran code is supplied, too, the compiled executable file DQW.EXE is to be
found on the attached CD-ROM. The whole setup is performed through the input file
DQW.TXT, which is located in the same directory. Each line of this file contains one ad-
justable parameter. The structure of the file is shown in Tab. A.1.

The first two lines, basis x, basis y, determine the basis extension. In the third
line, the independent variable for calculation is chosen: e. g. if we want to compute
dispersion relations, variable has to be set to 0. The setting of Ky and the strength
of external fields comes next, followed by variables step and numofsteps used for step
adjustment, allowing us to configure the difference between two successive values of the
chosen independent variable, for which the computation is run, and the total number of
computations. The next group of variables determines several parameters of the sample:
the QW width (L), the distance between QWs (d), the relative permittivity of the sample
(εr), and finally the effective masses for electrons (me) and holes (Luttinger γ1, γ2, and γ3

parameters). It is followed by variables showing the energy gap, QW bound energies, and
the tunneling matrix elements for both electrons and holes. Variable variation sets the
type of variational method: set 1 for one-dimensional or 2 for two-dimensional computation.
The following two groups of parameters enclose an area, where the variational method
finds optimal values, and determine numerical precision. The last three lines can be used
to enable/disable the off-diagonal Luttinger b̂ or ĉ terms by setting bterms or cterms to
1/0, and to export the matrix hamiltonian into an external file (writehamiltn). Before
changing any value of DQW.TXT, please take care of the corresponding units.
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Table A.1: Structure of the input file DQW.TXT.

basis x =
basis y =

variable =
Ky (nm−1) =
E (kV/cm) =
B‖ (T) =
B⊥ (T) =
step =
numofsteps =

L (nm) =
d (nm) =
εr =
me =
γ1 =
...

...
γ2 =
γ3 =

Eg (eV) =
Ee0 (eV) =
Eh00 (eV) =
Eh10 (eV) =
El0 (eV) =

te (eV) =
th0 (eV) =
th1 (eV) =
tl (eV) =

variation =
...

...
v1D

a =
v1D

b =
v1D

c =
v1D

tol =

v2D
x1 =

v2D
y1 =

v2D
x2 =

v2D
y2 =

v2D
x3 =

v2D
y3 =

v2D
tol =

bterms =
cterms =
writehamiltn =

If DQW.EXE is executed, it reads the configuration from the input file and performs the
desired computations. After all is done successfully, the directory VYSLEDKY is created (if it
does not already exist) and the results are written in a subdirectory retaining information
about the computation (Ky and external fields). Four files are created: in PARAM.TXT,
values of variational parameters and the corresponding energy of the ground level are
written, ENERGIE.TXT keeps the whole energy spectrum, and two more files, VEKTOR R.TXT
and VEKTOR I.TXT, contain the expansion coefficients (eigenvector components) associated
with all energy levels.

One more remark at the end: each component of any eigenvector is stored as a double-
precision real number and thus takes 8 bytes of memory. When working with 10×10 basis,
24×10×10 = 2400 energy levels are obtained. For each level, 2400 components representing
the real part and 2400 components of the imaginary part of the corresponding eigenvector
are provided, too. Globally, it stands 2× 2400× 2400× 8 bytes ≈ 88 megabytes of data to
be stored. Together with the information about energy levels and variational parameters,
we have approximately 90 megabytes of data for one run of the program. Thus, hard-drive
space requirements are quite high when performing many steps of larger-basis computation.
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A.2 Computing optical spectra

From the results computed by the main program, dispersion relations and other energy
dependencies can be constructed directly. However, very important information about the
system is provided by optical spectra. Therefore, another helpful program, SPEKTRA.EXE,
was written and is to be found on the attached CD-ROM, as well as the corresponding
Fortran code. In contrast to previously discussed program, the setup of SPEKTRA.EXE is
controlled from the keyboard.

This program uses all four files created by DQW.EXE to compute either absorption or
photoluminescence spectra on the selected energy interval with an arbitrary step. The
spectral-line broadening (the “width” of a peak) ∆ is entered for both absorption and
PL spectra calculations. Moreover, one additional parameter, the temperature T of the
sample, is used for construction of PL spectra.

The output is written into the subdirectory SPEKTRA, which is created inside the di-
rectory containing the results of the main program, and whilst AB DELTA=[∆]MEV.TXT or
PL DELTA=[∆]MEV T=[T]K.TXT contain columns showing energy and the corresponding
absorption or PL intensity, the file PIKY.TXT keeps the information about strength and
type of transitions to simplify the identification of particular peaks.

A.3 Constructing probability density distribution

As well as the latter program, the utility PSI.EXE is used to process the acquired data.
This program constructs the probability density distribution on the selected area, enclosed
by coordinates x1, x2, y1, and y2. The setup of PSI.EXE is controlled through the external
file PSI.TXT. The structure of this file is schematically depicted in Tab. A.2.

Table A.2: Structure of the input file PSI.TXT.

basis x =
basis y =

variable =
Ky (nm−1) =
E (kV/cm) =
B‖ (T) =
B⊥ (T) =

...

...
x1 (nm) =
x2 (nm) =
y1 (nm) =
y2 (nm) =
step x (nm) =
step y (nm) =

level =
record =

The first lines of PSI.TXT are identical with those in DQW.TXT and no further explanation
is necessary. Variables step x and step y control the density of the square grid on which
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the charge density is calculated. The meaning of the last two parameters is explained as
follows: level determines the energy level, record sets from which record of the main
program output files, the probability density is to be computed. The output is written
into the new subdirectory, HUSTOTA, to a separate file for each level.

A.4 Other utilities

Except for already discussed programs, there are two more helpful utilities. The first one,
KOEF.EXE, is used for the construction of expansion coefficients dependencies. With the
help of this tool, Fig. 4.2 was calculated. The function of KOEF.EXE is customized through
the external file KOEF.TXT, the structure of which is shown in Tab. A.3a. Since the meaning
of all parameters remains the same as before, there is no need of any explanations.

The second utility, HLADINA.EXE, is not suited for the computation of any other quan-
tity, but for easier identification of peaks and levels in optical spectra. The structure of its
input file, HLADINA.TXT, is depicted in Tab. A.3b. Through the help of parameters loaded
from HLADINA.TXT and few more entered via the keyboard, the character of desired level
and the strongest contributions of the corresponding eigenvector expansion are printed
on screen.

Table A.3: Structure of the input files KOEF.TXT (a) and HLADINA.TXT (b).

(a)

basis x =
basis y =

variable =
Ky (nm−1) =
E (kV/cm) =
B‖ (T) =
B⊥ (T) =

record =

(b)

basis x =
basis y =

variable =
Ky (nm−1) =
E (kV/cm) =
B‖ (T) =
B⊥ (T) =

level =
coeff =
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Contents of the attached CD-ROM

As the CD-ROM containing the electronic version of this thesis, all program codes and
executable applications, and some acquired data is attached, it is reasonable to make
a mention of the directory tree on the disc:

MASTER’S THESIS: This directory contains the electronic version of the thesis, which is
available as a Portable Document Format file and a Postscript file.

EXECUTABLE APPLICATIONS: In this directory, compiled Win32 applications described in
Appendix A are placed. It has the following structure of subdirectories:

- MAIN PROGRAM: The most important part providing all results for further process-
ing is stored here.

- OPTICAL SPECTRA: The program used for the computation of absorption and PL
spectra on the selected energy interval.

- OTHER UTILITIES: Other useful tools discussed in Appendix A and their configu-
ration files.

- PROBABILITY DENSITY: The utility for the construction of the charge density dis-
tribution and its configuration file.

OUTPUT DATA SAMPLES: To show the typical form in which the output of DQW.EXE is pro-
vided, some results computed for smaller basis and used in the thesis are to be found
in this directory.

VISUAL FORTRAN PROJECTS: The directory where Microsoft Visual Fortran projects, inclu-
ding all files and complete Fortran codes, are located to enable further modifications.

As discussed in Appendix A, hard-drive space requirements are high for larger-basis com-
putations. Hence, it is not possible to store data used for the construction of optical spectra
on the attached CD-ROM.
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