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Introduction 
Radiation detectors are used for detection of electromagnetic radiation starting 

with infrared through visible and continuing deep in the X-ray and gamma-ray region 

or for the detection of ionizing particles. There are many different types of detectors, 

but the most common are semiconductor detectors. They directly convert incident 

radiation to an electric signal, unlike scintillators that convert incident radiation to 

lower energy electromagnetic radiation (UV, visible) and thus require the connection 

with photomultipliers. Application of semiconductor detectors is ranging from 

astronomy and particle physics to more “everyday” uses like nuclear power plant 

inspection, medical imaging or X-ray quality inspection. 

In order to create a high-quality X-ray and gamma-ray detector, one must first 

choose suitable material in the first place. The main requirements for semiconductor 

detectors are resistivity, bandgap, high mobility-lifetime products of charge carriers 

and high absorption in a used part of the spectra and with that associated density and 

average atomic number.  

To obtain a great signal-to-noise ratio the leakage current needs to be as low as 

possible. One way to achieve this is the “right kind” of high resistivity - more precisely 

high resistivity caused by the low concentration of free carriers. This type of resistivity 

is closely tied with the width of the bandgap – the higher the bandgap the lower the 

concentration of free carriers and as a bonus the lower the thermal noise. The ideal 

bandgap is somewhere between 1.4 -3 eV [1]. Another way of obtaining low leakage 

current is achieved in the reverse direction of a p-n junction often used for silicon and 

germanium diode detectors. 

The best energy resolution is achieved only when all of the photogenerated 

carriers are collected at the electrodes before the carriers either recombine or they are 

trapped. Therefore, high carrier mobility and carrier lifetime are required. 

Lastly, the higher the absorption, the smaller the detectors can get but still retain 

the same signal as their less absorptive counterparts. High absorption is also useful 

because in some cases the preparation of larger detectors is rather difficult. 
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Table 0.1: Selected properties of  Si, Ge, CdZnTe and GaAs [1], [2] 

Material Si Ge CdZnTe GaAs 

Atomic number 14 32 48, 30, 52 31, 33 

Density (g.cm-3) 2.33 5.32 5.78-6.2 5.32 

Bandgap (eV) 1.12 0.67 1.5 1.43 

Electron mobility 𝜇𝑒 (cm2.V-1.s-1) 1400 3900 1000-1100 8000 

Hole mobility 𝜇ℎ (cm2.V-1.s-1) 450 1900 50-80 400 

Electron-hole pair generation 

energy (eV) 
3.6 2.96 4.64 4.2 

  

As can be seen in Table 0.1, germanium has excellent properties (mobility, 

density, atomic number) for detector fabrication except for the small bandgap and its 

need to be cooled down to the cryogenic temperatures preventing germanium to 

become room-temperature detector. In terms of bandgap, silicon is a better candidate 

than germanium, with roughly third of the germanium mobility, it is still perfect 

material for visible and light X-ray detection, but as the photon energy gets higher the 

ability of silicon to absorb incident radiation lowers due to silicon’s low density and 

atomic number. While GaAs has high mobility, moderate bandgap and higher density 

than silicon, the detector performance is significantly debased by the presence of EL2 

centre, that limits the electron lifetime [3].  

Since the 1960s the cadmium telluride (CdTe) and cadmium-zinc telluride 

(CdZnTe) are regarded as a promising material for room-temperature X-ray and 

gamma-ray detectors. Great effort was taken to perfect the crystals growth process, 

passivation of the surface and contact preparation but detector polarization still 

remains an immense problem. Detector polarization can be induced either by intense 

X-ray and 𝛾-ray irradiation [4] or simply by applying a bias to the detector [5].   

This thesis aims to characterize charge transport in CdZnTe detectors and to 

study the effect of the above-bandgap illumination utilizing a Laser-induced transient 

current technique. It can also determine how the additional carrier injection affects the 

detector polarization and associated charge collection efficiency. 
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1 Theory 

1.1 Transport equations 

One of the ways to describe the charge transport in a semiconductor is using  

continuity equation  

 
𝜕𝑛

𝜕𝑡
=

1

𝑒
𝛻 ∙ 𝒋𝒆 + 𝐺𝑅𝑒 , (1.1) 

where 𝑛 is the concentration of electrons in a conduction band, 𝑒 is the elementary 

charge, 𝐣𝐞 is the electron current density and 𝐺𝑅𝑒 describes the generation and 

recombination of the electrons. Current density is defined by drift-diffusion equation 

[6] 

 𝒋𝒆 = 𝑒𝑛𝜇𝑒𝑬 + 𝑒𝐷𝑒𝛻𝑛 + 𝑒𝑆𝑒𝛻𝑇, (1.2) 

where 𝜇𝑒 is electron mobility, 𝑬 is the intensity of the applied electric field, T is 

absolute thermodynamic temperature, 𝐷𝑒 is the diffusion coefficient given by equation 

(1.3)  and Se is the Soret coefficient given by equation (1.4). 

 𝐷𝑒 =
𝑘𝐵𝑇

𝑒
𝜇𝑒 (1.3) 

 𝑆𝑒 =
𝑘𝐵

𝑒
𝑛𝜇𝑒 (1.4) 

The first term of equation (1.2) corresponds to the drift in electric field 𝐄, while second 

term is the result of diffusion. The third term describes electron transport due to the 

gradient of temperature in the material.  

Combining equations (1.1) and (1.2) and assuming constant temperature and 

carrier mobility we get transport equation for electrons 

 
𝜕𝑛

𝜕𝑡
= 𝜇𝑒𝑬. 𝛻𝑛 + 𝜇𝑒𝑛

𝜌

𝜀
+ 𝐷𝑒𝛻2𝑛 + 𝐺𝑅𝑒 , (1.5) 

where the differential form of Gauss law [7] was used, ρ is the space charge density in 

the detector and 𝜀 is the permittivity of the material. Similarly, transport equation for 

holes can be obtained by switching 𝑒 → −𝑒 and 𝜇𝑒 → −𝜇ℎ. 
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1.2 Charge transport in a planar detector 
The geometry of the planar detector is shown in Fig. 1.1. Assuming that the 

lateral dimensions of the detector are much larger than its width 𝐿, calculations can be 

reduced from three spatial dimensions to only one. The detector is illuminated at the 

centre of the electrode and laser spot with area 𝑆 is small enough that the 

inhomogeneity of the electric field near the edges of the detector can be neglected. We 

also assume that the applied electric field 𝐸0 is constant with respect to time or at least 

that its change during the charge carrier transit is negligible and that the 

photogenerated charge does not affect the local electric field. In case of strong 

absorption, irradiation generates electron-hole pairs just under the cathode and they 

are immediately separated by the electric field. Electrons are drifting towards the 

anode in the positive direction of the z-axis, and holes are almost immediately 

collected at the cathode. Some detectors may have a guard ring structure (GR in Fig. 

1.1)  separated by the resistive layer from the central electrode, to suppress the surface 

leakage current. 

 

Fig. 1.1: Simplified geometry of the detector. 

Internal electric field 𝑬(𝒓, 𝑡) consisting of the applied electric field 𝑬𝟎(𝑡) and 

the electric field induced by space charge 𝑬𝝆(𝒓, 𝑡), can be rewritten as 

 𝑬(𝒓, 𝑡) = 𝑬𝟎(𝑡) + 𝑬𝝆(𝒓, 𝑡) =
𝑈

𝐿
𝒛 + 𝐸𝜌(𝑧)𝒛, (1.6) 

where 𝑈 is applied bias and 𝒛 is a unit vector in the z-direction. Subsequently, the 

equation (1.5) transforms to  

 

𝜕𝑛(𝑧, 𝑡)

𝜕𝑡
= 𝜇𝑒 (

𝑈

𝐿
+ 𝐸𝜌(𝑧))

𝜕𝑛(𝑧, 𝑡)

𝜕𝑧
+ 

+
𝜌(𝑧)

𝜀
𝑛(𝑧, 𝑡) + 𝐷𝑒

𝜕2𝑛(𝑧,𝑡)

𝜕𝑧2 + 𝐺𝑅(𝑧, 𝑡). 

(1.7) 
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Knowing the concentration of the electrons, the Shockley-Ramo theorem [8] is 

used to obtain the shape of the current waveform. In the case of two planar electrodes, 

the current induced by the charge 𝑞 moving with the drift velocity 𝑣 is simply given 

by  

 𝐼𝑞(𝑡) =
𝑞𝑣(𝑡)

𝐿
. (1.8) 

The electric current induced by the electron distribution 𝑛(𝑧, 𝑡) is then described by 

 𝐼𝑛(𝑡) = −
𝑒𝑆

𝐿
∫ 𝑛(𝑧, 𝑡)𝑣𝑒(𝑧)𝑑𝑧

𝐿

0

=
𝜇𝑒𝑒

𝐿
∫ 𝑛(𝑧, 𝑡)𝐸(𝑧)𝑑𝑧

𝐿

0

, (1.9)  

which in the case of sharply localized electron cloud or constant electric field can be 

simplified to 

 𝐼𝑛(𝑡) =
 𝑄0(𝑡)𝑣𝑒(𝑡)

𝐿
, (1.10)  

where  Q0 is the overall moving charge and 𝑣𝑒 is the electron drift velocity. 

 Photogeneration of the carriers provided by a laser pulse is defined by the 

generation recombination term 𝐺𝑅 in equation (1.7). Assuming the attenuation of the 

square laser pulse is described by the Lambert-Beer law, the generation term is then 

 𝐺𝑅(𝑧, 𝑡) =
𝑁0

𝑆

𝛼

1 − 𝑒𝑥𝑝(−𝛼𝐿)
𝑒𝑥𝑝(−𝛼𝑧)

1

𝑡𝑙𝑎𝑠𝑒𝑟
𝜒(𝑡, 0, 𝑡𝑙𝑎𝑠𝑒𝑟), (1.11)  

where 𝑁0 is the overall number of photogenerated carriers, 𝑆 is illuminated area, 𝛼 is 

the absorption coefficient and 𝑡𝑙𝑎𝑠𝑒𝑟 is the duration of the laser pulse and 𝜒(𝑡, 0, 𝑡𝑙𝑎𝑠𝑒𝑟) 

is the boxcar function, that is equal to 1 if 0 ≤ 𝑡 ≤ 𝑡𝑙𝑎𝑠𝑒𝑟 and in all other cases is equal 

to 0. Both fractions in the formula (1.11) are just normalizing terms of the respective 

distribution. However, using the 𝐺𝑅 in the computation leads to quite complicated and 

intricate solutions, that is why in the text below the sharply localized electron cloud 

𝑛(𝑧, 0) =
𝑁0

𝑆
𝛿(𝑧) will often be used as an initial condition instead. This simplification 

is, in fact, correct since the laser pulse width has to be short enough (significantly 

shorter than current waveform) not to distort the current waveform, essentially 

becoming the Dirac delta function in time 𝛿(𝑡). Therefore, the term 𝐺𝑅 can be 

excluded and the initial condition 

 𝑛(𝑧, 0) =
𝑁0

𝑆

𝛼

1 − 𝑒𝑥𝑝(−𝛼𝐿)
𝑒𝑥𝑝(−𝛼𝑧) (1.12)  

can be used. For high absorption coefficient (above bandgap illumination) incident 

light is absorbed in the thin region beneath the surface (~
1

𝛼
), thereupon the spatial 
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dependence of initial carrier distribution can be disregarded and again Dirac delta-

function 𝛿(𝑧) can be used. 

1.2.1 Constant electric field 
 

Assuming a constant electric field (𝜌 = 0), no diffusion (𝐷𝑒 = 0) and no 

generation or recombination of the carries, equation (1.7) takes on a simple form 

 
𝜕𝑛(𝑧, 𝑡)

𝜕𝑡
= 𝜇𝑒𝐸0

𝜕𝑛(𝑧, 𝑡)

𝜕𝑧
 (1.13)  

The solution of the transport equation (1.13) with initial condition 𝑛(𝑥, 0) = 𝑛0(𝑥) is 

 𝑛(𝑧, 𝑡) = 𝑛0(𝑧 − 𝑣0𝑡), (1.14)  

where 𝑣0 denotes drift velocity of electrons 𝑣0 = −𝜇𝑒𝐸0. Since the finite width of the 

detector is introduced only by the Schockley-Ramo theorem (equations (1.9) and 

(1.10)), solution (1.14) represents the initial electron distribution drifting endlessly 

with the velocity 𝑣. 

The shape of the current waveform given by (1.10) is not affected by initial 

carrier distribution (assuming all carriers are generated at the same time) until the time 

the first electron reaches the anode and overall moving charge in the detector 𝑄0 starts 

to decrease. The time it takes charge carrier to pass the width of the detector 𝐿  is called 

the default transit time 𝑡𝑟0 and is defined as 

 𝑡𝑟0 =
𝐿

|𝑣0|
=

𝐿2

𝜇𝑒|𝑈|
 (1.15)  

For simplification let’s assume initial spatial distribution of electrons to be 

Dirac delta function 𝑛0(𝑥) = −
𝑄0

𝑒𝑆
𝛿(𝑥), the current waveform is then described by  

 𝐼(𝑡) =
𝑄0𝑣0

𝐿
𝜒(𝑡, 0, 𝑡𝑟0) =

𝑄0

𝑡𝑟0
𝜒(𝑡, 0, 𝑡𝑟0). (1.16)  

 The boxcar function has appeared due to the electron collection at the anode. The 

current waveforms for different drift velocities (different biases) are shown in Fig. 1.2. 
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Fig. 1.2: Normalized current waveforms for different biases. Waveforms are 

normalized with respect to the current 𝐼0 and trasit time 𝑡𝑟0 of the 𝑈0 waveform. 

1.2.2 Linear electric field 

Let’s assume a homogeneously charged detector. The electric field exerted by 

the constant space charge 𝜌 can be easily calculated using Gauss law and is given by 

 𝐸𝜌(𝑧) =
𝜌

𝜀
𝑧 −

𝜌𝐿

2𝜀
. (1.17) 

In some cases this electric field Eρ can completely screen out the applied electric field 

E0 and the inactive layer is formed and space charge in this region then dissipates [9]. 

Assuming that the electric field in the inactive layer is zero, the electric field in the 

detector is then 

 𝐸(𝑧) = 𝐸0 𝑚𝑎𝑥 (1 +  
𝜌

𝜌𝑚
(2

𝑧

𝐿
− 1) , 0). (1.18)  

where 𝜌𝑚 =
2𝜀𝐸0

𝐿
 is the space charge density for which the electric field beneath the 

cathode 𝐸(0) is equal to zero. Formula (1.18) is also valid for the opposite electrode 

configuration. As can be seen in Fig. 1.3a) electric field is nonzero in the whole 

detector for −|𝜌𝑚| <  𝜌 < |𝜌𝑚|, in all other cases an inactive layer with the width of 

𝑤 =  
𝐿

2
(1 −

𝜌𝑚

𝜌
) is formed. Corresponding space charge is shown Fig. 1.3b). Since 

the electric field in the inactive layer is zero, electron-hole pairs generated in this layer 

cannot drift and recombine. 



10 

 

 

Fig. 1.3: a) Normalized electric field profile for different values of charge density 𝜌 

and b) corresponding profile of the normalized charge density. 

The equation (1.7) can be rewritten for the case of the linear electric field by 

disregarding the diffusion and generation (recombination) of the charge carriers and 

substituting the formula (1.18)  for the electric field 𝐸𝜌. Obtained equation is then 

given by 

 
𝜕𝑛(𝑧, 𝑡)

𝜕𝑡
= 𝜇𝑒 (𝐸0 +

𝜌

𝜀
𝑧 −

𝜌𝐿

2𝜀
)

𝜕𝑛(𝑧, 𝑡)

𝜕𝑧
+ 𝜇𝑒

𝜌

𝜀
𝑛(𝑧, 𝑡) (1.19) 

Assuming initial condition 𝑛(𝑧, 0) = 𝑛0(𝑧), the solution of (1.19) is 

 

𝑛(𝑧, 𝑡) = 𝑒𝑥𝑝 (
𝑡𝜇𝜌

𝜖
) 𝑛0 (𝑒𝑥𝑝 (

𝑡𝜇𝜌

𝜖
) 𝑧

−
𝐿

2
[𝑒𝑥𝑝 (

𝑡𝜇𝜌

𝜖
) − 1] (1 −

𝜌𝑚

𝜌
)) 

(1.20) 

As can be seen from the solution (1.20) the electron distribution changes its 

shape in time. The first exponential (in product with initial condition 𝑛0) changes the 

“height” of the distribution, while the second exponential (multiplying 𝑧) causes the 

broadening or shortening of the initial distribution. This may not be apparent, but if 

we choose the initial distribution to be Gaussian, the second exponential can be joined 

with variance 𝜎 as can be seen below. 

 𝑛0(𝑧) =
1

𝑆√𝜋𝜎
𝑒𝑥𝑝 (−

𝑥2

𝜎2
) (1.21) 
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𝑛(𝑧, 𝑡) =
1

𝑆√𝜋𝜎
𝑒𝑥𝑝 (

𝑡𝜇𝜌

𝜖
) 𝑒𝑥𝑝 (−

(𝑧 − 𝛾)2

(𝜎 𝑒𝑥𝑝 (−
𝑡𝜇𝜌

𝜖 ))
2) 

𝛾 =
𝐿

2
(1 − 𝑒𝑥𝑝 (−

𝑡𝜇𝜌

𝜖
)) (1 −

𝜌𝑚

𝜌
) 

(1.22) 

Now we can see that the variance 𝜎′ = σ 𝑒𝑥𝑝 (−
𝑡𝜇𝜌

𝜖
), changes with time and 

therefore, the distribution of electrons is broadening (ρ < 0), shortening (ρ > 0) or 

stays the same (ρ = 0). Change of the electron distribution shape is shown in Fig. 1.4. 

The 𝑡𝑟 1/2 in Fig. 1.4 represents the time the charge carriers require to get to the half 

of the sample. 

 
Fig. 1.4: a) Broadening (ρ < 0) and b) shortening (ρ > 0) of the carrier distribution 

due to the non-constant electric field. Distributions are normalized with respect to the 

maximum of initial distribution n(0,0) = n0max. 

In order to obtain the shape of the current waveform, a sharply localized 

electron cloud is assumed and equation (1.10) is used. The final current waveform is 

then  

 𝐼(𝑡) = 𝑄0𝜇𝑒𝐸0 (1 −
𝜌

𝜌𝑚
) 𝑒𝑥𝑝 (−

𝜇𝑒𝜌

𝜖
𝑡) 𝜒(𝑡, 0, 𝑡𝑟), (1.23) 

where transit time 𝑡𝑟 is given by 

 𝑡𝑟 =
𝑡𝑟0

2

𝜌𝑚

𝜌
𝑙𝑛 (

𝜌𝑚 + 𝜌

𝜌𝑚 − 𝜌
), (1.24) 

If the charge density is equal to ±ρm then transit time goes to infinity. In both 

cases, electrons cannot reach the anode either because they recombine at the anode 

(𝜌 ≥ 𝜌𝑚) and no signal is detected or they are stopped in the inactive layer (𝜌 ≤ −𝜌𝑚). 

Infinite transit time represents itself as the vanishing of the sharp decrease of the 
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waveform as can be seen in Fig. 1.5. Another effect of space charge is the prolongation 

of the transit time – transit time is the shortest in the presence of no space charge and 

with the increase of charge density ρ transit time prolongs regardless the sign of the 

space charge 𝜌. 

 

Fig. 1.5: Normalized current waveforms calculated for different space charge 

distributions 𝜌(𝑧). 

1.3 Effects of charge trapping and detrapping 
The charge collection is significantly influenced by the presence of crystal 

defects e.g. impurities or point defects. These defects are often described by the 

Shockley-Read-Hall model [10], which is schematically shown in Fig. 1.6. 

Disregarding the band-to-band recombination and photo-excitation there are four 

processes that can occur – a) capture of the free electron from conduction band by a 

defect, b) thermal emission of electron back to the conduction band, c) capture of the 

free hole from the valence band by a defect and d) thermal emission a hole back to the 

valence band. Rates of processes a)-d) are given by formulas [9],[11] 

 𝑝𝑎 = 𝑣𝑡ℎ
𝑛 𝜎𝑛(𝑁𝑡0 − 𝑁𝑡)𝑛 =

𝑛

𝜏𝑡
𝑛, (1.25)  

 𝑝𝑏 = 𝑣𝑡ℎ
𝑛 𝜎𝑛𝑁𝐶 𝑒𝑥𝑝 (−

𝐸𝑡

𝑘𝐵𝑇
) 𝑁𝑡 =

𝑁𝑡

𝜏𝑑
𝑒 , (1.26)  

 𝑝𝑐 = 𝑣𝑡ℎ
𝑝 𝜎𝑝𝑁𝑡𝑝 =

𝑝

𝜏𝑡
ℎ, (1.27)  

 𝑝𝑑 = 𝑣𝑡ℎ
𝑝 𝜎𝑝𝑁𝑉𝑒𝑥𝑝 (−

𝐸𝑔−𝐸𝑡

𝑘𝐵𝑇
) (𝑁𝑡0 − 𝑁𝑡) =

𝑁𝑡0−𝑁𝑡

𝜏𝑑
ℎ , (1.28) 
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where 𝑣𝑡ℎ
𝑛 , 𝜎𝑛 (𝑣𝑡ℎ

𝑝
, 𝜎𝑝) are thermal velocity and capture cross-section of electrons 

(holes), 𝑁𝑡0 is the concentration of all states of level 𝐸𝑡, 𝑁𝑡 is the concentration of all 

occupied states of level 𝐸𝑡, 𝑁𝐶 (𝑁𝑣) is the effective density of states in the conduction 

(valence) band, 𝑘𝐵 is Boltzmann constant, 𝑇 is the absolute temperature of the crystal 

and 𝐸𝑔 is the bandgap of the semiconductor. 

 
Fig. 1.6: Band diagram of the possible defect described by the Shockley-Read-Hall 

model, where 𝐸𝑡 is the energy of trapping center and 𝐸𝑐 (𝐸𝑣) represents conduction 

(valence) band and 𝐸𝑔 is the width of the bandgap of the semiconductor. 

If the rate of thermal emission of an electron from level 𝐸𝑡 back to the 

conduction band (1.26) is much higher than the rate of recombining with a hole (the 

rate of hole capture by the defect 𝐸𝑡)  (1.27) then the defect 𝐸𝑡 is usually identified as 

the trapping centre and processes a) and b) as electron trapping and detrapping, 

respectively. Similarly, hole trapping and detrapping are introduced.  On the other 

hand, if the rate (1.26) is smaller than the rate (1.28) the level 𝐸𝑡 is considered to be 

recombination centre. Another classification of trapping centers depends on the rate of 

detrapping – if the detrapping time is significantly faster than transit time the trapping 

centre is called shallow (due to its distance from conduction or valence band) or deep 

trapping centre in the opposite case. 

Let’s begin with one shallow trap described by trapping time 𝜏𝑡 (1.25) and 

detrapping time 𝜏𝑑 (1.26) and also assume that both trapping and detrapping times are 

spatially independent and that their temporal change during the flight of probing 

carriers is negligible. The evolution of the trapped 𝑛1 and “free” electrons in the 

conduction band 𝑛0 in constant electric field can then be described by differential 

equations 
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𝜕𝑛0(𝑧, 𝑡)

𝜕𝑡
= −𝑣0

𝜕𝑛0(𝑧, 𝑡)

𝜕𝑧
−

𝑛0(𝑧, 𝑡)

𝜏𝑡
+

𝑛1(𝑧, 𝑡)

𝜏𝑑
 (1.29)  

 
𝜕𝑛1(𝑧, 𝑡)

𝜕𝑡
=

𝑛0(𝑧, 𝑡)

𝜏𝑡
−

𝑛1(𝑧, 𝑡)

𝜏𝑑
 (1.30) 

Both equations were obtained from equation (1.7) by disregarding diffusion and 

assuming that trapped electrons cannot move. Nevertheless, finding the solution to this 

system is difficult, so some discussion is needed. In order to simplify the equation 

(1.29) spatial dependence (the first term in equation (1.29)) is neglected. However, the 

solution will be valid only for the time smaller than 𝑡𝑟0 (for sharply localized electron 

distribution), because until 𝑡𝑟0  all the charge carriers are moving with constant drift 

velocity 𝑣0 and after the 𝑡𝑟0 the never-trapped charge carries exit the detector. The 

dynamics until this point can be imagined as the two-level system that is slowly 

reaching its equilibrium distribution of carries. With this in mind, the equations (1.29) 

and (1.30) transform to 

 
𝜕𝑛0(𝑡)

𝜕𝑡
= −

𝑛0(𝑡)

𝜏𝑡
+

𝑛1(𝑡)

𝜏𝑑
, (1.31)  

 
𝜕𝑛1(𝑡)

𝜕𝑡
=

𝑛0(𝑡)

𝜏𝑡
−

𝑛1(𝑡)

𝜏𝑑
, (1.32) 

with initial condition 𝑛0(0) = 𝑁0 and 𝑛1(0) = 0. The solution of this system is then 

 𝑛0(𝑡) =
𝑁0

(𝜏𝑡 + 𝜏𝑑)
[𝜏𝑡 + 𝜏𝑑 𝑒𝑥𝑝 (−𝑡 (

1

𝜏𝑡
+

1

𝜏𝑑
))]     𝑡 < 𝑡𝑟0 (1.33)  

 𝑛1(𝑡) =
𝑁0𝜏𝑑

(𝜏𝑡 + 𝜏𝑑)
[𝑒𝑥𝑝 (−𝑡 (

1

𝜏𝑡
+

1

𝜏𝑑
)) − 1]     𝑡 < 𝑡𝑟0 (1.34)  

After the application of the Shockley-Ramo theorem (1.10) the shape of the current 

waveform is obtained 

 𝐼(𝑡) =  
𝑄0𝑣0

(𝜏𝑡 + 𝜏𝑑)𝐿
[𝜏𝑡 + 𝜏𝑑 𝑒𝑥𝑝 (−𝑡 (

1

𝜏𝑡
+

1

𝜏𝑑
))]   𝑡 < 𝑡𝑟0 (1.35) 

For the case of deep trap (𝜏𝑑 → ∞) this waveform can be simplified to purely 

exponential form and since no detrapping is taking place, the waveform for 𝑡 > 𝑡𝑟0 is 

equal to zero 

 𝐼(𝑡) =  
𝑄0𝑣0

𝐿
𝑒𝑥𝑝 (−

𝑡

𝜏𝑡
)  𝜒(𝑡, 0, 𝑡𝑟0). (1.36) 
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Current waveforms for different trapping and detrapping times are shown in Fig. 1.7. 

  
Fig. 1.7: Normalized current waveforms a) for different trapping times 𝜏𝑡 and no 

detrapping (deep trap) and b)  for 𝜏𝑡 = 𝑡𝑟 and different de-trapping times 𝜏𝑑 (shallow 

trap). 

1.3.1 Approximation beyond transit time 

The carrier trapping and subsequent detrapping changes the initial distribution 

of charge carriers. Due to this current tail induced by detrapped carriers should be 

observed beyond the transit time. As was discussed earlier the analytical solution of 

system (1.29), (1.30)  beyond transit time does not exist so approximative solution 

must be found. 

 Let’s start again with equations (1.37), but this time we dismiss detrapping and 

try to calculate the distribution of trapped carriers 𝑛1
1(𝑧, 𝑡). The detrapping term in 

equation (1.29) is basically an interaction term and ties both equations together, by 

eliminating it is possible to solve both gradually. 

 

𝜕𝑛0
0(𝑧, 𝑡)

𝜕𝑡
= −𝑣0

𝜕𝑛0
0(𝑧, 𝑡)

𝜕𝑧
−

𝑛0
0(𝑧, 𝑡)

𝜏𝑡
 

𝜕𝑛1
1(𝑧, 𝑡)

𝜕𝑡
=

𝑛0
0(𝑧, 𝑡)

𝜏𝑡
−

𝑛1
1(𝑧, 𝑡)

𝜏𝑑
 

(1.37) 

Solutions of the system (1.37) are given by 

 𝑛0
0(𝑧, 𝑡) =

𝑁0

𝑆
𝑒𝑥𝑝 (−

𝑡

𝜏𝑡
) 𝛿(𝑧 − 𝑡𝑣0)𝜒(𝑧, 0, 𝐿)𝜃(𝑡) (1.38) 

 
𝑛1

1(𝑧, 𝑡) =
𝑁0

𝑆𝑣0𝜏𝑡
𝑒𝑥𝑝 (−

𝑧

𝜏𝑡𝑣0
) 𝑒𝑥𝑝 (−

𝑡 −
𝑧

𝑣0

𝜏𝑑
) × 

× 𝜒(𝑧, 0, 𝐿)𝜃(𝑡𝑣0 − 𝑧), 

(1.39) 
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where 𝜃(tv0 − z) is Heaviside theta. In the 𝑘-th iteration the distribution of the 

(𝑘 − 1)-times trapped carriers is used as detrapping or generation term, as can be seen 

in the system below. 

 

𝜕𝑛0
𝑘(𝑧, 𝑡)

𝜕𝑡
= −𝑣0

𝜕𝑛0
𝑘(𝑧, 𝑡)

𝜕𝑧
−

𝑛0
𝑘(𝑧, 𝑡)

𝜏𝑡
+

𝑛1
𝑘−1(𝑧, 𝑡)

𝜏𝑑
 

𝜕𝑛1
𝑘+1(𝑧, 𝑡)

𝜕𝑡
=

𝑛0
𝑘(𝑧, 𝑡)

𝜏𝑡
−

𝑛1
𝑘+1(𝑧, 𝑡)

𝜏𝑑
 

(1.40) 

The first iteration solution of once detrapped carries n0
1(z, t) using the equation (1.39) 

and the system (1.40) is given by 

 𝑛0
1(𝑧, 𝑡) =

𝑧

𝑣0𝜏𝑑
𝑛1

1(𝑧, 𝑡) (1.41) 

The process of evaluation of the current waveform is the same as before except this 

time it is necessary to add all the contributions up (never trapped carriers, once 

detrapped, …) 

 𝐼0(𝑡) =  
𝑄0𝑣0

𝐿
𝑒𝑥𝑝 (−

𝑡

𝜏𝑡
)  𝜒(𝑡, 0, 𝑡𝑟) (1.42) 

 

 

𝐼1(𝑡) =  
𝑄0𝑣0

𝐿

𝜏𝑑𝜏𝑡

(𝜏𝑡 − 𝜏𝑑)2
𝑒𝑥𝑝 (−

𝑡

𝜏𝑑
) [𝛽(𝑡)𝜒(𝑡, 0, 𝑡𝑟)

+ 𝛽 (
𝐿

𝑣0
) 𝜃(𝑡 − 𝑡𝑟)] 

β(t) = 1 − [1 + 𝑡 (
1

τt
−

1

τ𝑑
)] 𝑒𝑥𝑝 [−𝑡 (

1

τt
−

1

τ𝑑
)] 

(1.43) 

As can be seen from (1.43) the tail in the first approximation is exponentially damped 

as 𝑒𝑥𝑝 (−
𝑡

𝜏𝑑
). The first approximation is valid only if the charge carrier is on average 

trapped half-times since we are only counting never trapped and once trapped carriers. 

With the same logic, the 𝑘-th order approximation is valid if carriers are on average 

trapped 
𝑘

2
-times (

0+1+2+⋯+𝑘

𝑘+1
=

𝑘

2
). Trapping time can be also defined as an average 

time carrier is drifting before it is trapped and de-trapping time as an average time 

carrier spends in the trap. Now we can calculate how many times on average carrier is 

trapped during flight through the detector 𝑁(𝑡) (until the time 𝑡) 

 𝑁(𝑡) =  
𝑡

𝜏𝑡 + 𝜏𝑑
 (1.44) 

Knowing this, the 𝑘-th order approximation is valid until the time 

𝑡𝑙𝑖𝑚 =  
𝑘

2
(𝜏𝑡 + 𝜏𝑑). Beyond this time higher-order approximations have to be used. 
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Given the used approach the approximated current waveform will always be lower 

than the precise solution, as it can be clearly seen in Fig. 1.8. However, for the case of 

the constant electric field, distributions of 𝑘-times detrapped carriers 𝑛0
𝑘 can be 

summed up and precise solution of the system (1.29) and (1.30) with initial condition 

𝑛(𝑧, 0) =
𝑁0

𝑆
𝛿(𝑧) can be obtained. The result of the summation (computed in Wolfram 

Mathematica) is given by 

 

𝑛0(𝑧, 𝑡) = 𝑛0
0(𝑧, 𝑡) + 𝑛0′(𝑧, 𝑡) 

𝑛0′(𝑧, 𝑡) = ∑ 𝑛0
𝑘(𝑧, 𝑡)

∞

𝑘=1

 

𝑛0′(𝑧, 𝑡) =
𝑁0

𝑆

√𝑧

𝑣0√𝜏𝑡𝜏𝑑(𝑡𝑣0 − 𝑧)
𝑒𝑥𝑝 (−

𝑡

𝜏𝑑
−

𝑧

𝑣0
(

1

𝜏𝑡
−

1

𝜏𝑑
))

× 𝐽1 (2
√(𝑡𝑣0 − 𝑧)𝑧

𝑣0√𝜏𝑡𝜏𝑑

) 𝜃(𝑡𝑣0 − 𝑧 )𝜒(𝑧, 0, 𝐿) 

(1.45) 

where J1is the modified Bessel function of the first kind of order one. A similar result 

obtained by a different method (probability calculations) was obtained by Tefft [12]. 

The same approach as above can be used for multiple trapping centres and even for 

the non-constant electric field. 

 

Fig. 1.8: a) Comparison of the first-order approximation with the precise analytical 

solution (dashed) (1.45) for different average trapping (𝜏𝑡 =
1

2
𝜏𝑑) and  b) convergence 

of the higher-order approximations (𝜏𝑡 =
1

2
𝜏𝑑 =

1

6
𝑡𝑟0). 
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1.3.2 Trap controlled mobility 
As can be seen in Fig. 1.8 b) the presence of a shallow trap can impede the 

mobility evaluation since carriers reach the opposite electrode much later than the 

default transit time 𝑡𝑟0. In this case, the effective mobility that accounts for trapping 

and detrapping phenomena that slow down the carriers is introduced [12], [13]. The 

lower limit of the effective mobility can be calculated as the fraction of the time carrier 

spends drifting during one trapping cycle (𝜏𝑡 + 𝜏𝑑) 

 𝜇𝑒𝑓𝑓 = 𝜇0

𝜏𝑡

𝜏𝑡 + 𝜏𝑑
 (1.46) 

The formula (1.46) is valid only in the case when the density of the free carriers is in 

equilibrium with the respective trap. This condition represents the situation when the 

number of trapping events 𝑁(𝑡𝑟) ≫ 1. As can clearly be seen in Fig. 1.9a) the effective 

mobility is double the drift mobility when trapping and detrapping times are equal, but 

only after the steady concentration of free carriers was reached (the flat part of the 

waveforms). In Fig. 1.9b) waveforms for different detrapping times are shown clearly 

demonstrating formula (1.46). 

 

Fig. 1.9: a) Normalized current waveform with different (de-) trapping (𝜏 = 𝜏𝑡 = 𝜏𝑑) 

and b) increase of the transit time 𝑡𝑟 due to the effective mobility (𝜏𝑡 =
1

20
𝑡𝑟0). 

1.4 Surface recombination  
The photogenerated charge can recombine in the surface layer due to the presence of 

surface states. The rate of this recombination is often different than the rate of the 

recombination in the bulk material. The effect of the surface can be described by the 

velocity of the surface recombination 𝑠. Let’s assume that all carriers are 

photogenerated in the thin surface layer and let 𝑝𝑏 be the probability of their transition 

into the bulk material. Levi et al. [14] assumed that the ratio of the “bulk” carriers to 
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recombined carriers is equal to the ratio of drift velocity v and the velocity of the 

surface recombination [15] 

 
𝑝𝑏

1 − 𝑝𝑏
=

𝑣

𝑠
. (1.47) 

The probability of the carrier entering bulk is then 

 𝑝𝑏 =
1

1 +
𝑠
𝑣

 (1.48) 

Since the carrier recombination is taking place in the very thin region, its effect on the 

shape of the current waveform can be neglected and only the decrease of the collected 

charge 𝑄0 (assuming no trapping) described by the equation (1.49) is observed. 

 
𝑄0(𝐸) =

𝑄00

1 +
𝑠

𝜇 𝐸(0)

 
(1.49) 

The Q00 is the photogenerated charge and drift velocity 𝑣 = 𝜇 𝐸(0) was substituted 

(assuming that the charge is generated at 𝑧 = 0). Because of this, surface 

recombination cannot be recognized from one waveform but bias dependence has to 

be measured.  

The bias-normalized current waveforms for a constant electric field are shown in Fig. 

1.10. Bias-normalization was done to visualize the effect of surface recombination, 

since the current is normally linear in bias, as can be seen in equations (1.15) and 

(1.16). 

 

Fig. 1.10: Current waveforms normalized by bias for the model a) without surface 

recombination and b) with surface recombination 
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1.5 Charge collection efficiency 
Charge collection efficiency (CCE) is one of the most important parameters for 

evaluation of the detector quality, defined as a fraction of collected charge to the 

generated charge. For deep-level trapping od the carriers the CCE can be described by 

the single carrier Hecht equation (assuming strong absorption and constant electric 

field) [16] 

 𝐶𝐶𝐸 =
𝜏

𝑡𝑟
[1 − 𝑒𝑥𝑝 (−

𝑡𝑟

𝜏
)] , (1.50) 

where 𝜏 is the carrier lifetime, or by modified Hecht equation that involves surface 

recombination [15] 

 𝐶𝐶𝐸 =
𝜏

𝑡𝑟

1

1 +
𝑠
𝑣

[1 − 𝑒𝑥𝑝 (−
𝑡𝑟

𝜏
)] . (1.51) 
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2 Laser-induced Transient Current Technique 

The laser-induced transient current technique (L-TCT) belongs to the family of 

the Time-of-Flight measurements and is commonly used to evaluate detector 

properties e.g. carrier mobility, lifetime, electric field profile in the detector, etc. [17]–

[19]. This method is based on measuring the current response generated by short laser 

pulses. Laser pulses create electron-hole pairs, that drifts in an applied electric field to 

corresponding electrodes. Due to Shockley-Ramo theorem [8], photogenerated 

carriers induce electric current on the electrodes, which is subsequently measured by 

an oscilloscope. Using this technique, it is possible to trigger oscilloscope directly to 

the laser pulse itself rather than the rising edge of the current pulse as it is in the case 

of untriggered sources (alfa, gamma). This allows for faster and easier data acquisition 

and as a result higher signal-to-noise ratio. Our experimental setup is shown in Fig. 

2.1. Above-bandgap laser pulses (2ns FWHM) are provided by SuperK Compact 

Supercontinuum white laser combined with 670nm bandpass filter. The optical part of 

the setup is completed with a neutral density filter, which attenuates laser intensity. 

High laser intensity leads to more effects, one of which is a plasma effect that 

significantly complicates the data processing. 

 

Fig. 2.1: Scheme of our L-TCT setup 
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We are also using masks, placed in front of the detector, to avoid illuminating 

edges of the detector. Masks presented in Fig. 2.2, are also used to avoid unintentional 

illumination of the area near the guard ring. Guard ring is surrounded by the non-

conducting region that separates the guard ring electrode and central pixel which 

effectively minimizes the effect of surface leakage current. The laser is focused at the 

centre of the detector forming a 1mm2 spot. For the continuous above-bandgap LED 

(660nm) illumination a square mask with roughly 25mm2 was used. 

 

Fig. 2.2: Masking of the detector 

As a source of a high voltage source, the Sorensen XG 6001.4 is used combined 

with custom-made bias switching unit capable operating at maximal frequency 500Hz 

and maximal bias of ±1500V. Both the switching unit and the continuum laser are 

controlled by arbitrary function generator Tektronix AFG 3252. By applying pulsed 

bias with a sharp rising edge (80μs) and sufficient depolarization time, it is possible to 

suppress the effect of dark current polarization and by varying the relative position of 

the laser pulse and the rising edge it is possible to observe space charge formation with 

great time resolution.  Schematics of the relative position of the laser and the bias pulse 

are shown in Fig. 2.3.  In addition, the shutter is used to temporarily block the laser 

beam for the measurement of the background (dark) current. Background can be then 

conveniently subtracted from the waveform which eliminates triggered noise and 

distortion by the dark current. Oscilloscope (LeCroy WaveRunner 640Zi), arbitrary 

function generator, shutter and voltage source are all controlled by computer, allowing 

full automation of the measurement. 
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Fig. 2.3: Relative position of bias and laser pulse [20]  

Due to low laser intensities, the current response needs to be amplified and only 

then it can be recorded by an oscilloscope. However, the use of the amplifier brings 

out another problem – the measured data are distorted by the transfer function of the 

electronic circuit. To obtain the original signal, the deconvolution method from [21] is 

used. 

Due to using a detector with a guard-ring contact structure in the anode, there 

are four different configurations for L-TCT measurement shown in Fig. 2.4. To simplify 

the following text we use abbreviations FSe for measurement of electron signal, while 

the full/front side (FS) of the detector is illuminated; GRSh for measurement of hole 

signal while guard-ring side (GRS) of the detector is illuminated. The evolution of the 

space charge in both of these case is the same since the electric field has the same 

direction. Similarly, FSh is the measurement of the hole signal while the FS is 

illuminated and GRSe is the measurement of the electron signal while the GRS is 

illuminated. L-TCT measured in both polarities can give insight into the properties of 

the contacts. 

For the transition from FSe to GRSh geometry, it is required to turn the detector 

around and switch the bias polarity, due to the design of our electronics setup. If the 

detector is also simultaneously LED illuminated, during the FSe to GRSh transition 

the LED have to be also removed and plugged back in at the opposite side in order not 

to change which electrode is LED illuminated.  
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Fig. 2.4: Experimental setup configuration of the measurement of the 

electron (FSe, GRSe) and hole (GRSh, FSh) signals.  

 

2.1 Monte Carlo simulation 
In many cases solving the transport equation (1.7) is difficult, if one would 

assume a system with two trapping centres, the solution would become extremely 

complex and beyond the transit time, the analytical solution would not exist at all. 

Therefore, for the evaluation of transport properties, Monte Carlo (MC) simulation is 

used [18],[22] or drift-diffusion and Poisson equation have to be solved numerically 

[9]. We are using one dimensional MC simulation based on [18] with the addition of 

arbitrary electric field, diffusion and variable laser pulse parameters (width, 

absorption).  

For the MC simulation, we use the following assumptions. Firstly, the 𝑁 charge 

carriers are randomly generated with their initial position satisfying the Lambert-Beer 

law. Probability of the carrier being generated at initial position 𝑧 is [20] 

 𝑝𝑧(𝑧) =
𝛼

1 − 𝑒𝑥𝑝(−𝛼𝐿)
𝑒𝑥𝑝(−𝛼𝑧)𝜒(𝑧, 0, 𝐿), (2.1) 
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where the fraction is just the normalization term and 𝜒(𝑧, 0, 𝐿) ensures that the carriers 

are generated only inside the detector. Similarly, the probability of carrier generation 

by a square laser pulse with the width of 𝑡𝑙𝑎𝑠𝑒𝑟 at the time 𝑡 is given by (2.2). However, 

it is possible to use any arbitrary temporal distribution pt. 

 𝑝𝑡(𝑡) =
1

𝑡𝑙𝑎𝑠𝑒𝑟
𝜒(𝑡, 0, 𝑡𝑙𝑎𝑠𝑒𝑟). (2.2) 

The photogenerated charge 𝑄0 is divided among 𝑁 carriers. The surface recombination 

is included by introducing the bias (electric field 𝐸) dependence of 𝑄0(𝐸) described 

by equation (1.49). 

 Each time step δt of the simulation, only the free carriers drifts the distance 𝛿𝑧   

 𝛿𝑧 = 𝜇𝐸(𝑧)𝛿𝑡 + 𝑢 , (2.3) 

where 𝐸(𝑧) is the arbitrary electric field and 𝑢 is the contribution of the carrier 

diffusion  described by the diffusion coefficient 𝐷 and probability distribution [20]  

 𝑝𝑢 =
1

√4𝜋𝐷𝛿𝑡
 𝑒𝑥𝑝 (−

𝑢2

4𝐷𝛿𝑡
). (2.4) 

The MC current waveforms consist of the contributions of all the carriers, on which 

the Shockley-Ramo theorem was applied. 

Carrier traps are described by their respective trapping 𝜏𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 and 

detrapping time 𝜏𝑑𝑒𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔, that defines the probability of carrier (de)trapping in time 

step 𝛿𝑡 

 𝑝(𝑑𝑒)𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 =
𝛿𝑡

𝜏(𝑑𝑒)𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔
. (2.5) 

Usually, two trap model (one deep and one shallow trap) is used to describe the 

trapping and detrapping phenomena. A detailed description of our MC simulation can 

be found in [20]. 
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3 Results and discussion 

3.1 Detector preparation 
The detectors for this thesis were provided by Redlen Technologies. The detectors 

were prepared by from semi-insulating indium-doped CdZnTe single crystal with 10% 

of Zn, which was grown by Traveling Heater Method. Scheme of the used detector 

with its physical dimensions is shown in  

Fig. 3.1. The planar detector has platinum electrical contacts with a guard ring structure 

on one side. The uncontacted surface was coated by an epoxy passivation layer.  

 

Fig. 3.1: Physical dimensions of the detector  

3.2 I-V characteristics measurement 
The I-V characteristic measurement of Redlen detector curve presented in Fig. 

3.2 shows clear rectifying Schottky behaviour with reverse direction for negative bias 

applied to the full electrode side (FS). This result was surprising for us because both 

electrodes are prepared by the same method using platinum, as was declared by the 

vendor. Probably a different (for us) unknown surface treatment was applied for each 

side of the detector by Redlen. 
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Fig. 3.2: Current-voltage characteristic. Bias was applied to the full electrode 

side (FS). Inset shows detail of the I-V characteristics with negative polarity 

3.3 L-TCT measurement in the dark 
Current waveforms in this thesis were measured only in the FSe or GRSh 

geometry (see Fig. 2.4). In both of these, the electric current flows in the negative 

direction of 𝑧 axis resulting in negative current in the waveforms. In order to adhere 

to the “upward waveform” convention and keep the correct sign of the current, the 

waveforms are shown negative side up.  

L-TCT was used in the dark (no continuous illumination) and under 

continuous LED illumination. Before the L-TCT measurement was done, we had to 

find the correct conditions for the measurement of the current waveforms. Firstly, if 

we want to measure the unpolarized detector, the laser time delay – LPD (see Fig. 

2.3) has to be short enough to acquire the data before the space charge is formed. We 

found that for the LPD in the interval 80μs-150μs the current waveforms are the same, 

it means that no significant space charge affecting the shape of the waveforms was 

formed. For the measurement in the unpolarized detector, the LPD=80μs was chosen.  

 

The second parameter is the depolarization time (DT), which is the bias-off 

time in Fig. 2.3. The DT has to be long enough, for the complete depolarization of the 

detector. The DT is most reliably measured in the polarized detector when the current 
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waveform is curved and the transit time is sensitive to small variations of charge 

density. In the measurement itself 1s wide bias pulse (BPW) and 900ms laser pulse 

delay (LPD) was used while a set of waveforms for different DT was measured. 

Suitable DTs are the ones, for which the current waveforms are the same. For short 

DT the detector does not depolarize completely, therefore the next measured waveform 

is affected by the space charge formed during the previous bias pulse. This way the 

depolarization time of 100ms was found, but for long-lasting measurements, 500ms 

was used to eliminate a chance of a slow space charge build-up.  

The third parameter - appropriate laser pulse intensity, was found similarly. A 

set of current waveforms was measured for different intensities starting with lowest to 

highest. After their comparison, we found the most suitable intensity for L-TCT 

measurement. For lower intensities, the current waveforms were lost in the noise and 

for higher intensities, they were significantly affected by the plasma effect [23]. 

 

3.3.1  Measurement in the unpolarized detector 
 

The unpolarized current waveforms measured in the FSe geometry are 

presented in Fig. 3.3. Black dashed lines represent the MC fit. The electric field profile 

obtained by the MC simulation is shown in the inset of Fig 3.3. It was found, that 

electron waveforms are completely flat in each used bias which points to the fact that 

the detector is indeed unpolarized (see subsection 1.2.1). Therefore, an assumption that 

for the LPD = 80μs detector is not polarized is correct. The measured electron 

waveforms were flat even for -20V so only the lower limit of the electron lifetime was 

estimated as 𝜏𝑒 ≫ 2μs (transit time of the -20V waveform).  

The hole waveforms measured in the unpolarized detector in GRSh geometry 

are shown in Fig. 3.4. The electric field profile obtained by the MC simulation is shown 

in the inset in Fig. 3.4 and the fits themselves are displayed as black dashed lines. As 

was discussed earlier the electric field in the GRSh geometry is the same as in the FSe, 

therefore, the hole waveforms were also measured in the unpolarized detector. Because 

of this, the curvature of the hole waveforms can be entirely ascribed to carrier trapping. 

Since the hole tails are observed, the two-level model with one deep and one shallow 

trap was used for MC fitting.  The transport parameters obtained by the MC simulation 

are shown in Table 3.1. 
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Fig. 3.3: Pulsed bias dependence of electron current waveforms in FSe geometry using 

LPD = 80𝜇𝑠. Black dashed lines represent the fit by MC simulation. Electric field 

profile obtained by MC simulation is shown in the inset. 

 
Fig. 3.4: Pulsed bias dependence of the hole current waveforms in GRSh geometry 

using LPD = 80𝜇𝑠. Black dashed lines represent the fit by MC simulation. Electric 

field profile obtained by MC simulation is shown in the inset. 
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Table 3.1: Transport properties of the unpolarized detector obtained by MC 

simulation 

 Electrons Holes 

Carrier mobility 

𝜇 (cm2. V−1. s−1)  
950 50 

Deep level trapping time 

𝜏𝑡 𝑑𝑒𝑒𝑝 (μs) 
≫ 2 20 

Deep level detrapping time 

𝜏𝑑 𝑑𝑒𝑒𝑝  (μs) 

could not be 

evaluated 
≫ 10 

Shallow level trapping time 

𝜏𝑡 𝑠ℎ𝑎𝑙𝑙𝑜𝑤  (μs) 
≫ 2 2.7 

Shallow level detrapping time 

𝜏 𝑑 𝑠ℎ𝑎𝑙𝑙𝑜𝑤  (μs) 

could not be 

evaluated 
3 

 

The bias-normalization of the electron Fig. 3.3 and hole Fig. 3.4 current 

waveforms are shown in Fig. 3.5. The individual normalized waveforms have each 

different height because some part of the photogenerated carriers recombined in the 

surface layer. To evaluate the velocity of the surface recombination of electrons 𝑠𝑒, the 

measured current waveforms were firstly integrated to obtain the collected charge. 

Bias dependence of the collected charge was then fitted by the equation (1.49) while 

the velocity of the surface recombination  𝑠𝑒 and photogenerated charge 𝑄00 were 

evaluated. 

The velocity of the hole surface recombination, however, could not be 

evaluated from the collected charge, because it is also affected by the hole trapping. 

The charge that entered bulk (obtained by MC) was used for fitting instead. Obtained 

photogenerated charge and surface recombination velocity presented Table 3.2. 
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Fig. 3.5: Bias-normalized pulsed bias dependence of a) electron waveforms in FSe 

geometry and b) hole waveforms in GRSh geometry. 

Table 3.2: Surface recombination velocity 

 Electrons Holes 

Photogenerated charge 

 𝑄00 (fC) 

135 476 

Velocity of the surface recombination 

𝑠 (cm. s−1)  

5.14

× 105 
3.11 × 104 

 

3.3.2  Measurement in the polarized detector 
 

Waveforms in the DC bias regime (polarized detector) were acquired 10 

minutes after the biasing. It is necessary to wait until the stabilization of the waveforms 

(DC steady-state) or until the waveform evolution is significantly slower than the data 

acquisition time. If not, the data would be distorted, since several thousands of 

consecutive current waveforms are averaged to increase signal-to-ratio. The electron 

and hole waveforms measured in the polarized detector are shown in Fig. 3.6  and  

Fig. 3.7, respectively. The MC fit is represented by the black dashed lines and 

the electric field profile obtained by MC is shown in the inset. The previously flat 

electron waveforms are now increasing in time (see Fig. 3.6 )  and hole waveforms in  

Fig. 3.7 are now decreasing more rapidly (than in the unpolarized detector). 

Below the -200V formation of the inactive layer beneath the cathode can be seen – in 

the case of electrons (Fig. 3.6) no current waveforms can be seen and in the case of 

holes ( 

Fig. 3.7) no apparent transit time is observed. The profile of the fitted electric 

field according to the Gauss’s law corresponds to the negative space charge. Linear 
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electric field did not achieve the desired MC fit, so quadratic electric field was used as 

a next order Taylor series expansion of the electric field instead. The MC simulation 

below −200V could not be evaluated unambiguously – either because there was no 

waveform or because there was no observable transit time, by which the effect of 

electric field and charge trapping could be distinguished. Carrier mobilities and the 

surface recombination velocities obtained in pulsed bias regime were used for DC 

regime fitting and only the electric field and the carrier lifetime were fitted in DC. The 

deep level trapping time fitted by MC simulation shows significant shortening 

compared to the unpolarized detector. The fitted electron lifetime remains still 

extremally high. The change of the hole trapping time will be later shown in laser pulse 

delay measurement together with the evolution of the space charge. 

 

Fig. 3.6: DC bias dependence of the electron current waveforms in FSe geometry. 

Black dashed lines represent the fit by MC simulation. Electric field profile obtained 

by MC simulation is shown in the inset. 



33 

 

 

Fig. 3.7: DC bias dependence of the hole current waveforms in GRSh geometry. Black 

dashed lines represent the fit by MC simulation. Electric field profile obtained by MC 

simulation is shown in the inset. 

The formation of the negative space charge can be explained either by the 

depletion of holes or injection of electrons. However, hole depletion is more probable 

since the material is p-type and data are measured in the reverse direction of Schottky 

contact. Another compliant argument is that the slope of the electric field is bigger 

beneath the anode than the cathode, which corresponds to more electrons being trapped 

beneath the anode 𝑧 = 𝐿 than the cathode 𝑧 = 0. If it was the effect of electron 

injection, the charge density would be uniform in the whole detector since extremely 

high electron lifetime was measured. 

 

3.3.3  Dynamics of the space charge formation in 
the dark 

Lastly, the temporal evolution of the detector polarization at -400V was 

measured by changing the LPD. Waveforms until the LPD = 5s were acquired in the 

pulsed bias regime, where one waveform per bias pulse was measured. Any larger 

LPDs were measured in DC bias regime, where the mean time of data averaging 

(
𝑡𝑠𝑡𝑎𝑟𝑡+𝑡𝑒𝑛𝑑

2
) was used as a LPD. 

The time evolution of electron and hole current waveforms depending on the 

laser pulse delay (LPD) are shown in Fig. 3.10 and Fig. 3.9, respectively. Black dashed 
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lines represent the fit by MC simulation and the electric field profile obtained by MC 

simulation for each bias is shown in the inset. 

The time evolution (LPD) of electron waveforms Fig. 3.8 shows gradual 

twisting of the waveforms attributable to the negative space charge build-up. The same 

goes for the hole waveforms in Fig. 3.9. The electric field profile in the insets is at first 

linear but as the time progresses (LPD) the quadratic term appears. No noticeable 

change of electric field was observed until LPD = 1ms and the evolution of the electric 

field saturates at LPD = 1h. 

  

Fig. 3.8: Temporal (LPD) evolution of the electron current waveforms measured at 

𝑈 = −400𝑉. Black dashed lines represent the fit by MC simulation. Electric field 

profile obtained by MC simulation (dashed) is shown in the inset. 
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Fig. 3.9: Temporal (LPD) evolution of the hole current waveforms measured at 𝑈 =

−400𝑉. Black dashed lines represent the fit by MC simulation. Electric field profile 

obtained by MC simulation (dashed) is shown in the inset. 

Using the MC simulation was found that the electron lifetime is not affected 

by the space charge but the lifetime of holes changes significantly. The average charge 

density dependence on the LPD is shown in Fig. 3.10 a). The dependence of the hole 

deep-level trapping rate (inverse of trapping time) is shown in Fig. 3.10 b). The 

trapping rate undoubtedly rises with increasing space charge and one can assume that 

the trap responsible for the detector polarization is a hole recombination centre. If the 

trap causing the detector polarization is the same as the trap responsible for hole 

trapping, then the trapping rate is governed by the formula (1.27) and therefore the 

hole trapping rate should be linearly dependent of space charge (concentration of the 

occupied trap states). Since it is not the case, there must be another (deep hole) trap 

with different capture cross-section – the trap with shorter trapping time will fill faster 

than the trap with longer trapping time.  
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Fig. 3.10: a) Temporal (LPD) evolution of the average charge density. b)  Dependence 

of the trapping rate on the average charge density. 

3.3.4  The CCE in the dark 
 

Knowing the photogenerated 𝑄00 and collected charge of electrons and holes, 

the charge collection efficiency was evaluated. The electron CCE is affected only by 

carrier recombination and therefore was fitted by (1.49). The hole CCE was fitted by 

the modified single carrier Hecht relation (1.51). Evaluated CCEs are shown in Fig. 

3.11. The hole CCE in polarized DC bias regime is a result of a competition of the 

lowering of the hole surface recombination and increasing deep-level trapping rate. 

The electric field beneath the anode is increasing due to the negative space charge 

thanks to what the hole surface recombination is suppressed on the other side the 

presence of the negative space charge increases the deep-level trapping rate. 

Eventually, both contributions to CCE partially cancel out. 

 
Fig. 3.11: Dependence of the a) electron and b) hole collection efficiency on the 

applied bias in pulsed and DC bias regime. Black lines represent fit by in a) equation 

(1.49) and in b) by modified single carrier Hecht equation (1.51). 
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The temporal evolution of the charge collection efficiency is presented in Fig. 

3.12. The CCE is decreasing in both cases with LPD. In the case of electrons, the 

decrease of the CCE is tied with the decrease of the electric field beneath the cathode 

and concurrently amplifying the surface recombination. Collection efficiency of holes 

is mainly decreasing due to the measured degradation of the hole lifetime as the 

negative space charge builds up. The overshoots in CCE are likely caused by the 

decrease of the surface recombination but the exact process is not yet clear and will be 

studied more thoroughly in further research. 

 

 
Fig. 3.12: Temporal evolution (dark) of the a) electron and b) hole collection 

efficiency. Dashed lines represent the limit values of CCE measured in pulsed and 

DC bias regime with the same voltage applied. 
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3.4 Continuous anode illumination 
Firstly, the LED intensity dependence of waveforms was measured in DC bias 

regime at -400V. Data averaging and detector illumination started only after the biased 

detector reached quasi-steady-state (concluded by the current waveforms). After the 

measurement was over the bias and LED was turned off allowing the detector to 

depolarize and then measurement with different intensity started over. As a result the 

electron Fig. 3.13 and hole Fig. 3.14 waveforms were obtained. The LED intensity is 

in the figures below displayed as the density of the LED induced photocurrent. The 

photocurrent was chosen due to the fact, that the LED and the sample detector had to 

be removed in order to switch the measurement geometry (FSe, GRSh) or side of the 

LED illumination. After the setup adjustment, the LED could not be aligned perfectly 

with its previous position, therefore a slightly different photocurrent was measured for 

the same LED intensity (more in section 2). 

As seen in the insets of the electric field profile in Fig. 3.13 and  Fig. 3.14, with 

the increasing photocurrent, the electric field beneath the cathode also rises and 

beneath anode decreases. This twisting of the electric field is a result of mitigating the 

negative space charge, which for the photocurrent density above - 142nA. cm−2 even 

changes sign. The completely flat electron waveform (also has shortest transit time) 

shown green in Fig. 3.13 has the same transit time as the waveform measured at -400V 

in the unpolarized detector. This suggests that the electric field is for this respective 

photocurrent indeed constant. A similar effect was measured for holes at -336nA. cm−2 

almost constant electric field and deep level trapping time (25μs) similar to that in the 

unpolarized detector (20μs) was obtained by the MC simulation.  

For higher photocurrent than -142nA. cm−2 (positive space charge) the 

shortening of electron lifetime was observed in Fig. 3.15 b) (grey square). The lifetime 

of holes beyond -336nA. cm−2 practically does not change as can be seen in Fig. 3.15 

b) (red point). The dependence of the charge density on the density of the photocurrent 

in Fig. 3.14 a) is roughly the same for both FSe and GRSh geometries, which suggests 

that the LED was returned to a similar position relative to the detector and the mask. 
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Fig. 3.13: LED intensity dependence (illuminated anode) of the electron waveforms 

measured in FSe geometry. Black dashed lines represent the fit by MC simulation. 

Electric field profile obtained by MC simulation (dashed) is shown in the inset. 

 

 

Fig. 3.14: LED intensity dependence (illuminated anode) of the hole waveforms 

measured in GRSh geometry. Black dashed lines represent the fit by MC simulation. 

Electric field profile obtained by MC simulation (dashed) is shown in the inset. 
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In Fig. 3.15 c) and d) the dependence of electron and hole trapping rate is 

shown. The trapping rate of electrons is linearly dependent on average charge density 

(for positive charge density). The disruption of linear behaviour is caused mostly by 

the MC fitting. For negative charge densities, no trapping of electrons was assumed to 

simplify the fitting process and for charge density close to zero, the transit time does 

not strongly depend on charge density thus a relatively wide range of trapping times 

satisfies the fit. Using the same thought process as in the dark measurement, the linear 

increase of trapping rate with charge density means that one trap is responsible for 

positive space charge build-up and the increase of trapping rate of electrons. 

In the case of trapping rate of holes it is hard to describe the dependence since 

in the area of interest the data are most affected by the fitting error. But if we look only 

at negative charge densities, the dependence is not linear which corresponds to the 

measurement in the dark. 

 

 
Fig. 3.15: a) Dependence of the average charge density on the LED induced 

photocurrent. b) Dependence of the trapping rate on the LED induced photocurrent. c) 

Dependence of the electron trapping rate on the average charge density. 

d) Dependence of the hole trapping rate on the average charge density. 
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 The CCE for the measurements above is shown in Fig. 3.16. The electron CCE 

rises together with electric field beneath the cathode until the point the surface 

recombination is completely suppressed and then saturates. The effect of the 

shortening of the electron lifetime is not seen, as it is hidden in the saturation of the 

surface recombination. The CCE of holes starts from its (dark) DC bias regime limit, 

then reaches a maximum and starts to decrease below the DC limit. We assume that 

the maximum is formed by the competition of increasing hole surface recombination 

and decreasing hole trapping rate. The maximum is located in the region, where the 

trapping rate of holes becomes constant, from this point on the surface recombination 

takes over and CCE starts to fall. 

 

 

 

Fig. 3.16: Dependence of a) electron and b) hole CCE on the density of the LED 

induced photocurrent (illuminated anode) 

 As was discussed in the previous section, the inactive layer is formed in the 

DC bias regime and since anode illumination suppresses the detector polarization, the 

flat-electric field bias dependence was also measured. After the DC biasing and the 

waveform stabilizing, such LED intensity was set that the measured waveforms were 

flat. Fig. 3.17 clearly demonstrates that the LED anode illumination is able to repress 

the inactive layer after it is formed. The LED induced photocurrent density required to 

flatten the electric field is in the inset compared to the dark current. On average the 

photocurrent needs to be 6.6 times the dark current in order to obtain flat electron 

waveforms. 
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Fig. 3.17: Flat electric field (continuous LED anode illumination) DC bias dependence 

of the current waveforms. Black dashed lines represent the fit by MC simulation.  

Corresponding photocurrent density is compared to the dark current density in the 

inset. 

3.5 Continuous cathode illumination 
Lastly, the illumination of the cathode was studied. The dependence on LED intensity 

(induced photocurrent) was measured the same way as for the case of the illuminated 

anode. The measured electron and hole signals are shown in Fig. 3.18 and Fig. 3.19 

respectively. For better clarity, only the waveforms with visible change are shown in 

both figures. This time the illumination induced change was not as significant as for 

the anode illumination even though the induced photocurrent was twice that high. 

Right after the biased-detector illumination, the electron waveforms shortened and as 

the measured dependence displays, the higher the LED intensity the more noticeable 

the change. But for high intensities this effect saturates. The shortening of the 

waveforms can only be explained by the partial suppression of the negative space 

charge since the transit time in the depolarized detector was identical before and after 

the illumination. The already built up negative space charge was probably 

compensated by the holes that were sucked in from the anode. A decrease of the deep 

hole trap was observed from 3μs in the dark to 2μs under the maximal illumination. 
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Fig. 3.18: LED intensity dependence (illuminated cathode) of the electron current 

waveforms measured in FSe geometry. Black dashed lines represent the fit by MC 

simulation. Electric field profile obtained by MC simulation (dashed) is shown in the 

inset. 

 

Fig. 3.19: LED intensity dependence (illuminated cathode) of the hole current 

waveforms measured in GRSh geometry. Black dashed lines represent the fit by MC 

simulation. Electric field profile obtained by MC simulation (dashed) is shown in the 

inset. 
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Due to the injection of additional electrons, the electron surface 

recombination is lowering with increasing intensity, which combined with a small 

decline of the space charge results in the slow saturation of the electron CCE as can 

be seen in Fig. 3.20 a). The gradual decline of the hole CCE in Fig. 3.20 b) can be 

attributed to increased trapping rate of holes. 

 

Fig. 3.20 a) Electron and b) hole collection efficiency in a detector with LED 

illuminated cathode. 
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4 Conclusion 
 

In this thesis, the detector transport properties were evaluated in the dark and under 

continuous LED illumination using the Laser-induced Transient Current Technique 

and in-house made Monte Carlo simulation for fitting the measured current 

waveforms. In the dark, the electron and hole signals were measured in the unpolarized 

and polarized detector. The electron and hole mobility of 𝜇𝑒 = 950 cm2. V−1. s−1  and 

𝜇ℎ = 50cm2. V−1. s−1 respectively were determined from the unpolarized current 

waveforms. The hole waveforms were fitted by a two-level system of one shallow and 

one deep hole trap and the hole lifetime of 11μs was found. The electron lifetime, 

however, could not be successfully evaluated as for the -20V no decay of the electron 

current waveforms was observed. In the DC bias regime, the current waveforms were 

strongly affected by the presence of the negative space charge in the detector. Presence 

of this space charge visibly reduced the hole lifetime and corresponding charge 

collection efficiency. The electron collection efficiency in the dark detector was only 

affected by the surface recombination. 

The continuous illumination of the anode led to an increase in charge collection 

efficiency of both types of carries until the surface recombination took over and 

decrease the CCE of holes. It was also found out that the anode illumination is able to 

compensate built-up space charge, change its sign or even eliminate the already formed 

inactive layer. 

The effect of the illumination of the cathode was much less prominent. The 

partial compensation of negative space charge by injected holes was observed. The 

exact mechanism of holes injection is not yet understood and will be subjected to 

follow-up research.  

 The negative space charge formation after the biasing, its compensating by the 

anode illumination and almost no effect of cathode illumination all point to the fact, 

that the detector biased in FSe and GRSh geometry polarizes due to the hole depletion. 

Therefore, the anode illumination provides the holes that would otherwise be blocked 

by the Schottky contact resulting in suppression of negative space charge formation. 

The cathode illumination provides additional electrons but due to their exceptionally 

high lifetime, their effect is negligible. 
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 Since it was found out that the continuous illumination sufficiently suppresses 

the detector polarization only the continuous LED illumination was measured. The 

additional illumination by the LED pulses will be the object of our next study. 
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