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1. Introduction

1.1 Motivation
Semiconductors play a key role in our everyday lives. They are essential to all
modern electronics, such as smartphones and computers. Without semiconduc-
tors, there would be no internet, and our society would be much different. Semi-
conductor technology has a rich history and is now a mature field with many
applications in all branches of science. The history of semiconductors starts with
the first experiments on the electrical properties of materials in the early 19th
century. These experiments were mainly focused on light and temperature sensi-
tivity of resistance and rectification. In the first half of the 19th century, Thomas
Johann Seebeck observed the thermoelectric effect [1]. Michael Faraday made
important measurements of decreasing the resistance of silver sulfide when it was
heated, which was contrary to the behavior of metallic substances [2]. In the
second half of the 19th century, Edwin Herbert Hall discovered the deflection
of moving charge carriers in an applied magnetic field, the Hall effect [3]. J. J.
Thomson’s experiment with cathode rays lead to the discovery of electron [4].

A comprehensive explanation of these phenomena required a theory of solid-
state physics that was mainly developed during the first half of the 20th cen-
tury. Photoelectric effect measurements disagreed with classical electromag-
netism, which predicted that continuous light with low frequency and high inten-
sity would produce the same electron emission as high-frequency light with low
intensity. Experimental results showed instead that electrons are only emitted
when the frequency of light is large enough. This discrepancy between theory
and experiment led Albert Einstein to propose that a beam of light is not a
wave propagating through space but is composed of discrete packets of energy
- photons [5]. This and other discoveries eventually led to wave-particle duality
and quantum physics, successfully explaining the observed phenomena. In the
first half of the 20th century, Felix Bloch published a theory of the movement of
electrons through atomic lattices [6]. Alan Herries Wilson proposed the concept
of band gap [7]. Boris Davydov developed the model of the p-n junction. Walter
H. Schottky and Nevill Francis Mott developed the metal-semiconductor junction
and pointed out the importance of minority carriers and surface states on charge
transport [8].

Up to this point, most of the applications of semiconductors were resistors,
rectifiers, and detectors used in telegraphy and early radios. The key moment
was the invention of the transistor by John Bardeen and Walter Houser Brattain
while working under William Shockley at Bell Laboratories in 1947 [9]. While
the concept of electric current control was not new and was possible by using
vacuum tubes or simple mechanical relays, the key advantage of the transistor
was its low power consumption and size. The transistor enabled small devices
which run with lower power. The list of devices is ever-increasing, from the first
practical pocket radio to computers and smartphones with billions of transistors.
The advancements in semiconductor manufacturing lead to increasing transistor
density leading to even better energy consumption and more powerful devices.
This technological revolution continues today.
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One of the valuable applications of semiconductor materials is the detection
of high-energy X-ray and gamma-ray radiation. Semiconductor detectors can di-
rectly convert radiation to an electric current that can be analyzed. This direct
conversion allows faster operation and superior energy resolution than other ra-
diation detectors like scintillators. Semiconducting detectors are important for
applications in advanced medical imaging systems using lower radiation doses
and providing a higher spatial resolution of biological tissue. The early semicon-
ductors used for radiation detection, such as Ge, needed liquid nitrogen cooling
because of the small band gap. This limited their application. The need for
room-temperature semiconductors led to a search for new materials. These semi-
conductors should have certain material properties required for high-performance
spectrometers with high counting efficiency and good spectral resolution. These
properties are [10]:

1. High atomic number, Z, for efficient absorption of radiation.

2. Band-gap energy Eg > 1.5 eV for high resistivity (> 109 Ωcm) and suppres-
sion of leakage current at room temperature.

3. Band-gap energy Eg < 5 eV, to generate enough electron-hole pairs with
small statistical variation ensuring a high signal-to-noise ratio.

4. Large mobility-lifetime product µτ , is desired to ensure that carriers gener-
ated by radiation in the whole detector volume can be efficiently collected
by electrodes.

5. Defect-free homogeneous material with good cross-sectional area and thick-
ness. A large single-crystal volume is required to absorb enough incoming
high-energy photons to achieve high sensitivity and efficiency. Low defect
density and homogeneity ensure good charge transport.

6. Surfaces with sufficiently high electrical resistivity lowering noise caused by
surface conduction.

7. Fabrication of stable contacts which produce no defects, impurities, or barri-
ers to the charge collection process and that can be used to apply a uniform
electric field inside the device.

Several new materials with mentioned properties were proposed, and in the second
half of the 20th century, the vast expansion of semiconductor technology occurred.
Besides group IV semiconductors like Ge and Si, compound semiconductors from
groups III-V or II-VI, such as Gallium arsenide (GaAs) or Cadmium telluride
(CdTe), were investigated [11, 12, 13].
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1.2 Studied semiconductors

1.2.1 GaAs
Gallium Arsenide (GaAs) is III-V compound semiconductor with a direct band-
gap, which crystallizes in a zinc-blende structure (see figure 1.1). GaAs has been
studied for more than 40 years and has many applications in microwave fre-
quency integrated circuits, solar cells, and laser diodes [14]. The preparation of
high-quality detector-grade material was not possible until recently. Semiinsulat-
ing (SI) GaAs single crystals compensated by in-diffused chromium (GaAs:Cr)
suitable for radiation detection recently appeared and are nowadays a promis-
ing X-ray detector material [15, 16]. It overcomes known drawbacks of the liq-
uid encapsulated Czochralski (LEC) SI GaAs, which is significantly debased by
EL2 defect [17, 18, 19]. GaAs:Cr exhibits extended electron lifetime and long-
term stability at applied bias conserving benefits of SI-GaAs consisting mainly
of a relatively high average atomic number (Z = 32), moderate energy band-gap
(Eg = 1.42 eV) and high electron drift mobility (µe = 2500 cm2/Vs) [20, 21]. One
of the key problems for the application of SI GaAs in high-performance radia-
tion detectors is the space charge formation resulting in the internal electric field
distortion. A model of the space charge formation and electric field distribution
in SI LEC GaAs was presented by McGregor [22] and Kubicki [23]. McGregor
included the effect of deep levels refilling at high field, and Kubicki took the
leakage current into account. The model was extended by Cola [24], who as-
sumed a spectrum of both shallow and deep levels for electrons and holes and the
field-enhanced capture cross-section. Experimentally, the electric field distribu-
tion in LEC GaAs was investigated using the transient current technique (TCT)
[25, 26, 27]. Due to very short lifetime of generated electrons, they measured
current transients, which showed anomalous dependence on applied bias signifi-
cantly warped by the effects of the associated electronic circuit. Comparison of
electric field distribution in LEC GaAs and GaAs:Cr was done by Tyazhev et al.
[28] using the Pockels effect. They presented a more homogeneous distribution of
an internal electric field in GaAs:Cr compared to LEC GaAs. Selected properties
of GaAs are shown in table 1.1.

1.2.2 CdTe, CdZnTe, CdZnTeSe
Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) are II-VI
compound semiconductor with a direct band-gap, which crystallizes in a zinc-
blende structure (see figure 1.1). CdZnTe has chemical formula Cd1−xZnxTe
where x ≈ 0.1 for material used in this work). The first extensive study of
CdTe was published in 1959 by de Nobel [12], where basic electrical, optical,
and mechanical properties of CdTe were described. While basic binary CdTe
assures high radiation absorption and sufficient band-gap energy, Zn is added to
the material to increase the band gap and the resistivity.

CdZnTe is a state-of-the-art material for radiation detection because it has a
high atomic number resulting in a high probability of photoelectric effect and high
density, giving it a high absorption coefficient, high resistivity, and wide band-
gap, which allow CdZnTe to operate at room temperature [29]. Despite recent
progress in CdZnTe technology [30], it suffers from several inconvenient problems:
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non-unity segregation coefficient of Zn in the range 1.05 to 1.6, depending on the
growth method and Zn content [31]; abundant emergence of crystal defects and
networks (such as subgrain boundaries); and high concentrations of Te inclusions
or precipitates [32, 10]. These issues result in a low yield and high cost of high-
quality CZT radiation detectors, which limit their applications. Researchers have
tried to solve these issues by improving the crystal-growth process and post-
growth annealing, but they still need to mitigate all of these disadvantages [33,
34].

Up until the last decade, CdTe/CdZnTe detectors were not widely commer-
cially available because of their high cost and low yield. Over the last several
years, this has changed since improved crystal growth led to higher semiconduc-
tor quality and longer carrier lifetime [35, 36, 37]. These advancements allowed
for the high-flux operation of X-ray semiconductor detectors in computer tomog-
raphy and other applications.

Selenium is a very effective element in reducing the complications mentioned
above [38, 39]. In addition, the Se segregation coefficient is near unity in the
CdTe matrix. The quaternary semiconductor Cadmium Zinc Telluride Selenide
(CdZnTeSe) with chemical formula Cd1−xZnxTe1−ySey where x ≈ 0.1, y ≈ 0.04
for material used in this work) is expected to resolve long-standing problems
associated with CZT material. The role of selenium in this semiconductor is
[39, 40] (a) strong influence on the Zn segregation coefficient, and thus, better
compositional homogeneity; (b) effective solution hardening in arresting subgrain
boundaries and their networks; and (c) decreased Te inclusion or precipitate
concentration. Hence, high-performance detector-grade CZTS material can be
produced at a lower cost [41]. Selected properties of CZT, CZTS, and other
semiconductors are shown in table 1.1.

Figure 1.1: Zinc-blende crystal structure [42].
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Table 1.1: Properties of semiconductor materials at room temperature. [11, 29,
43, 44, 45]
Material Band

gap
(eV)

Resistivity
(Ωcm)

Electron
mobility
(cm2/Vs)

Hole
mobility
(cm2/Vs)

Electron
mobility-
lifetime
product
(cm2/V)

Hole
mobility-
lifetime
product
(cm2/V)

Ge 0.67 50 3900 1900 > 1 > 1

Si 1.12 < 104 1400 450 > 1 > 1

GaAs 1.42 1 × 108 8500 400 8 × 10−5 4 × 10−6

CdTe 1.5 3 × 1010 1150 110 3 × 10−3 2 × 10−4

CdZnTe † 1.572 1 × 1010 1000 50 1 × 10−2 5 × 10−5

CdZnTeSe‡ 1.52 1 × 1010 1000 50 3 × 10−3 5 × 10−4

† Exact composition Cd0.9Zn0.1Te ‡ Exact composition Cd0.9Zn0.1Te0.96Se0.04

1.3 Crystallographic defects and energy levels
A crystal is a solid material with its constituents (atoms, molecules, ions) forming
an ordered structure - a crystal lattice that extends in all directions. Ideal crystal
without defects is infinite and at temperature T = 0 K. At non-zero tempera-
tures, deviations from the ideal distribution of atoms occur, and several defect
forms. Every crystal has a surface which is a type of defect. Crystallographic
defects are interruptions in the crystal lattice and act as scattering centers for
charge carriers. These defects pose one of the most severe problems in semicon-
ductor manufacturing. Even a small concentration of defects (less than 1 part
in billion) can have a large effect on semiconductor properties [9]. Prevention
and suppression of defects are important areas of active study. The presence of
defects in semiconductors leads to the formation of energy states inside the band
gap. These energy states can be divided into two groups. The first is shallow
levels, weakly localized states with activation energies Et typically on the order
of thermal energy kBT . Shallow states form lattice perturbations without sig-
nificant detrimental influence on the material. The second group is deep levels
with Et significantly greater than kBT . Deep levels form more significant per-
turbations to the lattice close to the defect. The wave function of the trapped
charge carrier (electron or hole) is much more localized. Deep levels present an
enormous problem to semiconductor operation and impact charge collection ef-
ficiency acting as electron (hole) traps or recombination centers. This depends
on their position in the band gap and the ratio of their capture cross-sections
σe/σh, where σe(σh) is the electron (hole) capture cross-section. Defects also in-
fluence electric conductivity, diffusion, plastic deformation, mechanical strength,
and color. Crystallographic defects can be sorted into [46]:

1. Point defects (vacancies, interstitial defects, substitution defects)

2. Line defects (dislocations)
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3. Surface (planar) defects (material surface, grain boundaries, stacking fault)

4. Bulk defects (Three-dimensional macroscopic) such as pores, cracks, voids
(small regions where there are no atoms, and which can be thought of as
clusters of vacancies), precipitates (clusters of impurities or constituting
atoms in second phases)

In this thesis, only point defects are studied. The influence of line, planar, and
bulk defects is out of the focus of this thesis.

1.3.1 Point defects
Point defects occur only at or around a single lattice point. A limit for how small
a point defect has to be is not explicitly defined. However, these defects usually
involve a few missing or extra atoms [46]. Point defects can be split into native
defects and extrinsic defects. Native defects are due to atomic imperfections in
the material. There are three types of native defects: vacancies, interstitials,
and antisites. Vacancies are atomic sites where a host atom in an ideal crystal
structure is missing [47]. For example, a Cd vacancy (VCa) in CdTe refers to
an imperfection due to a missing Cd atom from its site in the crystal lattice.
Interstitials are caused by positioning additional host atom in normally unoccu-
pied positions. Antisites are atomic sites that are formed in compound crystals.
They shape up when the lattice atom is substituted by its compound counter-
part. Point defects in binary compound semiconductor AB are shown in figure
1.2. For example, CdT e (Cd antisite) refers to a Cd atom occupying a Te site in
the crystal. For example, Cdi refers to a Cd atom present inside the unit cell
away from its actual atomic site in the crystal. There are also complexes of native
defects, such as the Frenkel pair, which forms when an atom that leaves its place
in a lattice (forming a vacancy) becomes an interstitial by getting into a nearby
location. Frenkel pair is a stoichiometric defect that does not change the overall
stoichiometry of the compound. Thermodynamics of defects equilibrium which is
established according to specific external conditions (temperature, partial pres-
sure of the gas phase of one of the semiconductor components), can be studied
using formation energy and distribution of defects energy levels inside band gap
[9]. Several experimental techniques to study shallow and deep levels, such as Hall
effect measurements, photoluminescence (PL), deep level transient spectroscopy
(DLTS), or transient current technique (TCT), can be used [48]. Identifying the
defect by its observed energy level is difficult [46]. Besides native defects, there
are also extrinsic defects, which are caused by impurities (foreign atoms) in the
crystal. There are two types of extrinsic defects: substitutional and interstitial.
Complexes of intrinsic and extrinsic defects exist. They can have distinct prop-
erties and behaviors compared to individual intrinsic or extrinsic defects. More
details about defect complexes are in [49].
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Figure 1.2: Point defects in binary compound semiconductor AB. CA and CB are
impurity atoms at places of atom A and B. VA, VB are vacancies. AB is antisite
defect. VA − AI is the Frenkel pair [50].

1.3.2 Doping
The intentional introduction of impurities into a semiconductor to modify its
properties is called doping. It is widely used to produce semiconductor devices
such as diodes or transistors [9]. Dopant atoms can be classified as donors if their
introduction into the semiconductor forms an n-type region (a region with an ex-
cess of mobile electrons compared to intrinsic semiconductor) or acceptors if their
introduction forms a p-type region. In the case of CdTe, the main dopants are
In and Cl, which act as donors, and acceptor dopants is phosphorus [29]. High-
quality semiconductor radiation detectors require a high mobility-lifetime product
of electrons, high atomic weight, and high resistivity to reduce dark current. The
former property can be achieved in CdTe by self-compensation of intrinsic point
defects during crystal growth [51]. Native defects play an important role by lim-
iting the p- or n-type conductivity in semiconductors [52] and can be achieved
by extrinsic doping [53]. Understanding the effects of self-compensation in CdTe
is a still area of active research [51]. For CdTe, group IV elements can be used
as extrinsic dopants to achieve a semi-insulating material [53]. However, these
impurities typically introduce deep levels in the band gap. They can act as non-
radiative Shockley-Read-Hall recombination centers with a detrimental effect on
the detector performance [54]. This is not a case of chlorine or indium doping
of CdTe, which results in a high-resistive material with good carrier transport
properties suitable for radiation detection [55]. The exact origin of the compen-
sation mechanism and its effect on electric properties is not well understood and
remains an open issue [56].
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1.4 Ionizing radiation
Ionizing radiation is any radiation whose quanta have sufficient energy to ionize
atoms or molecules by detaching electrons from them. Ionizing radiation can be
sorted to [57]:

1. Alpha particles (two protons and two neutrons bound together into a par-
ticle identical to a helium nucleus)

2. Beta particles (high energy, high-speed electrons or positrons)

3. Gamma radiation (high energy photons from the radioactive decay of atomic
nucleus)

4. X-ray (high energy photons with energy higher than ultraviolet (UV))

5. Neutron radiation (free neutrons emitted from nuclear fusion, fission, ra-
dioactive decay, within particle accelerators or particle interactions with
cosmic rays)

X-rays can be sorted by energy into soft (photon energy < 10 keV) or hard X-rays
with (photon energy > 10 keV). By method of generation, X-rays can be sorted
into:

1. Characteristic X-ray emission - electromagnetic radiation produced when
outer-shell electron fill a vacancy in the inner shell of an atom. The emission
spectrum consists of discrete lines at specific energies corresponding to the
energy difference between the involved electron energy levels. Since these
levels are unique to each element, the emitted radiation is characteristic of
each element.

2. Bremsstrahlung - electromagnetic radiation emitted by fast-moving charged
particles when they are slowed down by passing through matter. The energy
which charged particle loses in the process is emitted as a photon. The
energy depends on the speed of the charged particle and is independent of
the target material.

Ionizing radiation can interact with matter either directly or indirectly. Direct
ionization is caused by Coulomb interaction between charged particles. Indirect
ionization is caused by particles with no electric charge (photons and neutrons),
whose interaction with atoms produces directly ionizing particles or initiates a
nuclear transformation [57].
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1.5 The goal of this thesis
This thesis is mainly focused on the study of charge transport and its effects on
semiconductor radiation detector performance. GaAs, CdZnTe, and CdZnTeSe
are studied by several electro-optical and spectroscopic experimental techniques
to obtain detector transport properties such as carrier drift mobility, lifetime,
electric field profile, and detector polarization. One of the goals is to expand on
the Monte Carlo simulation and combine it with the numerical solution of coupled
drift-diffusion equation with the Poisson’s equation. This combination results in
a significant speed-up of simulation and allows the fitting of experimental data
to obtain transport properties. Another goal is to use Monte Carlo simulations
to fit experimental data to get charge transport properties and gain insight into
underlying processes.

In Chapter 1, studied semiconductors are introduced together with crystallo-
graphic defects and ionizing radiation. In Chapter 2, the overview of the transport
equations, electrical contacts, and generation-recombination model is described.
Important terms which are used in numerical simulations and experimental mea-
surements are defined. In Chapter 3, about numerical simulations, the solved
equations are presented together with numerical methods to solve them. Monte
Carlo simulation and its combination with the numerical solution of coupled
Poisson’s equation together with the drift-diffusion equation is described. The
stability of Monte Carlo simulation with examples of Monte Carlo simulation is
presented. Experimental techniques are described in Chapter 4.

Chapter 5, where the main experimental results are shown and discussed, is
divided into three parts corresponding to the studied semiconductor material.

In the first part, the electron-transport properties of GaAs are studied using
a laser-induced transient-current technique with pulsed and DC bias. The forma-
tion of non-standard space charge caused by the appearance of both negatively
and positively charged regions in DC-biased sensors is revealed. Using Monte
Carlo simulations of current transients, we determined electron lifetime and elec-
tron drift mobility. We developed and successfully applied a theoretical model
based on fast hole trapping in the system with spatially variable hole conductivity
to describe measured effects.

In the second part, the polarization phenomena in the CdZnTe radiation de-
tector induced by high-flux X-ray excitation under low applied bias are studied
using several techniques. Semi-insulating CdZnTe crystals fabricated into pixe-
lated sensors and integrated into radiation detection modules have demonstrated
a remarkable ability to operate under rapidly changing X-ray irradiation envi-
ronments. Such challenging conditions are required by all photon-counting-based
applications, including medical CT, airport scanners, and non-destructive test-
ing. However, maximum flux rates and operating conditions differ in each case.
We investigate the possibility of pursuing the detector at the high-flux X-ray
irradiation at a low electric field satisfactory for maintaining good counting op-
eration. Electric field profiles obtained from Pockels effect measurement in the
detector affected by the high-flux polarization are numerically simulated. The
defect model that consistently depicts the polarization is obtained by solving
coupled drift-diffusion and Poisson’s equations.

Subsequently, the charge transport is simulated, and collected charge, includ-
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ing the construction of the X-ray spectrum, is calculated for a commercial 2 mm
thick pixelated CdZnTe detector with 330 µm pixel pitch used in spectral Com-
puted Tomography applications. The effect of allied electronics on the quality
of the spectrum is studied, and the setup optimization for improvement of the
spectrum shape is suggested.

In the third part, the electron- and hole-transport properties in CdZnTeSe
crystals are studied using a laser-induced transient-current technique with pulsed
and DC bias. The internal electric field profile and velocity of surface recombi-
nation are determined by Monte Carlo simulations of electron and hole transient
currents combined with a numerical solution of the drift-diffusion equation cou-
pled with Poisson’s equation. A simple technique for evaluating surface recombi-
nation directly from measured current waveforms without the need for numerical
simulation is developed and experimentally tested. The formation of a positive
space charge, originating from hole injection combined with a recombination level,
is found. We observe a significant position dependence of the lifetime of electrons
and holes in DC bias due to hole injection. The experiment is successfully fitted
by a simple model dominated by a single deep recombination level.

These experimental results, together with numerical simulations and presented
models, prove that Monte Carlo simulations combined with the numerical solu-
tion of coupled Poisson equation together with the drift-diffusion equation can
reveal many interesting and important information about charge transport in
semiconductors.
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2. Theory of charge transport

2.1 Boltzmann transport equation
To describe charge transport in semiconductors, one can start by describing the
statistical behavior of a thermodynamic system out of equilibrium. The semi-
classical approach to this is based on the Boltzmann transport equation [58]:

∂f

∂t
+ vg⃗ · ∇r⃗f − F⃗

ℏ
· ∇k⃗f =

(︄
∂f

∂t

)︄
col

, (2.1)

where r⃗ is position, k⃗ is the momentum, f(r⃗, k⃗, t) is distribution function (Fermi-
Dirac distribution in equilibrium), vg⃗ is the group velocity, F⃗ = −e

[︂
E⃗ + vg⃗ × B⃗

]︂
is the Lorentz force, e is positive elementary charge, E⃗ is electric field intensity,
B⃗ is magnetic flux density. The distribution function depends on time, position,
and momentum. The right side of (2.1) is collision term

(︂
∂f
∂t

)︂
col

, which takes into
account scattering phenomena and can be defined as:(︄

∂f

∂t

)︄
col

=
∑︂
k′⃗

[︄
W (k′⃗ , k⃗)f(r⃗, k′⃗ , t)(1 − f(r⃗, k′⃗ , t))−

W (k⃗, k′⃗ )f(r⃗, k⃗, t)(1 − f(r⃗, k⃗, t))
]︄
,

(2.2)

where W (k⃗, k′⃗ ) is the transition probability between the momentum states k⃗ and
k′⃗ ,

[︂
1 − f(r⃗, k′⃗ , t)

]︂
is the probability of non-occupation for a momentum state

k′⃗ . The collision term is the only part of the Boltzmann transport equation that
quantum mechanics describes. Other parts are classical, from which we get a
semi-classical description of charge transport. The equation (2.1) is valid under
these assumptions [58]:

1. Effective mass approximation (quantum effects due to periodicity of crystal)

2. Point-like particles

3. Instantaneous collisions

4. No memory effects (independence of initial conditions)

5. Single particle approximation (no correlation between particles)

6. Statistical description for a large number of particles

7. Born approximation for collisions (the scattering potential is small com-
pared to the kinetic energy of the incident particle)

Except for simple cases, the Boltzmann transport equation has no general an-
alytical solutions, and numerical methods must be used to obtain the solution.
Phonons or defects in the material provide the dominant scattering mechanisms.
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Both scattering mechanisms depend on the temperature. Collision term (2.2) can
be simplified under relaxation time approximation:(︄

∂f

∂t

)︄
col

≈ −f − f0

τrel

, (2.3)

where f0 is the local equilibrium distribution function, τrel is microscopic relax-
ation time, which is related to electron mobility µe via

µe = e

m∗
e

⟨τrel⟩, (2.4)

where m∗
e is electron effective mass, ⟨τrel⟩ is mean value of relaxation time.

2.2 Drift-diffusion equation
The solution of the Boltzmann transport equation (2.1) is complicated. Therefore,
simpler approaches are often used. The drift-diffusion current equations can
be derived directly from the Boltzmann transport equation [59]. Drift-diffusion
equation (DDE) for electrons is

je⃗ = eµenE⃗ + eDe∇n + eSe∇T , (2.5)

where the first part is a drift term caused by the external electric field, the second
is a diffusion term due to the gradient of electron concentration in conduction
band n, and the third is a diffusion term due to the gradient of absolute temper-
ature T , je⃗ is electron current density, De is the diffusion coefficient for electrons,
Se is the Seebeck coefficient for electrons. The diffusion coefficient is related to
mobility by the Einstein relation

De = kBT
e

µe, (2.6)

where kB is Boltzmann constant [60]. Seebeck coefficient is defined as

Se = kBn

e
µe. (2.7)

To get analogical equations for holes we let e → −e, µe → −µh and obtain
drift-diffusion equation for holes

jh⃗ = eµhpE⃗ − eDh∇p − eSh∇T , (2.8)

where p is hole concentration in valence band, jh⃗ is hole current density, Dp is the
diffusion coefficient for holes, Sp is the Seebeck coefficient for holes. The diffusion
coefficient and Seebeck coefficient for holes are

Dh = kBT
e

µh, (2.9)

Sh = kBp

e
µh. (2.10)
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The sum of electron and hole current densities is equal to the total density of
electric current inside the semiconductor at any point

j⃗ = je⃗ + jh⃗. (2.11)
The semiconductor conductivity σ is related to electron and hole mobility by
equation

σ = e(nµe + pµh), (2.12)
and semiconductor resistivity ϱ is related by equation

ϱ = 1
σ

= 1
e(nµe + pµh) . (2.13)

If the temperature is constant, the diffusion term due to the gradient of temper-
ature is zero and the drift-diffusion equations (2.5) and (2.8) simplify to

je⃗ = eµenE⃗ + eDe∇n, (2.14)
and

jh⃗ = eµhpE⃗ − eDh∇p. (2.15)
To solve the kinetics of charge carriers, we can use the continuity equation for
electrons

∂n

∂t
= 1

e
∇ · j⃗e + Ge − Ue (2.16)

and for holes
∂p

∂t
= −1

e
∇ · j⃗h + Gh − Uh, (2.17)

where Ge and Gh are generation rates, Ue and Uh are the recombination rates
for electrons resp. holes. These equations represent the conservation of electric
charge.

2.3 Poisson’s equation
To solve the charge transport in semiconductor with the presence of space charge,
the Poisson’s equation must be used [59]:

∆ϕ = −eρ

ε
, (2.18)

ϕ is electrostatic potential, ρ is the space charge density, ε is semiconductor elec-
trical permittivity, which is related to vacuum permittivity ε0 and semiconductor
relative permittivity εr

ε = ε0εr. (2.19)
The electric field connected to space charge density via the Gauss law [61]

∇ · E⃗ = eρ

ε0εr

, (2.20)

where electric field E⃗ is related to electrostatic potential via
E⃗ = −∇ϕ. (2.21)

The total space charge density inside the semiconductor is given by sum
ρ = p − n − N−

A + N+
D , (2.22)

where N−
A is the density of ionized acceptors, and N+

D is the density of ionized
donors.
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2.4 Model Assumptions
One can use certain symmetries and approximations to simplify equations of
charge transport. When the detector is rectangular with two planar opposite
electrodes with a distance L, which is much less than the size of the electrodes,
one can treat the detector as one dimensional (1D) and use only one spatial
coordinate labeled throughout the text as x-coordinate. When the detector is
irradiated either by X-ray or light, we assume that the irradiated area is near the
center of the electrode and is small enough that the electric field across the area
is homogeneous and perpendicular to it. Described detector geometry is shown
in figure 2.1. Another assumption is that the drift mobility µ is not dependent
on space, time, and electric field. This corresponds to small perturbations of
the equilibrium state in low fields to prevent velocity saturation and hot carrier
effects. Another assumption is that the detector is homogeneous with position-
independent permittivity ε. Electrons (holes) are considered non-interacting, and
the photogenerated charge is small, so its contribution to the internal electric field
is negligible. Several useful functions are needed in analytical solutions of simple
cases of drift-diffusion equation. They are δ(x) is the Dirac delta function. For
the simplification of later used formulas, we define the boxcar function

χ[0,x1](x) = Θ(x) − Θ(x − x1) =
⎧⎨⎩1 0 ≤ x ≤ x1

0 otherwise,
(2.23)

where Θ(x) is the Heaviside unit step function

Θ(x) =
⎧⎨⎩0 x < 0

1 x ≥ 0.
(2.24)

x = Lx = 0
Cathode Anode

Ground

E Electric field Ground

x = Lx = 0
Cathode Anode

Bias

BiasLaser
pulse

Laser pulse

Figure 2.1: Left: Scheme of the detector with two planar electrodes, which are
depicted with gold color. Right: 1D model of the detector, where electrons and
holes can move only along the x-axis. The vertical dimension is only for the
visualization of electrons and holes.
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2.5 Fermi level and Quasi-Fermi level
When the detector is in thermodynamic equilibrium, the charge probability den-
sity is given by Fermi-Dirac distribution

fn(E) = 1
1 + exp

(︂
E−EF

kBT

)︂ , (2.25)

where EF is the Fermi level. In the case of non-degenerated densities when the
Fermi level lies more than 3kBT below the conduction band, equation (2.25) can
be simplified to Boltzmann distribution

fn(EC) = exp
(︃

EF − EC

kBT

)︃
, (2.26)

and electron density is given by

n = NC exp
(︃

EF − EC

kBT

)︃
, (2.27)

and similarly for holes

p = NV exp
(︃

EV − EF

kBT

)︃
, (2.28)

where EC resp. EV is the energy of conduction resp. valence band (EC =
EV + Eg), Eg is band-gap energy, NC resp. NV is the effective density of states
in the conduction (valence) band given by

NC = 2
(︄

2πm∗
ekBT

h2

)︄ 3
2

(2.29)

NV = 2
(︄

2πm∗
hkBT
h2

)︄ 3
2

. (2.30)

The condition on non-degeneracy holds when n ≪ NC , p ≪ NV . When carriers
are outside equilibrium, distribution with one Fermi level for electrons and holes
can no longer be used to describe carrier statistics, but it is useful to define a
quasi-Fermi level for electrons EF e and holes EF h to describe carrier statistics not
far from equilibrium

n = NC exp
(︄

EF e + eϕ − EC

kBT

)︄
(2.31)

p = NV exp
(︄

EV − eϕ − EF h

kBT

)︄
. (2.32)

Term −eϕ represents electron potential energy, which has to be included in
electron (hole) energy in equations (2.31) and (2.32). Now n = n(x, t) and
p = p(x, t) are both generally time and position-dependent. Carrier distributions
with quasi-Fermi level can never depart too far from thermodynamic equilibrium
in time scales of practical interest, i.e., scattering time ≪ time scales of stud-
ied effects. This means that carriers undergo many collisions and attain thermal
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quasi-equilibrium with crystal lattice and among themselves very quickly [9]. If
we take derivative of (2.31) with respect to x we get

∂n

∂x
= n

kBT

(︄
∂EF e

∂x
+ e

∂ϕ

∂x

)︄
, (2.33)

By plugging (2.33) into (2.14) with (2.21) in 1D we get

je = µen
∂EF e

∂x
(2.34)

and similarly for holes
jh = µhp

∂EF h

∂x
. (2.35)

The equations (2.34) and (2.35) state that the gradient of the quasi-Fermi level
is the unifying driving force for carrier flow. It is important to note that outside
thermodynamic equilibrium EF e ̸= EF h. Multiplying (2.31) and (2.32) we get

np = n2
i exp

(︃
EF e − EF h

kBT

)︃
, (2.36)

where ni is intrinsic carrier density

ni = NCNV exp
(︃

− Eg

kBT

)︃
(2.37)

and obtain three cases for local net recombination rate valid at any position

1. EF e > EF h =⇒ np > n2
i =⇒ Net generation

2. EF e < EF h =⇒ np < n2
i =⇒ Net recombination

3. EF e = EF h =⇒ np = n2
i =⇒ Concentrations in thermal equilibrium

2.6 Shockley-Read-Hall model
Shockley-Read-Hall (SRH) model describes the trap-assisted generation and re-
combination of electric charge in semiconductors. Recombination of electrons and
holes is a process by which both carriers annihilate each other [54]. Non-radiative
recombination occurs primarily through trap-assisted recombination and has a
detrimental effect on semiconductor detector performance. Understanding and
preventing charge trapping is essential for developing high-quality radiation de-
tectors. SRH model for one energy level in band gap with concentration Nt and
energy Et can be described by a set of rate equations [62]

dn

dt
= G − Ue (2.38)

dp

dt
= G − Uh (2.39)

dnt

dt
= Ue − Uh, (2.40)
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where nt is electron concentration on center, G is the rate of charge carriers
generation. The simplified scheme of a semiconductor with one deep level Et is
shown in figure 2.2. The electron recombination rate is

Ue = σeνe [(Nt − nt)n − ntn1] , (2.41)

and hole recombination rate is

Uh = σhνh [ntp − (Nt − nt)p1] , (2.42)

where σe, σh are electron (hole) capture cross-sections, νe, νh are electron (hole)
thermal velocities given by

νe =
√︄

8kBT
πm∗

e

, (2.43)

νh =
√︄

8kBT
πm∗

h

, (2.44)

and n1 and p1 are electron (hole) density in case of Fermi level EF being set at
the center energy Et (see equations (2.27), (2.28)) and are given by

n1 = NC · exp
(︃

Et − EC

kBT

)︃
(2.45)

p1 = NV · exp
(︃

EV − Et

kBT

)︃
. (2.46)

The sum of electron and hole concentration on the center is equal to the concen-
tration of the center Nt

Nt = nt + pt, (2.47)
from which we can only operate with nt and obtain pt. If the system is in
equilibrium, then the nt is

nt = Nt

exp
(︂

Et−EF

kBT

)︂
+ 1

, (2.48)

where Fermi-Dirac distribution is used since the condition of non-degeneracy is
generally not valid for Et.

2.6.1 Energy levels classification
Energy levels can be classified by capture cross-section to

1. Recombination center (σe ≈ σh)

2. Electron trap (σe ≫ σh)

3. Hole trap (σe ≪ σh)

By distance from conduction band to shallow (EC − Et ≈ kBT ) or deep (EC −
Et ≫ kBT ) electron trap and for holes to shallow (Et − EV ≈ kBT ) or deep
(Et −EV ≫ kBT ) hole trap. Energy levels below the Fermi level are mostly filled
by electrons and act as hole traps. Energy levels above the Fermi level are mostly
empty and act as an electron trap. The nature of levels near the Fermi level is
more complicated [62].
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2.6.2 Trapping and detrapping
Lets assume case of electron trap with σh ≪ σe, then we get Uh ≈ 0 and if G = 0
equations (2.38) and (2.40) become

dn

dt
= −Ue (2.49)

dnt

dt
= Ue (2.50)

If we substitute (2.41) into (2.49) and (2.50) we get the final kinetic equations
for electron trap

dn

dt
= − n

τT

+ nt

τD

(2.51)

dnt

dt
= − nt

τD

+ n

τT

, (2.52)

where τT is trapping time

τT = 1
(Nt − nt)σeνe

(2.53)

and τD is detrapping time

τD = 1
NCσeνe

exp
(︃

−Et − EC

kBT

)︃
(2.54)

The scheme of trapping and detrapping processes is shown in figure 2.3. Analo-
gous equations can be obtained for holes. Detrapping time does not depend on
trap filling, and in the case of a nearly empty trap (nt ≪ Nt) we get constant
trapping time.

EC

EV

E

Et

Trap-assisted
generation

Trap-assisted
recombination

Figure 2.2: The Shockley-Read-Hall model of generation and recombination pro-
cesses.
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EV

τT τD

Et

τT
τD

Trapping time
Detrapping time

Figure 2.3: Trapping and detrapping.

2.7 Electrical contacts
Electrical contacts and their preparation have, together with material param-
eters (see section 1.1) critical impact on detector quality [60]. There are two
basic metal-semiconductor contact types: Ohmic contact and rectifying Schottky
contact. Ohmic contacts do not restrict the current flow depending on direc-
tion. Schottky contacts contain potential barriers in the metal-semiconductor
interface, which generate a space charge region inside the semiconductor. Space
charge restricts the free carrier injection in one direction and prevents current
flow in the opposite direction. Potential barriers determine the type of electric
contact. They can form when semiconductor and metal work function differs
or in the presence of surface states or oxide layer. Electrical contacts affect de-
tector polarization. Schottky contacts generally enhance the polarization effects,
whereas Ohmic contacts suppress polarization. The basic theory of electrical con-
tacts will be demonstrated on n-type semiconductor (for p-type semiconductor
the inequality sign is the opposite). The band diagram of separated metal and
semiconductor is in figure 2.4, where EF M is the Fermi level of metal, EF S is
the Fermi level of semiconductor, ΦM is work function of the metal, ΦS is work
function of semiconductor, ΦK = ΦM − ΦS is contact potential, E0 is rest energy
of an electron in a vacuum and χ is semiconductor electron affinity.

2.7.1 Ideal Ohmic contact
In the case of ideal Ohmic contact, the flow of electrons is not restricted in any
polarity of the applied voltage. This happens when the metal work function is
less than or equal semiconductor work function, i.e., ϕM ≤ ϕS (which in the
2.5 figure causes the energy band to bend downwards, where the band diagram
of an ideal Ohmic contact on an N-type semiconductor is shown). Electrons
can pass in both directions between the metal and the semiconductor. In this
case, the volt-ampere (V-A) characteristic satisfies Ohm’s law and is linear for
both polarities of the [60]. The band diagram of flat-band Ohmic contact for
ϕM = ϕS, which represents ideal contact that neither blocks nor injects carriers
into the semiconductor, is shown in figure 2.6. The band diagram of an ideal
injecting Ohmic contact is shown in figure 2.5, EF is the Fermi level equal for
the metal and semiconductor at thermodynamic equilibrium, ΦB is the height of
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EV

χeΦM
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eΦS

EC

Metal Semiconductor

Figure 2.4: Band diagram of separated metal (left) and semiconductor (right) for
ΦM < ΦS [60].

the potential barrier between the metal and semiconductor, VD is the diffusion
voltage. The height of the potential barrier ΦB is given by the relation [60]

eΦB = eΦM − χ. (2.55)

2.7.2 Ideal Schottky contact
In the case of ideal Schottky contact, the flow of electrons is restricted by the
potential barrier caused by space charge presence. This happens when the metal
work function is greater than the semiconductor work function, i.e., ϕM > ϕS

(which in the figure 2.7 causes the energy bands of the semiconductor to bend
upwards), a potential barrier (Schottky barrier, whose height ΦB is affected by
the Schottky effect see [60]) is formed by the presence of an immobile space
charge in the space charge region of width w. Suppose we apply a voltage to the
Schottky contact with a positive potential on the semiconductor. In that case, the
diffusion current from the semiconductor will be suppressed due to the change in
the band structure. The total current will be given only by the small drift current
formed by the e-h pairs created in the space charge region in the semiconductor.
This state is under reverse bias. Suppose we apply a voltage to the Schottky
contact with a positive potential on the metal and a negative potential on the
semiconductor. In that case, the width of the space charge region is reduced,
and thus the potential barrier is lowered. This allows electrons to pass from the
semiconductor into the metal by the emission-diffusion process [60]. This state is
under forward bias. The situation is analogous to a p-type semiconductor, except
that the sign of the polarity of the applied voltage is reversed. The band diagram
of an ideal Schottky contact on an n-type semiconductor is shown in Figure 2.7.
For the height of the potential barrier ΦB, the same relation as (2.55) holds.

2.7.3 Real metal-semiconductor contact
The types of contacts mentioned before are only approximations of the real metal-
semiconductor contact. They are valid for an infinite crystal or a region of a finite
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Figure 2.5: Band diagram of injecting Ohmic contact [60, 63].
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Figure 2.6: Band diagram of flat-band Ohmic contact [63].
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Figure 2.7: Band diagram of Schottky contact [60, 63].
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crystal far from the surface. The region close to the surface has different physical
properties than the rest of the crystal, firstly because atoms are absorbed from
the surroundings, and secondly because the material is not chemically inert and
a layer of chemical reaction products (e.g., oxides) can form. This layer has, in
most cases, the semi-insulating properties of [60]. Another factor is the presence
of surface states, which are electron states on the surface of the material that arise
as a result of a sharp transition between the material (solid) and the surrounding
environment (see section 1.3). These states cause changes in the material’s band
structure and associated changes in the material properties at the surface. The
presence of surface states makes it impossible to determine the type of contact
from knowledge of the work function alone. It is important to note that in the
case of intrinsic semiconductors or compensated high resistivity semiconductors,
the classification of electrical contacts is more difficult [63]. The issue of contacts
is discussed more in [60].

2.8 Shockley-Ramo theorem
The Shockley-Ramo theorem is a method to calculate electric current induced
by moving electric charges in the vicinity of an electrode. It is based on the
concept of current induction due to instantaneous electrostatic flux change on
the electrode rather than the charge passing through it per second. [64]. When
elementary charge e moves a distance ∆x between two parallel electrodes, in a
direction parallel to the electric field, it induces a charge ∆Q at the electrodes,
that is given by [65]

∆Q = e
∆x

L
, (2.56)

where L is the distance between electrodes. The total induced current I(t) is the
time derivative of (2.56) summed over all drifting carriers

I(t) = Q(t)v(t)
L

, (2.57)

where Q is the moving charge and v is the velocity of the moving charge. The
equation (2.57) is a special case of a more general Shockley-Ramo theorem for
more complex contact configuration [64]. In general 1D case, the induced current
on the collecting electrode can be calculated using

I(t) = Q(t)v(t)EW (t), (2.58)

where weighting field EW is the electric field associated with the collecting elec-
trode at unit potential and all other electrodes at zero potential [66]. For detector
with two planar electrodes separated by distance L, the weighting field is constant
EW = 1

L
, this corresponds to equation (2.57). More information about weighting

field and other electrode configuration is in [66, 67].

2.9 Current waveform
In this thesis, the key experimental data are transient currents from which numer-
ical simulations will determine transport parameters. Current waveform (CWF)
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is time-dependent current signal. This section shows an example of CWFs for
a detector with constant applied bias U with one deep electron trap level with
trapping time τT (see subsection 2.6.2), no diffusion, and no space charge. For
electrons under mentioned conditions, the equation (2.14) becomes

∂n(x, t)
∂t

= −v0
∂n(x, t)

∂x
− n(x, t)

τT

, (2.59)

where v0 = µeE0 is electron drift velocity, E0 = U/L is constant electric field
inside detector. The general solution of (2.59) is

n(x, t) = n0(x − v0t) exp
(︃

− t

τT

)︃
χ[0,tr](t), (2.60)

where n0(x) = n(x, t = 0) is the initial charge distribution, χ[0,tr](t) assures charge
collection outside detector. Electron cloud n(x, t) drifts through the detector with
its center xC(t) = v0t moving with constant drift velocity, until the cloud arrives
at the collecting electrode xC(tr) = L in time tr called the transit time, which is
in our case is tr = L/v0. Scheme of the detector and electron cloud are shown in
the left part of figure 2.8. Using equation (2.57) and (2.60) we obtain CWF

I(t) = Q0

tr

exp
(︃

− t

τT

)︃
χ[0,tr](t). (2.61)

The CWF in (2.61) represents exponential decay of charge carriers in bulk, more
details in [68]. In the case of a short excitation pulse that generates charge
carriers near under cathode, the generated holes are immediately collected, and
only electrons drift through the bulk. Electron CWFs are shown in the right
part of figure 2.8, where normalized CWFs for several values of τD are shown.
More complicated CWFs require numerical solutions of equation (2.14) and will
be shown later in this thesis.
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Figure 2.8: Left: Detector scheme and electron cloud at two times t = 0 and
t = tr. Right: Normalized current waveforms for several values of trapping time
τT . Negligible trapping (red) shows ideal charge transport with no losses. Other
curves show exponential decay current waveforms. At time t/tr = 1 the electron
cloud is collected and current stops.
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2.10 Surface recombination
Every detector has a surface layer that has different properties from bulk. This
results in surface states and defects that can recombine charge and thus affect
charge transport. Surface recombination depends on many surface properties and
is usually described using a phenomenological model based on surface recombi-
nation velocity s [69, 70]. Surface recombination velocity defines the probability
of charge carriers generated inside the surface layer to enter the bulk pbulk [69].
This can be written for electrons as

pbulk

1 − pbulk

= v0

s
, (2.62)

where v0 = µeE0 is electron drift velocity in surface layer, E0 is electric field
in surface layer. The initially photogenerated charge Q00 in the surface layer
partially recombines, rest of the charge Q0 enters the bulk

Q0 = Q00
1

1 + s
µeE0

. (2.63)

Scheme of detector with surface layer with thickness xs ≪ L is shown in figure
2.9. For the detector with applied bias U and no space charge, the electric field
is constant (E(x) = E0 = U

L
). The equation (2.63) can be rewritten into

Q0 = Q00
1

1 + sL
µeU

. (2.64)

The equation (2.64) saturates the initial charge Q0(U) to the value Q00 as the
bias U increases. This is shown in figure 2.10, where the ratio of charge entering
the bulk from surface Q0(U)/Q00 is shown for several values of s and detector
thickness L = 0.2 cm. At bias zero, the ratio Q0(U)/Q00 is zero except for the case
with no surface recombination (s = 0). As bias increases, the ratio Q0(U)/Q00
saturates to one marking negligible recombination. Surface recombination occurs
for only a short time when charge carriers drift through a thin surface layer.
Only the amplitude of the measured current waveform is decreased compared to
a much longer drift time through bulk for the typical detector length. Comparison
of normalized CWF with and without SR for two values of applied bias (U and
U/2) is shown in figure 2.11. Without SR, normalized CWF by corresponding
bias have a common envelope (bottom left). With SR, there is a separation
between CWFs (bottom right). This represents a simple method to determine
the presence of surface recombination [71].
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Figure 2.9: Detector with surface layer and bulk. The surface layer is much thin-
ner than the bulk. Photogenerated charge Q00 is initially partially recombined,
and only part Q0 enters the bulk.

Figure 2.10: Bias dependence of ration of charge entering the bulk from the
surface layer for different values of surface recombination velocity.
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Figure 2.11: Top left: Current waveforms for the detector without surface re-
combination. Top right: Current waveforms for the detector with surface re-
combination. Bottom left: Current waveforms normalized by respective bias
for detector without surface recombination. Bottom right: Current waveforms
normalized by respective bias for a detector with surface recombination.
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2.11 Hecht equation
The general expression for charge collection efficiency (CCE) for charge Q(x0)
produced at the position x0 inside the detector is obtained according to [23, 72]:

CCE(x0) = 1
L

[︄ ∫︂ L

x0
exp

(︄
−
∫︂ x

x0

dx′

µeτeE(x′)

)︄
dx+

+
∫︂ x0

0
exp

(︄
−
∫︂ x0

x

dx′

µhτhE(x′)

)︄
dx

]︄
.

(2.65)

This formula comprises two parts: the first is for electrons, and the second is for
holes. Bias is set so the cathode is at x = 0 and the anode is at x = L. The
detector scheme with the generated charge at position x0 by incident radiation
is shown in figure 2.12. To obtain the total CCE, we need to integrate CCE(x)
over the whole detector bulk

CCE =
∫︂ L

0

Q(x)
Q0

CCE(x)dx, (2.66)

where total generated charge Q0 is

Q0 =
∫︂ L

0
Q(x)dx. (2.67)

The general equation for CCE (2.66) can be simplified in several useful cases.
The first case is when there is a constant electric field inside the detector and a
constant lifetime for electrons and holes, then CCE(x) can be simplified to

CCE(x) = µeτeU

L2

(︄
1 − exp

(︄
xL − L2

µeτeU

)︄)︄
+ µhτhU

L2

(︄
1 − exp

(︄
−xL

µhτhU

)︄)︄
. (2.68)

If the charge is generated near under cathode Q(x) = Q0δ(x), then hole contri-
bution is negligible and only electron part in (2.68) remains, from (2.66) we get
the final expression

CCE(U) = µeτeU

L2

(︄
1 − exp

(︄
−L2

µeτeU

)︄)︄
, (2.69)

which is a commonly known form of the Hecht equation for one-carrier type
(electrons) [73]. If the initial charge is generated by an incoming high energy
particle such as a gamma photon with energy Eγ, then the initial charge is equal
to

Q0 = e
Eγ

Ep

, (2.70)

where Ep is e-h pair creation energy. Mentioned equations allow us to obtain µτ
product by fitting experimentally measured dependency of CCE on bias CCE(U).
Experimental dependence CCE(U) can be obtained from measured spectra (see
section 4.2), where we use the ratio of position of maximum count for bias U
over the limit of the position of maximum count for large bias. Hecht equation
(2.69) contains besides L only one material parameter µτ . In the case of strongly
absorbed radiation near under cathode, surface recombination may distort the

29



E
Electric field

Ground

x = Lx = 0
Cathode Anode

Bias

x0

Incident
radiation

Figure 2.12: The detector scheme with generated charge at position x0 by incident
radiation.

evaluation of the Hecht equation by introducing bias dependence of the initial
generated charge that gets into the bulk from the surface layer. In this case, it is
impossible to separate the surface recombination from charge losses inside bulk
using (2.69), and a more powerful technique needs to be used. This is also the case
when one wants to separately evaluate µ and τ . More advanced methods such as
L-TCT (see section 4.1) can distinguish surface recombination from charge losses
inside bulk and the effect of electric field (see section 2.10). The lifetime τ is in
the context of the detector with a deep trap equal to trapping time τT .
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3. Numerical simulations

3.1 Solved equations
In this section, the studied drift-diffusion equation coupled with the Poisson equa-
tion will be analyzed. Let us write all the equations needed to study charge
transport in 1D:

∂n

∂t
= 1

e

∂je

∂x
−
∑︂

i

Uei + Ibb − Ubb (3.1)

∂p

∂t
= −1

e

∂jh

∂x
−
∑︂

i

Uhi + Ibb − Ubb (3.2)

je = −eµen
∂ϕ

∂x
+ eDe

∂n

∂x
, (3.3)

jh = −eµhp
∂ϕ

∂x
− eDh

∂p

∂x
. (3.4)

∂n

∂t
= Uei − Uhi (3.5)

Uei = σeiνei [(Nti − nti)n − ntin1i] , (3.6)

Uhi = σhiνhi [ntip − (Nti − nti)p1i] , (3.7)

Ubb = cbb(np − n2
i ), (3.8)

∂2ϕ

∂x2 = − eρ

ε0εr

, (3.9)

where index i represents i-th energy level, Ibb is interband light-induced genera-
tion rate, Ubb is net band-to-band recombination rate, cbb is interband coupling
constant (around 10−11 cm2 [74]), ni is intrinsic carrier density, other parameters
were introduced at section 2.6. In continuity equation (3.1) and (3.2), the gradi-
ent in 3D was replaced by a partial derivative in 1D. In drift-diffusion equations
(3.3) and (3.4), gradient was replaced by partial derivative with respect to x, and
the electric field was replaced by potential using (2.21). To preserve charge neu-
trality of the bulk in the thermodynamic equilibrium, the space charge density ρ
that which enters the Poisson’s equation (3.9) must satisfy

ρ = p − p00 − (n − n00) −
∑︂

i

(nti − nt00i) , (3.10)

where 00 index represents equilibrium values. Mentioned equations (3.1)-(3.10)
represent a system of coupled nonlinear partial differential equations with no
general analytical solution besides simple cases. There are, in general, three
possible choices of variables:
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1. Natural variable formulation (ϕ, n, p)

2. Quasi-Fermi level formulation (ϕ, Efn, Efp) see section 2.5

3. Slotboom formulation (similar to Quasi-Fermi level formulation where the
electrostatic potential is included into Quasi-Fermi level, details in [75])

Normally, the quasi-Fermi level formulation is preferred in steady state simu-
lation, and the natural variables n and p in transient simulation [75]. In this
section, the natural variable formulation was used. The initial conditions for
the system of equations (3.1)-(3.10) comprise initial values for the occupation of
each energy level nti(x, 0), initial electron and hole concentration n(x, 0), p(x, 0).
The boundary conditions are given by applied bias U and band bending at inter-
face ϕB(0), ϕB(L) (electrical contacts) and their form is ϕ(0) = ϕB(0) − U and
ϕ(L) = ϕB(L), where L is the detector thickness.

3.2 Numerical methods
Numerical solution of equations (3.1) through (3.10) is, in general, not possible
to obtain directly in one step. Instead, a nonlinear iterative method has to be
used [75]. In this section, a basic overview of such a method will be shown.
There are two popular methods for solving coupled systems of nonlinear partial
differential equations using discretization. First is Gummel’s iteration method
[76], and the second is Newton’s method [77]. Determining which method is
more optimal for the solution is rather complicated since it depends on details
related to the particular device under study. To improve numerical stability and
speed of convergence, it is important to correctly choose variables in which the
equations are solved [75]. Such choices of variables were mentioned in the last
section 3.1. In practice, it is helpful to use normalized units and rescaled values
to avoid numerical overflow caused by the limits of precision of digital decimal
representation. This makes algorithms more efficient and reliable. Numerical
simulations in this thesis are sorted into two categories by time scale

1. Fast dynamics (In the 10-10000 ns time scale, describing the propagation
of the excited charge following the photon absorption)

2. Slow dynamics (In the range of µs-hours, describing the charge redistribu-
tion on defect levels leading to the charging of the detector bulk and the
appearance of polarization)

Fast dynamics uses a more precise scheme, but it requires small time steps and is
thus impractical in simulations at minutes or hours time scale. More details about
fast dynamics in [75, 78, 79]. Slow dynamics with non-equilibrium trap occupancy
was solved in [62, 80], where drift-diffusion and Poisson’s equations were solved
numerically in one dimension. In this thesis program based on this technique is
used to simulate charge transport in a detector under various conditions, such as
continuous light, X-ray, or laser pulse illumination with different biases. These
numerical simulations are applied to fit experimental data and obtain detector
parameters such as drift mobility, electric field profile, space charge distribution,
and energy parameters of energy levels. The solution of fast dynamics can often
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be simplified and, under certain conditions (that will be mentioned later in this
thesis), sped up by using Monte Carlo simulations that are more stable and faster.

3.3 Monte Carlo simulation

3.3.1 Concept of Monte Carlo simulation
The numerical simulation of charge transport equations using discretization tech-
niques was described in the previous chapter 3.2. The main disadvantage of these
techniques is the potential numerical instabilities in solutions. They can emerge
during iterative steps when the time step or mesh size is not small enough. De-
creasing the time step and the mesh size makes the simulation more precise and
stable. However, the evaluation time rapidly increases, and the simulation be-
comes computationally intensive, thus preventing practical usage. To mitigate
these problems, we can use Monte Carlo (MC) simulation, based on random
number generation, to simulate charge transport. MC simulation has inherent
numerical stability because it relies on random sampling and statistical methods
rather than solving complex equations or performing iterative calculations. MC
simulation is a powerful numerical technique widely used in many fields due to
its numerical stability and ability to handle complex systems [65, 81]. In this
thesis, one-dimensional MC simulation of the motion of photogenerated charge
carriers developed in [82] is improved to include the SRH model and arbitrary
electric field profile. This MC simulation is based on the phenomenological con-
cept shown in [83]. The simulation is based on splitting the total photogenerated
charge Q0 in the detector into N superparticles that have charge

q = Q0

N
. (3.11)

These superparticles move under an applied electric field and can be in either a
free state or a trapped state. Superparticle with index i that is in free state moves
at calculation time tk from position xi(tk) during time step ∆t into position

xi(tk + ∆t) = xi(tk) + ∆xi, (3.12)

where distance ∆xi is given by

∆xi = µE(xi(tk))∆t + u, (3.13)

here u represents diffusion offset randomly sampled from the distribution

P(u) = 1√
4πD∆t

exp
(︄

− u2

4D∆t

)︄
, (3.14)

where D is the diffusion coefficient given by the Einstein relation (2.6). Repeated
application of offset u results in the broadening of carrier cloud approximating
diffusion. Superparticles that are trapped do not move ∆xi = 0. Superparticles
can simulate either electrons or holes, which defines their corresponding values of
transport parameters, i.e., drift mobility and diffusion coefficient. If xi +∆xi ≥ L
or xi + ∆xi ≤ 0, the superparticle is collected on an electrode and no longer con-
tributes to the simulation. To include surface recombination into MC simulation,
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we use equation (2.63) to calculate Q0 in (3.11). This simplifies and speeds up MC
simulation compared to [83] by removing the surface region from the calculation
and requiring only one region - the bulk. Equation (3.13) represents discretiza-
tion of drift-diffusion equation (2.14) for constant temperature. Superparticles
that drift (∆xi ̸= 0) contribute to total induced current

I(tk) =
N∑︂

i=1

q∆xi

L∆t
, (3.15)

where the Shockley-Ramo theorem (see section 2.8) is used. To simulate charge
trapping and detrapping, the SRH model is used (see section 2.6). To calculate
the probability pF that a free superparticle at time tk remains free for additional
time ∆t is

pF (∆t) = exp
(︄

−∆t

τT

)︄
, (3.16)

where τT is the total trapping time given by

1
τT

=
∑︂
J=1

1
τT J

, (3.17)

where τT J is the trapping time of the J-th trap level. If the superparticle is
trapped at time tk, then the probability of it remaining trapped for additional
time ∆t is

pDJ(∆t) = exp
(︄

− ∆t

τDJ

)︄
, (3.18)

where τDJ is detrapping time of J-th trap level. Trapping and detrapping time
corresponds to SRH trap parameters via equations (2.53) and (2.54). The direct
transition between trap levels is not assumed. The new state of the superparticle
is determined according to its current state and trapping/detrapping probabil-
ity. This procedure is repeated until the required duration of the simulation is
reached. More details about trapping and detrapping probability calculation are
in [84]. We assume the photogenerated charge is small enough not to signifi-
cantly influence the internal electric field (testing probe charge). This allows us
to separate the simulation of long-term detector polarization from short-transient
effects. Because the charge is small, trap level occupancy does not change during
MC simulation (but is position dependent). Since shallow levels do not signifi-
cantly contribute to space charge, their effect can only be included in MC sim-
ulation and not in long-term polarization simulation. The only effect included
in long-term simulation is effective mobility caused by shallow traps. Effective
mobility directly results from charge carriers being trapped for some time and
then detrapped. If this occurs many times in the studied time frame, then charge
carrier drift with effective mobility [84]

µeff = µ
τT

τT + τD

. (3.19)

This decoupling of shallow traps from long-term simulation speeds up the sim-
ulation, allowing practical usage of long-term simulations. The electric field is
obtained from the long-term simulation described in section 3.2.
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The basic concept of Monte Carlo simulation is shown in figure 3.1, where
the detector cross section is shown in two time steps. First time t = 0 where
photogenerated carriers are near under the electrode. Second is time tk, where
carriers drifter through the bulk, some get trapped in deep level (marked green),
and free carriers are marked red. In figure 3.2, CWF corresponds to simulation
in 3.1, the CWF shows typical exponential decay of current after initial spike
corresponding to photo generating short pulse, the end of CWF has diffusion
broadening around transit time, which marks the arrival of the center of carrier
cloud.
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Figure 3.1: Basic concept of Monte Carlo simulation.
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Figure 3.2: Simulated current waveform of detector with one deep electron trap.
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3.3.2 Stability of Monte Carlo simulation
In this section, the stability and dependence of MC simulation on the time step
and the number of superparticles will be shown. MC simulation’s inherent numer-
ical stability is caused by random sampling and statistical methods rather than
solving complex equations or performing iterative calculations. It is remarkable
how simulation with even a few superparticles gives a rather good simulation
result. In figure 3.3, there is the dependence of simulated MC electron CWFs
for a detector with L = 0.2 cm, U = 200 V, τT = 1 µs with no space charge, for
an increasing number of superparticles from 1 to 5000, it can be seen that for
one superparticle (red), the current stops at time t = 140 ns, before the transit
time tr = 200 ns, this is caused by trapping of superparticle on the deep trap,
and since there is only one superparticle in the simulation, the current stops.
For 8 and 32 superparticles (blue and green curves), the general exponential de-
cay shape starts to emerge, and transit time is almost correct. For as little as
128 superparticles, the general exponential decay is close to the exact solution
with visible noise given by the low number of superparticles where even small
fluctuations in trapped particles generate significant noise. For more than 2000
superparticles (lime and orange curves almost overlap), the CWF has the correct
shape and almost no visible noise. This demonstrates the main advantage of MC
simulation, which is fast convergence to correct values as the number of simulated
particles increases. In the case of small signals under which the internal electric
field is not disturbed by the drifting charge, the superparticles do not interact
with each other. The simulation can be run in parallel, either on CPU or GPU,
to significantly shorten the time needed to finish the simulation. More details
about small and large signals and how to include the effect of large signals in MC
simulation are in [85, 86].
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Figure 3.3: Dependence of MC simulation on the number of super particles.

MC simulation is sensitive to time step size. The effect of varying time step
size on simulation with 5000 superparticles and with parameters mentioned previ-
ously in this section is shown in figure 3.4, where time step size from 1 ns to 100 ns
is shown. If the time step ∆t ≪ than any time parameter in simulation such as
τT , τD, tr, then the simulation is valid, this condition is fulfilled for ∆t < 5 ns in
shown simulation. If the time step size increases, the number of steps decreases,
and each particle drifts on each step a larger distance, thus worsening the spatial
resolution. The lower number of steps also affects diffusion since many diffusion
offsets are needed to simulate diffusion properly (see equation (3.14)). The ex-
act choice of the number of particles and time step size depends on the studied
problem and is not easily generalized.
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Figure 3.4: Dependence of MC simulation on time step size. It can be seen that
time step shorter than 10 ns is needed to simulate CWF correctly. CWF for 50 ns
(purple) and 100 ns (lime) have decreased amplitude to better show discrete steps.

3.3.3 Examples of Monte Carlo simulations
In this section, basic examples of detector polarization and resulting CWFs will
be shown. A typical example is CZT detector polarization at room temperature
T = 295 K. We simulate a detector with one deep electron trap level with con-
centration Nt = 1.0 × 1011 cm−3, σe = 1.0 × 10−13 cm2, Et = EC − 0.775 eV.
The trap is located on the Fermi level, which is set to the middle of band gap
EF = EC − Eg/2, Eg = 1.55 eV (see figure 3.5). Detector thickness L = 0.2 cm.
Electron and hole drift mobility µe = 1000 cm2/Vs, µh = 80 cm2/Vs. We use two
electrical contact configurations. The anode is always flat-band Ohmic with no
band bending. In the first case, the cathode is blocking Schottky contact with
band bending +150 meV, and in the second case, the cathode is injecting Ohmic
contact with band bending −90 meV. In the first case, electron depletion in the
detector results in positive space charge accumulation. In the second case, elec-
tron injection leads to electron accumulation on the trap level, forming a negative
space charge. The band diagram of the first case of electrical contacts is in figure
3.6, and the second is in figure 3.7. The simulation is based on the numerical so-
lution of coupled drift-diffusion equation with the Poisson’s equation (see section
3.2), from which the electric field, space charge density, trap occupancy, quasi-
Fermi levels are obtained. These parameters enter the MC simulation, which
yields the CWFs.
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Figure 3.7: Band diagram of the detector with flat-band anode and injecting
Ohmic cathode.
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3.3.3.1 Electron depletion

In this part, electron depletion resulting from Schottky cathode with band bend-
ing +150 meV is simulated (see figure 3.6). The simulated electric field for electron
depletion is shown in figure 3.8, where electric field for applied continuous DC
bias in the range 50 − 500 V is shown. The electric field has the largest mag-
nitude at the cathode and decreases towards the anode. For biases lower than
170 V, there is a inactive layer inside the detector which is the area where the
electric field is almost zero. For biases greater than 170 V, the electric field is
large enough to overcome the positive space charge, and complete depletion of
the detector occurs. The corresponding space charge is shown in figure 3.9, where
a nearly constant space charge is present in the whole detector for biases greater
than 170 V, and for lower biases, the space charge drops to zero in the inactive
layer. The time evolution of the electric field for bias 50 V is shown in figure 3.10.
The detector without bias is not polarized and has no space charge. Shortly after
the bias is applied, the detector starts to polarize, and the electric field warps. At
the time around 3 s, the electric field at the anode is almost zero, and the inactive
layer forms. After that, the inactive layer expands until the trap is depleted, and
the inactive layer stabilizes after 30 s. The space charge is shown in figure 3.11,
where it can be seen that the space charge increases first in the whole detector
until the inactive layer forms, and then the space charge increases only in the
depleted part of the detector and decreases in the inactive layer. The waves in
space charge, visible for time 4, 8, 15 s, are caused by inactive layer discharging
of previous space charge under almost zero electric field, at time greater than
15 s, the waves disappear and inactive layer stabilizes. It is useful to define mean
space charge density ρmean as

ρmean = 1
L

∫︂ L

0
ρ(x)dx, (3.20)

where ρ(x) is space charge density at position x. Evolution of mean space charge
density ρmean inside detector is shown in figure 3.12, where saturation of mean
space charge is visible. CWFs for the DC bias are shown in figure 3.13, where
charge trapping and electric field cause almost exponential current decay. For
biases greater than 170 V, the CWFs have visible finite transit time, and for
lower biases, the electron cloud never reaches the anode because of the inactive
layer presence. This is important for the experimental evaluation of CWFs from
which the electric field and space charge density is obtained by fitting CWFs with
MC simulation. The time evolution of CWFs for bias 50 V is shown in figure 3.14.
Shortly after applying bias 50 V, the current waveform decays only because of
charge trapping since the electric field is almost constant in the non-polarized
detector. As the time after applying the bias increases CWFs decay faster until
the transit time disappears at 3 s after the bias is applied. This was observed
and studied in [37, 83, 87].
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Figure 3.8: Electric field profile for detector with electron depletion under differ-
ent DC biases.

Figure 3.9: Space charge density for detector with electron depletion under dif-
ferent DC biases.
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Figure 3.10: Time evolution of electric field profile for detector with electron
depletion for bias 50 V.

Figure 3.11: Time evolution of space charge density for detector with electron
depletion for bias 50 V.
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Figure 3.12: Time evolution of the mean space charge density for the detector
with electron depletion for bias 50 V.

Figure 3.13: CWFs for detector with electron depletion for several DC biases.

43



Figure 3.14: Time evolution of CWFs for detector with electron depletion for bias
50 V.

3.3.3.2 Electron injection

In this part, electron injection resulting from injecting Ohmic cathode with band
bending -90 meV is simulated (see figure 3.7). The simulated electric field for elec-
tron injection is shown in figure 3.15, where electric field for applied continuous
DC bias in the range 50 − 500 V is shown. The electric field has the largest mag-
nitude at the anode and decreases towards the cathode. For biases lower than
200 V, the electric field starts to bend near the cathode because of the space
charge limited current regime in which the electric field self-limits the injection
that causes the negative space buildup. More details about space charge limited
currents are in [87]. This leads to stable, almost zero bias under the cathode.
For biases greater than 300 V, the electric field is large enough to overcome space
charge, and an almost constant space charge is formed inside the detector, which
corresponds to almost linear electric field profile in figure 3.15 for biases > 300 V.
The corresponding space charge is shown in figure 3.16, where the space charge
has maximum amplitude under the cathode and decreases towards the anode.
For biases greater than 300 V, the space charge is almost constant in the whole
detector. Time evolution of the electric field for bias 50 V is shown for the time
from 10 µs to 100 ms in figure 3.17 and from 100 ms to 10 s in 3.18. The detector
without bias is not polarized and has no space charge. Shortly after the bias is
applied, the detector starts to polarize, negative space charge forms, and the elec-
tric field warps. At around 50 ms, the electric field at the cathode is almost zero,
and electron injection is suppressed. This stabilizes the space charge. The space
charge for the time from 10 µs to 100 ms is shown in figure 3.19 and from 100 ms
to 10 s in figure 3.20, where it can be seen that the space charge spreads from the
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cathode towards the anode as the time after the bias is applied increases. In the
time range from 100 ms to 10 s, the space charge redistributes itself and stabilizes
around 3 s. The redistribution is caused by retrapping of electrons combined with
an almost zero electric field under the cathode that limits injection. The time
evolution of mean space charge density ρmean (defined in equation (3.20)) for bias
50 V is shown in figure 3.21, where the initial increase of mean space charge am-
plitude is visible, followed with redistribution that decreases mean space charge
density and saturation around 5 s. CWFs for the DC bias are shown in figure
3.22, where CWF increases as a result of increasing electric field towards the
anode. For biases greater than 200 V, the CWFs have distinct transit time, and
for lower biases, the electron cloud is highly broadened by the low electric field
under the cathode. The time evolution of CWFs for bias 50 V is shown in figure
3.23. Shortly after applying bias 50 V, the current waveform decays only because
of charge trapping since the electric field is almost constant in the nearly non-
polarized detector. As the time after applying the bias increases, CWFs increase
as the effects of the electric field overcome the effect of trapping on CWF shape.
The analogical regime where space charge is formed by hole injection from the
anode is experimentally demonstrated for CZTS and studied in section 5.3.

Figure 3.15: Electric field profile for the detector with electron injection under
different DC biases.
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Figure 3.16: Space charge density for the detector with electron injection under
different DC biases.

Figure 3.17: Time evolution of electric field profile for the detector with electron
injection for bias 50 V from 10 µs to 100 ms.

46



Figure 3.18: Time evolution of electric field profile for the detector with electron
injection for bias 50 V from 100 ms to 10 s.

Figure 3.19: Time evolution of space charge density for the detector with electron
injection for bias 50 V from 10 µs to 100 ms.
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Figure 3.20: Time evolution of space charge density for the detector with electron
injection for bias 50 V from 100 ms to 10 s.

Figure 3.21: Time evolution of the mean space charge density for the detector
with electron injection for bias 50 V.
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Figure 3.22: CWFs for the detector with electron injection for several DC biases.

Figure 3.23: Time evolution of CWFs for the detector with electron injection for
bias 50 V.
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4. Experimental techniques

4.1 Transient Current Technique
The Transient Current Technique (TCT) is the primary experimental technique
used in this thesis. It belongs to the family of Time-of-Flight methods based
on measuring the current response of the semiconductor detector to the external
event, which allows studying of charge transport in semiconductor detectors. In
the case of the Laser-induced Transient Current Technique (L-TCT), the external
photo-generating source is above band gap laser pulse, which is strongly absorbed
and generates electron-hole e-h pairs near under the illuminated electrode [88].
Electron-hole pairs are separated by the electric field generated by applied bias.
The generated carriers drift to their corresponding electrodes, moving charge
induces current transients based on Shockley-Ramo theorem (see section 2.8).
Since L-TCT measurements result in a current waveform, much more informa-
tion about charge transport can be obtained. The possibility of triggering on a
laser pulse significantly decreases noise compared to untriggered sources like an
alpha particle because of the repeatable and identical initial conditions of each
successive laser pulse. The resulting CWFs are accumulated for pulse processing.
Precise triggering allows more sophisticated bias and laser pulse schemes. Evalu-
ated information includes internal electric field, carrier drift mobility, CCE, and
parameters of trap levels. The detector has a rectangular shape with two planar
opposite electrodes. The basic principle of L-TCT is shown if figure 4.1, where
the laser pulse arrives from the left into the center of the illuminated cathode.
Holes are immediately collected while electrons drift into bulk. Their movement
induces an electric current in the collecting electrode. This electric current is am-
plified using a current amplifier and measured on a digital sampling oscilloscope.
The laser pulse intensity is chosen as low as possible to have a small photogen-
erated charge that does not significantly change the electric field profile and acts
as a probe. We can also use additional illumination, which is shown in figure 4.1
with red LED, which can either be turned off or used to illuminate the cathode,
anode, or both to further study detector polarization.

The experimental setup used in this thesis comprises above band-gap pulsed
laser diode (660 nm wavelength, 300 mW maximum pulse peak power, 1 ns pulse
width as FWHM), which is powered by Picosecond Lab pulse generator with rep-
etition rate (1 Hz−100 kHz), high-frequency voltage amplifier (L–3 Narda–Miteq
AM–1607–3000) and ultrafast digital sampling oscilloscope (LeCroy WaveRunner
640Zi, 40 Gs/s, resolution up to 11 bits, 4 GHz bandwidth, DC input impedance).
We use a red LED with 660 nm wavelength for the continuous additional illu-
mination. For more detail on setup, see [89]. An in-house made bias switching
unit generates bias pulses, which are synchronized with laser pulse using function
generator (AFG3252, sampling rate 2 GS/s). In our configuration, the bias is
applied to the illuminated electrode, and depending on polarity, we can study
either electron or hole CWFs. Laser pulse delay (LPD) after the rise time of
bias pulse can be varied, which allows observing the formation of space charge
inside the detector. Depolarization time (DT), that is, the time when no bias is
applied to the detector, is needed for depolarization of the detector. Bias pulse
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width (BPW) is short enough to allow depolarization and identical conditions for
every period. The dynamics of the space charge formation is derived through the
Gauss’s law. Assuming the charge neutrality of the sample’s bulk at the ther-
modynamic equilibrium, the short LPD assures that there is not enough time for
the development of the space charge in the detector within the single bias pulse.
Simultaneously, the residual space charge that could appear during the pulse is
drained away at the DT period and the memory effect induced by the cross-talk
between bias pulses is suppressed.

The scheme of the laser pulse and bias pulse relative position is shown in figure
4.2. The transfer function of the used electronic circuit systematically distorts
measured current waveforms. The deconvolution procedure is used to obtain the
original current waveforms. Details of the deconvolution procedure are discussed
in [89].
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Figure 4.1: Scheme of the L-TCT setup.
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Figure 4.2: Scheme of the bias pulsing.
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4.2 Spectroscopic measurements
Spectroscopic measurements allow us to directly study the performance of de-
tector charge collection efficiency and spectral resolution. Radiation detectors
can operate in several regimes, of which the most often is the pulse mode. In
this regime, the detector records each quantum of radiation which generates e-h
pairs inside the detector bulk [57]. Pulse processing comprises the accumulation
of many events that are amplified, shaped, and analyzed. Incoming radiation
quanta induce a current in the detector, which is integrated into the charge, which
is amplified in charge sensitive pre-amplifier and produces voltage step Vmax pro-
portional to the charge. The voltage step is reshaped and further amplified by
shaping amplifier, which converts the voltage step with variation δV into Gaus-
sian with its center Vmax with the full width at half maximum FWHM = δV .
The output of the shaping amplifier is processed in a multi-channel analyzer
(MCA) and recorded in a computer. The scheme of the spectroscopic measure-
ment for a detector with two planar opposite electrodes is shown in figure 4.3.
The experimental setup consists of a vacuum chamber (to prevent loss of energy
of radiation source for alpha particles), an in-house created pre-amplifier based
on Amptek A250 pre-amplifier, shaping amplifier Ortec 671, multi-channel an-
alyzer Ortec MCA easy, voltage source Iseg SHQ 122M and computer with an
in-house created program for complex spectra evaluation. The detector is placed
inside the vacuum chamber with the radiation source pointing at the cathode.
Spectroscopic measurements are evaluated using the Hecht equation (see section
2.11 and equation (2.69)).
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Figure 4.3: Scheme of the setup for radiation spectra measurement [90].
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5. Results and discussion

5.1 GaAs
In this section, we investigate GaAs:Cr sensors by L-TCT at pulsed and DC bi-
asing. We focus on the evolution of CWFs in the time interval 0.1–5 ms after
switching on the bias. Pulsed bias allowed us to suppress the space charge forma-
tion and to study charge trapping effects on the current waveforms, thus enabling
easier evaluation of the electron drift mobility carrier trapping and detrapping
times. The proposed procedure for determining the basic characteristics of the
detectors using L-TCT is based on our long-term experience with the develop-
ment of this technique and the characterization of a number of SI CdZnTe and
perovskite samples [89, 91, 92, 93].

Observed effects are successfully explained by the model of spatially variable
hole conductivity induced by Cr diffusion. Simultaneously, we evaluate the elec-
tron lifetime, electron drift mobility, charge collection efficiency, the evolution of
the internal electric field, and space charge formation. CWFs are analyzed by MC
simulations (see section 3.3). Specific profile of the electric field, the spreading
of drifting cloud of electrons by diffusion, and surface recombination are newly
involved in the simulations. Carrier trapping and detrapping are described by
appropriate spatially and temporary constant trapping time τT and detrapping
time τD (see subsection 2.6.2). The presented model consistently describes all
observed phenomena and their conformity with experimental data.

Three planar detectors with the dimension 5 mm × 5 mm and sample thickness
L = 0.5 mm and one Hall bar sample with the dimensions 3 mm × 15 mm ×
0.5 mm were used for detailed characterization of the material by measuring L-
TCT and galvanomagnetic properties, respectively. Planar detectors exhibited
very similar behavior. Therefore we present results obtained on one selected
detector. Samples were cut from the SI GaAs:Cr single crystal wafer, which
was prepared at the Tomsk State University in Russia by the Cr in-diffusion
to both surfaces of the LEC GaAs wafer [17, 20]. Samples were mechanically
polished using 1 µm Al2O3 in aqueous suspension, and Au/GaAs/Au contacts
were prepared by the evaporation. Room temperature bulk resistivity ρ0 = 2 ×
109 Ωcm was deduced from the Hall effect measurement. The negative sign of
the Hall coefficient, together with rather low room temperature Hall mobility
1700 cm2/Vs indicate the mixed type of conductivity [94] and an important role
of holes in the charge transport. Such findings are in agreement with previously
published data [17].

TOF transient currents were excited through the semitransparent detector’s
cathode by the pulsed laser diode with the above band-gap light at the wavelength
660 nm, which is absorbed in an attenuation length l ≈ 1 µm [95] under the
cathode. The laser pulse FWHM was ≈ 0.5 ns. A neutral density filter was
used for the laser intensity attenuation to suppress the contribution of photo-
generated carriers to the electric field warping and the space charge formation.
Photo-generated electrons created near the cathode drift under the bias toward
the anode and induce the transient current. The output current is amplified by the
bipolar high-frequency amplifier and recorded by a digital sampling oscilloscope
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(see section 4.1). Holes are immediately collected at the cathode. Their relative
contribution to the collected charge calculated according to the Shockley-Ramo
theorem (see section 2.8) for the planar sample as l/(L − l) ≈ 0.002 is very low,
and the effect of holes may be thus neglected. Evolution and shape of all CWFs
were analyzed using MC simulations.

5.1.1 Results

Figure 5.1: Bias dependence of electron current waveforms measured by the L-
TCT at pulsed bias according the scheme in figure 4.2. Dashed lines represent
the MC fit with the model of the constant internal electric field.

Figure 5.1 shows bias dependence of electron CWFs measured in the planar
GaAs:Cr detector using pulse biased L-TCT, where pulsed bias parameters LPD
= 80 µs, BPW = 10 ms and DT = 10 ms were chosen. No visible changes
were observed at the CWFs for LPD < 150 µs or DT > 10 ms. We can thus
consider the detector unpolarized, i.e. with constant electric field distributed
within the whole sample shortly after biasing. Consequently, the slope of CWF is
affected only by the photo-electron trapping and recombination [37]. The sharp
drop of CWFs corresponding to the transit time of electrons drifting toward the
anode was determined for the first time in this material. We also observed a
weak hole signal using the anode illumination in the pulsed bias conditions, but
its structure was too fuzzy that we could not determine transit time and other
transport characteristics. The MC fit plotted by dashed lines in figure 5.1 was
obtained assuming the constant electric field across the sample and the defect
model with two electron traps [83]. We assume one shallow trap characterized
by trapping and detrapping time τT S = 250 ns and τDS = 40 ns, respectively,
and one deep trap with trapping time τT D = 150 ns and negligible detrapping.
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Figure 5.2: Bias dependence of electron current waveforms measured by the L-
TCT at pulsed bias and normalized by corresponding bias. Dashed lines represent
the MC fit expecting the constant internal electric field. Solid lines plot respective
fits after convolution with the function g defined in equation (5.1).

The electron drift mobility evaluated from the MC fit of each CWF at pulse
bias conditions resulted µe = 3650 cm2/Vs. Bias dependence of CWF profiles is
presented in figure 5.1. Bias dependence of CWFs normalized by corresponding
bias is shown in figure 5.2. Such a visualization is particularly useful for the
demonstration of linear scaling of the transit time with applied bias and also for
an illustrative visualization and comparison of CWFs measured in the wide range
of biasing. Dashed lines show the same MC fit as in figure 5.1. Attenuated high-
frequency parasitic oscillations apparent at the initial and final stage of CWFs
are caused by a response of the electronic circuit to the fast rise and drop of the
CWFs [89]. We simulated the respective response function by a substitution RLC
circuit inducing underdamped harmonic oscillations defined for the positive time
t in the form

g(t) = ω2
0 sin(ωt)

ω
exp

(︃
− t

τdm

)︃
, (5.1)

where ω0 = 1.16 × 109 s−1, τdm = 4 ns, and

ω =
√︄

ω2
0 − 1

τ 2
dm

= 1.14 × 109 s−1. (5.2)

The same transfer function (5.1) with given parameters simulating fast oscillations
was used at all calculations in this section. The CWFs involving oscillations are
then calculated convoluting the MC fit with g(t). The final fits are shown by solid
black lines in figure 5.2. We see an excellent agreement of the fit with waveforms at
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all biases. The effect of the shallow electron trap level is evident mainly at low bias
(2.5–10 V), where it increases and broadens the tail of CWFs around the transit
time. Without the shallow trap these waveforms would decrease more rapidly and
the fit would worsen. In contrast to CdZnTe [83], where shallow traps with low τT S

and τDS were reported and carrier drift was delayed by significant trapping, the
shallow level defined in this section does not visibly reduce the electron mobility.
The trapping time of shallow level is comparable with the transit time even at
the lowest biasing and the most of electrons reach the anode without trapping.
Although evaluated electron drift mobility is higher than the value presented in
[20, 21], it is significantly less than the electron mobility µhe = 9400 cm2/Vs
measured in undoped n-GaAs by the Hall effect measurement [96]. Therefore an
existence of the shallow trap with very fast trapping/detrapping on a sub-ns scale
can be considered together with an enhanced charged impurity scattering. An
important finding is documented in figure 5.3, where identical CWFs presented
in figure 5.1 normalized by applied bias are plotted. A nearly equal course of
the Current/Bias curves in its transient period proves the linear scaling of the
initial current transient with bias in the pulsed bias. This fact testifies to the
bias-independent charge drifting through the sample and in consequence to the
negligible electron surface recombination at the cathode (see section 2.10). The
CWFs measured at the DC bias are presented in figure 5.4 and renormalized to
the biased time in figure 5.5. Dashed lines represent the MC fits, solid black
lines in figure 5.5 show respective fits after convolution with the function g(t)
defined in equation (5.1). We got an unusual shape of CWFs, which we had never
observed in other materials or found in literature. We clearly see that regardless
of the magnitude of the biasing, CWFs measured at the DC bias increase initially
and after reaching the maximum approximately at half of the electron transit
time they decrease until the electrons reach the anode. Such observation may
be solely interpreted as an electron transport through the sample permeated by
an ascending electric field, i.e. formation of the negative space charge region
localized in the layer adjacent at the thickness about L/2 to the cathode, and by
a descending electric field induced by the positive space charge in the part near
the anode.

The temporal evolution of CWFs measured at selected biases 10 V and 20 V
by L-TCT with different LPD (as defined in figure 4.2) is plotted in figure 5.6. We
clearly see that the CWFs evolve continuously in their whole profile, which proves
that both positive and negative space charge regions are formed simultaneously.
CWF shapes reach the final form at LPD ≈ 5 ms.

5.1.2 Model of the space charge formation
The explanation of the parallel formation of both positive and negative space
charge regions is a challenging task. Based on our previous investigations of the
space charge formation in biased detectors [80] we conclude that obvious models
explaining the space charge formation by appropriate contact properties cannot
be applied in this material. We need to search for a new model especially to
comply with the following results and known properties of SI GaAs:Cr material.

1. We measured significantly lower Hall mobility using Hall effect measurement
in contrast to the electron drift mobility evaluated with the L-TCT, which
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Figure 5.3: Bias dependence of normalized electron current waveforms measured
by the L-TCT at pulsed bias. Dashed lines represent the MC fit expecting the
constant internal electric field.

testifies on the mixed type of the conductivity of GaAs:Cr and important
effect of holes at the transport. Comparable electron and hole conductivity
σe ≈ σh may be assumed.

2. Very weak L-TCT signal of holes was detected reflecting their very short
lifetime and a significant hole trapping. Characteristic lifetime of holes
τh < 3 ns was estimated. Recently, τh = 1.4 ns was reported [21] supporting
such an expectation.

3. SI GaAs:Cr wafer is prepared by Cr in-diffusion from the Cr layer applied
to both surfaces of the wafer. Due to this method, the residual variation of
defect structure along the sample thickness can be assumed. Since Cr acts
as an acceptor in GaAs:Cr, reduced/enhanced electron/hole density should
appear near the surface in contrast to the middle of the detector. In other
words, the Fermi energy EF may be shifted towards the valence band in
the subsurface regions relatively to the middle of the detector. Variations
at the resistivity similar to those considered here were presented in [17].

At the search for a theory consistently explaining the abovelisted properties we
developed a model considering the weak deviation of the hole conductivity along
the detector. Since the mechanism of the Cr diffusion and defect compensation
is not known in detail in GaAs:Cr yet, we express the course of hole conductivity
profiled along the sample thickness by a nearly symmetrical trial function as

57



follows
σ(x) = σ0 + σ1

(x − xm)2√︂
(x − xm)2 + γ2

, (5.3)

where σ0, σ1, γ, and xm are model parameters. Anticipating diffusion of Cr
occurring from both sides of the wafer, xm ≈ L/2 is foreseen. A similar course
may be deduced from the profile of resistivity [17]. The cathode is set to x = 0 and
sample thickness x = L = 0.5 mm. Let us note that involving holes in the concept
is important due to their short lifetime and consequently a fast interaction with
principal trap levels by the trapping and detrapping. The fast exchange of holes
between the valence band and hole trap assures the local equilibrium between
the band and trap, which is critical for the validity of the concept of variable
conductivity in this model. Considering the mean free path of holes < 7 µm,
which appears sufficiently short in the 500 µm thick sample. Estimating the hole
mobility ≈ 200 cm2/Vs and maximum electric field ≈ 1 kV/cm, we obtain the
lifetime of holes < 3 ns. Evidently, shorter hole lifetime is better for the validity of
the approach. Fast electrons with the extended lifetime could not cause observed
formation of abruptly changing positive and negative space charge.

Equation (5.3) is combined with Ohm’s law

j = σE (5.4)

Gauss’s law
∂E
∂x

= eρ

ε
(5.5)

and continuity equation
∂ρ

∂t
= −1

e

∂j

∂x
. (5.6)

The principle of the model consists in the charging of the hole trap induced by
the variable conductivity and nonequilibrium hole distribution in biased sample.

Equation (5.3) represents only the hole conductivity, which is thus lower than
the total conductivity involving also electrons. Equations (5.3)–(5.5) were substi-
tuted into equation (5.6), which was numerically time-integrated for given σ(x).
E(x) was calculated by the integration of equation (5.5) after each integration
step with the boundary condition preserving the bias

U = −
∫︂ L

0
E(x)dx. (5.7)

Basic properties of GaAs used at the calculations were taken from [96] and
we used the hole mobility µh = 171 cm2/Vs [19]. Acquired time-dependent E(x)
has entered in the MC simulation of experimental CWFs presented in figure 5.4
whilst the trapping/detrapping time of electron traps remained the same as ob-
tained from the fit at pulsed bias shown in figure 5.1. The self-consistent loop
of the electric field calculations and MC simulations was repeated until the op-
timum fit was obtained. All CWFs measured at applied bias ranging in the
interval 2.5-30 V, LPD in the interval 80 µs − 5 ms and illuminating alterna-
tively both sides of the sample were fitted. The unique set of parameters was
retrieved from the fitting of electron CWFs as follows: σ0 = 2.2×10−10 Ω−1cm−1,
σ1 = 1.3 × 10−8 Ω−1cm−2, γ = 0.1 mm and xm = 0.225 mm. The example

58



of the CWF time-evolution in sample biased at 20 V is plotted in figure 5.7.
Dashed lines represent the MC fits using the electric field profile calculated by
the above given model and solid black lines show respective fits after convolution
with the function g(t) defined in equation (5.1). It is seen that the linearly shaped
CWF measured after biasing, identical to those plotted in figure 5.1, gradually
evolves to the DC shaped CWF with the distinct maximum in the center. In-
ternal electric field profile in the detector is presented in the inset, where arrows
show the direction of the electric field evolution. Let us note that all numer-
ical calculations and fits were performed with rather low number of optimized
parameters characterizing the electron (de)trapping τT S, τDS, and τT D and the
conductivity profile defined in equation (5.3). The bias dependence of the in-
ternal electric field profile representing the theoretical fit of DC CWFs is shown
in figure 5.8. We may see an enhanced profiling of the field at increased bias
symmetrically modulated by the variable conductivity σ(x) shown in figure 5.8
as well. Except the sign, the modulation is independent of the polarity of bias,
which entails the same character of CWFs measured from both side of the sam-
ple. Considering obtained results, the conductivity profile reaches its minimum
at xm = 0.225 mm, where σ(xm) = σ0 = 2.2 × 10−10 Ω−1cm−1 and maximum at
the surface σ(0) = 4.4×10−10 Ω−1cm−1; σ(L) = 5.2×10−10 Ω−1cm−1. Respective
position of Fermi energy EF (xm) = EV + 0.689 eV, EF (0) = EV + 0.672 eV, and
EF (L) = EV +0.668 eV. The hole and electron densities range from 8×106 cm−3

to 1.8 × 107 cm−3 and from 6 × 104 cm−3 to 1.4 × 105 cm−3, respectively, which is
consistent with negative sign of the Hall coefficient with reduced measured Hall
mobility effected by mixed transport. Estimating the hole mobility ≈ 200 cm2/Vs
and maximum electric field ≈ 1 kV/cm, we deduce the lifetime of holes < 3 ns
corresponding to the mean free path of holes < 7 µm, which appears sufficiently
short in the 500 µm thick sample. Evidently, the shorter hole lifetime is better for
the validity of the approach. The steady state space charge density distribution
deduced through equation (5.5) from the electric field profile presented in figure
5.8 is shown in figure 5.9. The principle of the positive charging stems from the
weak injection of holes from the anode related with the larger hole conductivity
and density in that region. Oppositely, the negative charge appears in the region
adjacent to the cathode where the holes are depleted due to relatively lower con-
ductivity in the middle of the sample, which inhibits the hole current. It is worth
pointing out to the fact that only two parameters σ0 and σ1 allowed us to describe
both the velocity of the space charge formation and the final magnitude of the
space charge. Simultaneously, the fitted average hole conductivity of the sample
< σ ≥ 3.2 × 10−10 Ω−1cm−1 is slightly lower than the experimentally determined
conductivity 5×10−10 Ω−1cm−1, which is in agreement with the model prediction
above.

5.1.3 Charge collection efficiency
The bias dependence of the collected charge evaluated by the time-integration of
CWFs in both bias conditions presented in figures 5.1 and 5.5, is shown together
with the single carrier Hecht equation fits (see section 2.11) in figure 5.10. We
evaluated the electron mobility-lifetime products (µeτe)P ulse = 5.5 × 10−4 cm2/V
and (µeτe)DC = 5.2 × 10−4 cm2/V from the pulse and DC biased CWFs, respec-
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Figure 5.4: Electron current waveforms measured by the L-TCT at DC bias.
Dashed lines represent the MC fit calculated according the model defined in
subsection 5.1.2

Figure 5.5: Pulsed bias dependence of the electron CWFs. The dashed lines
represent the MC fit.
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Figure 5.6: Electron CWF dependence on the laser pulse delay for 10 V and 20 V
measured by the L-TCT at pulsed and DC bias. Arrows show the direction of
the waveform evolution.

tively. The mobility-lifetime product in pulsed regime (µeτe)P ulse is equal to the
product of µe = 3650 cm2/Vs and τT D = 150 ns obtained by the MC simula-
tion. Let us note that the shallow electron trap does not induce real losses to
the drifting charge and it does not affect the charge collection. Consequently, the
electron lifetime is equal to τT D. With respect to the very low surface recombina-
tion, (µeτe)P ulse represents the right value of µeτe unaffected by the space charge
formation. Slightly lower value of (µeτe)DC is caused by the electric field warping
in DC conditions due to the space charge formation in the detector and subse-
quently by extended transit time. For a comparison, applying the pulse height
spectrum analysis using alpha particles we obtained (µeτe)α = 1.4 ×10−5 cm2/V.
The large difference between (µeτe)P ulse and (µeτe)α is caused by a strong plasma
effect inducing strong loss of photogenerated electrons and the charge collection
depression especially at low biases. Similar lower (µeτe)α value was also measured
in [28] with the same interpretation.
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Figure 5.7: Electron CWF dependence on the laser pulse delay for 20 V mea-
sured by the L-TCT at pulsed and DC bias. Dashed lines represent the MC fit
calculated according the model defined in the subsection 5.1.2. Solid lines plot
respective fits after convolution with the function g defined in equation (5.1).
The internal electric field profile in the detector is presented in the inset, where
arrows show the direction of the electric field evolution.

Figure 5.8: Bias dependence of the internal electric field profile at the DC bias.
Dashed line shows the profile of fitted conductivity.
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Figure 5.9: Bias dependence of the space charge density profile at the DC bias.

Figure 5.10: Bias dependence of collected charge evaluated by the time-
integration of CWFs at the pulse and DC bias conditions. Solid and dashed
lines represent the single carrier Hecht equation fits.
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5.1.4 Section conclusion
In this section, we measured electron current transients in GaAs:Cr sensor using
L-TCT in pulsed and DC bias. We observed the gradual formation of nega-
tive and positive space charge within 5 ms. Electron lifetime τe = 150 ns and
electron drift mobility µd = 3650 cm2/Vs were evaluated from the MC simula-
tions. Pulsed bias application eliminated internal electric field distortion. L-TCT
allowed the determination of the internal electric field profile, aiding growth tech-
nology optimization. It provides a non-destructive method with better precision
than commonly used techniques for studying charge transport and internal elec-
tric properties in GaAs:Cr. We showed that GaAs:Cr is a suitable material for
radiation detection. Results of this section were published in [16].
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5.2 CdZnTe
In this section, the charge transport in CZT detector under X-ray high flux is
studied. One of the most important requirements for radiation sensors used in
high-flux photon counting applications is their ability to operate in an intense and
rapidly changing X-ray environment. These sensors need to sufficiently sustain
high fluxes of incoming X-rays of the order of 600 Mcps/mm2 while maintaining
a short enough charge collection time and high temporal stability [97]. Due to
the low mobility of holes compared to that of electrons and substantial hole trap-
ping, traditionally, the use of CdTe and CdZnTe materials under these intense
irradiation environments has been limited [98, 99]. Suffering from severe X-ray
dynamic polarization because of electric field distortion and collapse, historical
high-Z sensors were unable to operate under relatively low X-ray flux levels. In
recent years, however, these issues have been studied extensively, and significant
gains in sensor performance have been achieved [37, 100]. These advancements
were mainly due to improvements in crystal growth (by suppressing the density
of the deep hole traps) and fabrication quality (by minimizing the fabrication-
induced surface states). In particular, important progress in the charge transport
properties and uniformity has been made. High electron mobility–lifetime prod-
ucts of electrons µeτe greater than 10−2 cm2/V were achieved [101]. Simulations
of semiconductor radiation detectors were studied in [71, 85, 86, 102, 103] to
obtain charge transport properties. Charge transport in pixelated detectors was
studied in [104, 105, 106], where the effects of charge sharing and material quality
on detector performance were investigated.

High-flux sensors typically require an operating bias U of the order of 1000 V.
Assuming that the typical value for the electron mobility is µe = 1000 cm2/Vs,
then for a high voltage bias of U = 1000 V, the electric field for a L = 2 mm thick
detector is E = 5 kV/cm, which corresponds to the electron transit time through
the whole detector thickness of 40 ns. This high electric field might cause some
long-term reliability concerns; therefore, it would be desirable to reduce its value.
In addition, the requirement of generating high-voltage U causes limitations for
portable scanning equipment. It is, therefore, important to study the minimum
electric field required for proper sensor operation. The main problems arising
due to a reduced electric field are the slowing down of the drift velocity and the
extension of the transit time. Reducing the electric field leads to a decrease in
the amount of collected charge and the count numbers obtained.

In this section, we simulate the charge transport inside the sensor, evaluate the
properties of carrier traps and demonstrate the effects caused by a reduced electric
field. We define the critical bias Uc as producing sufficient collection efficiency
to operate under high X-ray flux and characterize the sensing quality of the
sensor operating under such conditions. The simulations fit the experimental data
measured on commercial detector at Redlen Technologies, Inc. The simulations
allowed us to obtain additional insights into the physical effects on the detector
under low electric field. The existing literature does not cover this topic.
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5.2.1 Experiment
At Redlen Technologies, Inc. several high-flux sensors with various pixel pitches
and 2 mm thickness were fabricated and experimentally analyzed using a variety
of characterization techniques using PICTS (Photo-Induced Current Transient
Spectroscopy), Corema resistivity measurements, DLTS (Deep Level Transient
Spectroscopy), and the Pockels technique. It was found that the Pockels ef-
fect, which builds on the linear electro-optic effect where the refractive index of
a medium is modified in proportion to the applied electric field strength, was
particularly useful in measuring the electric field under various high-voltage con-
ditions. In this section a semi-insulating commercial-grade CdZnTe detector with
the dimensions of 10 × 10 × 2 mm3 with 330 µm pitch used in spectral Computed
Tomography high-flux applications is studied. The CdZnTe sensor used in this
study reaches the highest count rate performance known in the X-ray detection of
High-Z materials, achieving rates over 1000 Mcps/mm2 [107]. The detector has
two opposite electrodes: the cathode is planar, and the anode is pixelated [108].
The detector is characterized using the Pockels technique [109, 110, 111], from
which the electric field profile is obtained for several applied biases in the dark
and under different X-ray fluxes. A standard X-ray tube set-up with a kVp of
120 kVp is used [112]. The respective X-ray spectrum and attenuation coefficient
of CdZnTe are shown in Figure 5.11 [113, 29]. The scheme of the detector with
incoming X-rays from the cathode side is shown in Figure 5.12, where the typical
electric field profile of a polarized detector is outlined.

The attenuation coefficient of X-ray α(E) is fitted in the interval 10 keV –
120 keV by a fitting function, as follows:

α(E) =
[︄
808 × 102.65 + 114.6(E48K)2.65 Θ(E − E48K)+

+94.7(E52K)2.65 Θ(E − E52K)
]︄
/E2.65,

(5.8)

where Θ(E) is Heaviside step function (see section 2.4). E48K = 26.7112 keV
and E52K = 31.8138 keV are taken from [113].

Detector performance was evaluated using a photon-counting Application Spe-
cific Integrated Circuit (ASIC) that is used in the detector module for Spectral
Computed Tomography. The ASIC has 864 (24 × 36) identical channels. Each
channel has a typical charge sensitive amplifier (CSA) with a feedback capacitor.
The output of the CSA is amplified by the shape amplifier and compared in the
comparator to the set threshold(s). When the signal crosses pre-defined thresh-
old levels (for example, 16 keV), the clock starts, and the circuits samples for the
sampling time ts = 16 ns of the collected charge. If the charge is saturated in
this period, the correct value is obtained. If saturation is not reached, the circuit
reads a lower value, creating an energy error. This feature is called a ballistic
deficit.
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Figure 5.11: X-ray spectrum (red) with attenuation coefficient in CdZnTe (inset).

Figure 5.12: Schematic view of the electric field distribution in a detector with a
positive space charge.
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5.2.2 Simulation of the detector performance at low bias
Detector polarization induced by hole trapping under high-flux X-ray excitation
leads to a significant reduction in the electric field near the pixelated anode.
An extended charge collection time amplifies the ballistic deficit and limits the
maximum accessible X-ray flux that can be distinguished in spectrally sensitive
electronics. An extended transit time also constrains high-flux applications, lead-
ing to pileups and the loss of energy resolution. In our case, the transit time is
still short enough to minimize the charge sharing between the pixels due to dif-
fusion broadening. Considering that the transit time tr is shorter than 200 ns for
a bias of > 200 V, we estimate the diffusion broadening ∆x ≈

√
Deτe < 20 µm,

which is much less than the pixel pitch of 330 µm. Thus, we do not add the cor-
rection to the charge sharing here, i.e., the signal of only one pixel is considered.
In this section, we model space charge effects due to high-flux X-ray irradiation
with the spectrum plotted in figure 5.11. In the charge transport model used for
the charge collection calculation, we only consider the drift current of electrons
and describe the current waveform I(t) in one pixel in a pixelated detector with
the electric field profile using Shockley-Ramo theorem (see section 2.8) with the
following formula:

I(t) = Q(t)µeE(x(t))EW (x(t)) (5.9)
where µe is electron drift mobility, E(x) is the electric field at the depth x, and
EW (x) is the weighting field calculated for the pixelated detector according to
[67]. Drifting photogenerated charge Q(t) = Q0 exp (−t/τe) is attenuated with
the electron lifetime te that is taken to be constant, i.e., the space charge is
considered to be independent, for simplicity. The weighting field against the
middle of the pixel is considered. The electric field is obtained through the fitting
of the Pockels effect data.

Starting with equation (5.9), the numerical treatment is performed according
to the following steps.

1. The position of the drifting charge excited at the cathode x(t) is calculated
by integrating the following kinetic equation:∫︂ x(t)

0

dx′

E(x′) = µet. (5.10)

2. Normalized charge q̃0(t) excited at the cathode and collected in time t,
considering the attenuation of the collected charge due to the RC time τRC

is calculated by integrating the following equation:
dq̃0(t)

dt
= − q̃0(t)

τRC

+ I(t)
Q0

. (5.11)

The RC time is usually much longer than the transit time, and the first
term on the right-hand side of equation (5.11) may be neglected.

3. Utilizing the linearity of equation (5.11), we may conveniently generalize
q0̃(t) to the case of the charge collection of the normalized charge excited
in the detector’s interior that may be expressed as follows:

q̃(t, td) =
[︃
q̃0(t) − q̃0(td) exp

(︃
−t − td

τRC

)︃]︃
exp

(︃
td

τe

)︃
Θ(t − td). (5.12)
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td is the drift time representing the drift delay of the charge excited at the
cathode to the depth d in the detector where X-ray photon absorption has
occurred. td is linked to d by equation (5.10). The scaling of the drift of
the charge through the detector by the drift time appeared to be useful
in the calculations. This achievement enables us to significantly simplify
the enumeration when the calculation of the collected charge following the
excitation wherever in the bulk may be derived from the collected charge
excited near the cathode without the additional solution of differential equa-
tion (5.11).

4. We simulate the processing of the collected charge by the electronic circuit.
This circuit is characterized by the threshold energy Et = 16 keV at which
the charge sampling starts, and the sampling time ts, defining the time
window of the charge collection. The process is simulated in two steps.
At first, the collected charge expressed as Q0q̃(t, td) is monitored, waiting
for the time at which it exceeds the energy threshold. Subsequently, the
collected charge qc(td) = Q0q̃(t + ts, td) is evaluated.

5. Having qc(td), we may start with the construction of the spectra. The
normalized spectrum Sm(ch, EX), indexed by a channel number ch and
excited with a monochromatic X-ray photon with energy EX , is obtained
by the sum of the contributions to the spectrum excited by the photon
absorbed in a specific depth of the detector. We proceed with the following
loop in i

S(i)
m (chi, EX) = S(i−1)

m (chi, EX) + α(EX) exp (−α(EX)x(tdi))
∆xi

∆t
, (5.13)

where the channel number chi is defined by the collected charge

chi = ⌊qc(tdi)
∆Q

+ 1
2⌋, (5.14)

where lower brackets represent the floor function that returns the integer
part to yield chi. The index i scales the drift time tdi through the detector
thickness, and ∆Q defines the width of one channel and ∆xi = x(tdi) −
x(td(i−1)). In real calculations, to obtain smooth curves, we divide the
energy axis into many more channels than used in the experiments, i.e.,
∆Q is sufficiently small. The channel is assigned to the apparent photon
energy

E = ch∆QEX

Q0
= ch∆EX , (5.15)

which can be simplified by defining the channel energy width ∆EX =
∆QEX/Q0. This option is further used in calculations, allowing us to join
photoexcited charge with energy units.

6. The last step of the treatment is the construction of the full X-ray spectrum
S(E). It is calculated by integrating the contributions of photons at a
specific energy weighted with the corresponding radiation intensity. The
final formula reads as follows:

S(E) =
∫︂

Sm(ch, EX)I0(EX)dEX , (5.16)

where E and ch are interconnected by equation (5.15).
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5.2.3 Discussion
To simulate the charge transport and the space charge formation inside the de-
tector, we numerically solved the drift–diffusion equation coupled with Poisson’s
equation [80]. This allowed us to obtain the profiles of space charge, electric field,
and energy level occupancies. Since the polarization phenomena are caused, in
our case, by high flux irradiation, we disregarded electric-contacts-induced po-
larization [80, 100, 110]. We used Ohmic contacts that cause zero band bending
under contacts in simulation to prevent detector charging in the dark. Possible
deviation of the contacts from an Ohmic character does not affect the model un-
less the injection current approaches the value of the photocurrent. Obviously,
the use of a strongly injecting contact would be improper because an enhanced
injected current would induce an enormous noise, making the detector useless.
The simulations were performed on a sensor with a thickness of L = 2 mm. Elec-
tron mobility µe = 1000 cm2/Vs and hole mobility µh = 80 cm2/Vs are consistent
with common values measured in CdZnTe [114].

To simulate charge transport inside detector, we numerically solved the DDE
coupled with Poisson’s equation [100, 101]. This allowed us to obtain profiles of
space charge, electric field, and energy level occupancies. Since the polarization
phenomena are caused by the high flux irradiation, we used ohmic contacts that
cause no band bending under contacts in simulation to prevent detector charging
without X-ray flux. Simulations are done on sensor with thickness L = 2 mm.
Electron mobility µe = 1000 cm2/Vs and hole mobility µh = 80 cm2/Vs are
consistent with common values measured in CdZnTe [71].

Typical electric field profiles measured using Pockels effect in the dark (no X-
ray) and 16 Mcps/mm2 and 80 Mcps/mm2 high-flux X-ray irradiation are shown
in figure 5.13; the simulated electric field profiles are shown in figure 5.14. As
expected, the electric field is uniform under dark conditions, but it degrades near
the anode under high-flux excitation. The simulated electric field profiles show
good agreement with the experiment, validating the used defect model (figure
5.13).

X-ray excitation intensity representing the rate of (e-h) pairs generation inside
the sample is calculated according to the following formula:

Iext(x) = 1
Eb

∫︂
Ixray(E)α(E)E exp (−α(E)x) dE, (5.17)

where Ixray is X-ray photon flux density, E is the energy of the X-ray photon, and
Eb = 4.5 eV is the average energy of the formation of (e-h) pairs. The respective
excitation intensity Iexc plotted in figure 5.15 shows dominant excitation under
the cathode and a fast decrease toward the anode.

The defect model fitting the electric field profile consists of one electron and
one hole deep trap whose parameters are defined in the defect scheme in fig-
ure 5.16. The Fermi level was fixed in midgap EF = EC − 0.775 eV. Since
we performed only steady-state experiments at a constant temperature, capture
cross-cannot be determined. As discussed in [87] steady-state experiments do not
offer a way to determine the capture cross-section of the traps.
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Figure 5.13: Measured electric field profiles in a 2-mm-thick CZT sensor; solid
lines represent electric field with no incoming X-ray (dark mode), dashed lines
are for X-ray 16 Mcps/mm2, dotted lines are for X-ray 80 Mcps/mm2, blue, red,
and green color mark 300 V, 500 V, and 700 V bias, respectively.

Figure 5.14: Numerical simulation of field profiles in a 2-mm-thick CZT sensor;
solid lines represent electric field with no incoming X-ray (dark mode), dashed
lines are for X-ray 16 Mcps/mm2, dotted lines are for X-ray 80 Mcps/mm2, blue,
red, and green color mark 300 V, 500 V, and 700 V bias, respectively.
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Figure 5.15: Profile of X-ray excitation, which shows dominant excitation un-
der cathode with fast decrease toward anode. Weighting field was calculated
according [67] in the middle of the pixel with 330 µm pitch.

Figure 5.16: Scheme of energy levels with parameters determined by the fit of
electric field. Hole trap is red; electron trap is blue.

The corresponding space charge density is shown in figure 5.17. While the
hole trapping in the hole trap causes the positive space charge and the tilt of
the electric field throughout the sample, the presence of the electron trap causes
a gradual decrease in the positive space charge along the sample thickness and
even negative space charge formation near the anode.

Subsequent measurements were performed using a standard X-ray tube with
a 120 kVp setup at a photon flux of 20 Mcps/mm2. The counts vs. bias were
measured at a count rate of 20 Mcps/mm2, as shown for one representative pixel
in figure 5.18. The counts for U < Uc are approximated using a straight line, and
the point at which maximum counts were achieved is considered to be Uc ≈ 265 V.
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Figure 5.17: Calculated space charge density from the numerical simulation. In
the dark regime, there is no space charge in the sample.

This procedure was repeated for each pixel, and the distribution of Uc is shown in
figure 5.19. The decrease in measured counts at low bias is not mainly caused by
carrier trapping but by the ballistic deficit of low energy X-ray photons, which do
not cross the threshold level, frequent pileups, and charge sharing between pixels
[104], which is accentuated at the low electric field near the pixelated anode.

In figure 5.20, we show the current waveforms calculated using equation (5.9)
with the electric field obtained from the numerical simulation with the X-ray
photon absorbed close to the cathode, and the use of the weighting field is plotted
in figure 5.15. As is common in pixelated detectors, the weighting field is low near
the cathode and rapidly increases near the anode due to specific pixel sensitivity.
This feature allows us to eliminate holes from the calculations since only a small
number of holes is generated near the anode in the area with the large value of the
weighing field. Simultaneously, the low mobility of holes yields a low contribution
to the charge collection at the chosen short sampling time.

The current waveforms in figure 5.20 were simulated with near-cathode ab-
sorption, this does not affect the result since the weighting field is small there,
and only electrons that drift near the anode contribute to the signal. This is
demonstrated in figure 5.21, where the collected charges for photons absorbed
near the cathode (red) and deep inside the detector 1.44 mm (blue) are shown.
These curves are synchronized in time so that the arrival of charge to the anode
occurs at the same time, 146 ns, regardless of the depth of the charge creation.
The lower detected counts in figure 5.18 at low bias are due to the long transit
time compared to the sampling time. Carrier losses due to the limited lifetime
have a minor effect in this case since the drift time remains much shorter than
the lifetime, even at the considered low bias. In the case of zero space charge, the
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Figure 5.18: Measured counts in 2-mm-thick CZT sensor under X-ray conditions
with a count rate of 20 Mcps/mm2 for a typical pixel. Procedure to extract
critical bias Uc is shown at the intersection of linear fit for bias U < Uc with the
horizontal line at maximum CCE.

Figure 5.19: Distribution of Uc values for all pixels.
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Figure 5.20: Simulated current waveforms for different biases and 20 Mcps/mm2

X-ray.

shoulder at the count number in figure 5.18 would be shifted significantly to the
lower bias, and the segment of the respective curve would be flat in the plotted
region.

Based on the critical bias shown in figure 5.18, we have chosen a bias of
300 V as the characteristic value of low bias considered for the utilization of
the detector for X-ray spectroscopy. We calculated the X-ray spectrum detected
by the detector simulated by the theory presented in items 1–6 in subsection
5.2.2, assuming that the detector polarization is due to the high-flux X-rays at
20 Mcps/mm2 and common parameters characterizing the circuit τRC = 1 µs,
which, in our case, is much longer than the sampling time of ts = 16 ns, and
its effect is negligible. The corresponding spectrum, together with the original
spectrum, is plotted in figure 5.22. We may identify two distinct regions in
the spectrum. While the low-energy part fits the original spectrum very well, the
high-energy counts are collected at nearly the same energy of about 45 keV, which
manifests as the large peak in that region. The effect is induced by the ballistic
deficit, which is caused by the slow charge collection, which is not completed
during the 16-ns sampling time.

The details of the charge collection are demonstrated in figure 5.23, where
the collections of the charge induced by the photons with three different energies
are depicted. The red curve represents the relative collected charge whose shape
remains the same at all photon energies. The charge collection by the electronics is
critically affected by the relative position of the threshold marked with horizontal
lines representing a threshold of 16 keV. The first case (A) represents the photon
with an energy smaller than the threshold of 16 keV. Since the collected charge
curve is lower than the threshold, no sampling event occurs, and the charge is
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Figure 5.21: Comparison of the collected charge of X-ray photon absorbed near
the cathode (red), and deep inside the detector, 1.44 mm (blue). U = 300 V.

Figure 5.22: X-ray spectrum simulated for common parameters characterizing
the electronic circuit, ts = 16 ns (blue). The original X-ray spectrum is plotted
for comparison (red).
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not recognized by the electronics. Inasmuch as the used X-ray spectrum shows
very low intensity below 16 keV, this defect does not manifest in the calculated
spectrum shown in figure 5.22. Case (B) represents the photon with energy larger
than the threshold. As soon as the collected charge is greater than the threshold,
the trigger starts and samples for the sampling time ts (blue bar), after which
the charge is collected (marked with x). Since the collection terminates after
the transit time, the spectral profile is nearly linear and without the ballistic
deficit being only slightly reduced in terms of energy due to the RC time, which,
in our case, is much longer than the sampling time, and its effect is negligible.
Case (C) represents the high-energy X-ray photons with energy much larger than
the threshold. The threshold is crossed early in the rising part of the curve,
and collection after the sampling time occurs before saturation. This results in
collection before the electron reaches the anode, and ballistic deficits appear. This
results in a low-quality spectrum. This fact is well documented in figure 5.24,
where we show the charge collection efficiency of the X-ray photon absorbed near
the cathode. The collected charge dependency on the excited charge is calculated
using equation (5.15). We marked three energy regions in figure 5.24 showing
significant deviations from the optimum curve. The first region, with energy
less than about 16 keV, does not contribute to charge collection. The reason is
the energy threshold of 16 keV, which is not overcome by these photons (this
corresponds to the photon energy marked with (A) in figure 5.24). The second
region of 16–45 keV shows a nearly linear profile, which is only slightly reduced
relative to the optimum. These photons are collected, showing correspondingly
reduced collected charge (the collection of photons, marked with (B), from this
region, is shown in figure 5.23). The third region is for high-energy photons
with an energy greater than 45 keV. These photons reveal incomplete collection
resulting from the large ballistic deficit. The collection of photons from this
region, marked with (C), is shown in figure 5.23. The ideal full-charge collection
is shown in figure 5.24 with a straight red line starting from the initial coordinates.

To obtain a better spectrum with the same low bias of 300 V, the sampling
time should be appropriately extended. We followed such a scheme and calculated
the X-ray spectrum in the presented model, extending the sampling time to 32 ns.
The spectrum calculated under such conditions is plotted in figure 5.25. It is
evident that the spectrum is much better in this case. The weak deviation from
the original spectrum is mainly due to the neglected holes, and the finite lifetime
of electrons that was used is 20 µs in these simulations.
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Figure 5.23: Analysis of sampled charge depending on photon energy. In case
(A), the photon energy is lower than the threshold and the charge is not detected.
In case (B, C), the threshold is triggered and the charge is sampled.

Figure 5.24: Dependence of the collected charge on the excited charge by X-ray
photon absorbed near the cathode (blue) compared with the ideal full collection
plotted with a straight line (red). Labels point to the threshold levels shown in
figure 5.23.
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Figure 5.25: X-ray spectrum simulated for extended ts = 32 ns (blue). The
original X-ray spectrum is plotted for comparison (red).

5.2.4 Section conclusion
In this section, we studied polarization in CdZnTe radiation detectors induced by
high-flux X-ray excitation. The electric field, measured using the Pockels effect,
was modeled using a defect model solving drift-diffusion and Poisson’s equations.
We developed a procedure to determine the minimal bias for optimal counting
performance acceptable for spectroscopy applications. A minimum bias of 300 V
was found suitable for a 2-mm-thick detector in high-flux X-ray spectroscopy. Our
numerical model predicted counting and spectroscopic behavior, showing X-ray
spectrum warping due to delayed transit time caused by detector polarization.
Decreased counts at low bias resulted from low-energy X-ray photons not reaching
the threshold level, frequent pileups, and charge sharing. This model serves as a
useful diagnostic tool for sensor characterization. We showed that CdZnTe has a
good detection quality even at high-flux X-ray excitation. Results of this section
were published in [115].
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5.3 CdZnTeSe
In this section, the charge transport in the CZTS detector under pulsed and
DC bias is studied using L-TCT. We observe a positive space charge that could
be eliminated using pulsed bias. Charge transport parameters are obtained by
Monte Carlo simulations of electron and hole transient currents. In this section,
semi-insulating p-type CZTS sample with resistivity 1.1 × 1010 Ωcm, dimensions
6.9 mm × 5 mm × 1.7 mm, and selenium and zinc concentration of 4% and 10%,
respectively, was studied by L-TCT. The CZTS single crystal was grown by the
Traveling Heater Method at Brookhaven National Laboratory. The source CZT
and CdSe materials of 6N purity were used for the CZTS synthesis and growth.
The bandgap energy at room temperature is Eg ≈ 1.52 eV [116]. Two planar
electrical contacts were prepared by electroless deposition of gold from a 1%
gold chloride methanol-based solution [117]. It has been previously shown that
gold forms a quasi-ohmic contact on CZT material [118], and it was successfully
applied for CZTS detectors as well [119, 120].

The sample was characterized using L-TCT in combination with a pulsed bias,
which allowed us to suppress the space charge formation and to study charge
trapping effects on the current waveforms, thus enabling easier evaluation of the
electron (hole) drift mobility carrier trapping and detrapping times [16, 83]. Elec-
tron (hole) current waveforms were measured by illuminating a semi-transparent
cathode (anode) using a laser pulse with an above bandgap wavelength at 660 nm,
which is absorbed in less than 1 µm under the illuminated electrode [121]. Illumi-
nating the cathode/anode, the photogenerated holes/electrons are immediately
collected on the exposed electrode, while the carriers with the opposite charge
drift toward the other electrode and induce a transient current described by the
Shockley-Ramo theorem (see section 2.8). The signal is amplified and recorded
by a digital sampling oscilloscope (see section 4.1). A neutral density filter is
used to ensure that the photogenerated charge is small enough not to affect the
electric field inside the detector. Typically, a transient charge of hundreds of fC
is used. The laser and bias pulse positions are synchronized as shown in figure
4.2 and characterized by a laser pulse delay (LPD), bias pulse width (BPW),
depolarization time (DT), and pulsing period (PP) [16]. The laser pulse width
has an FWHM of 2 ns. Decreasing the LPD to the micro-second time scale, the
space charge formation induced by the carrier injection or depletion induced by
non-ohmic contacts can be suppressed. This option simplifies the MC simulations
offering the possibility to directly determine the lifetime of drifting carriers from
the slope of the CWF [16, 37, 35].

For the numerical simulation, we combined two approaches routinely used by
researchers to simulate charge-transport phenomena in semiconductors. That is,
the solution of the DDE coupled with Poisson’s equation was combined with the
SRH model depicting the carrier (de)trapping. We used a custom code [87, 80],
which allows us to conduct comprehensive simulations of all phenomena occur-
ring in planar samples (see section 3.2). Nevertheless, the approach involves an
extensive inclusion of spatial derivatives, which are time-consuming when called
upon for calculating the transient currents. We thus combined our code with the
MC method described in section 3.3. Here, we embed the electric field profile
and recombination level occupancy calculated at specific conditions as defined by
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the bias, delay time after biasing, etc. by DDE. MC is then used to calculate
the current transient. The combination of both techniques makes the numerical
treatment much more efficient and significantly reduces the computation run-
time.

Figure 5.26: Pulsed bias dependence of the electron CWFs. The dashed lines
represent the MC fit.

5.3.1 Results
The bias dependence of the electron and hole CWFs using a pulsed bias with
pulsing parameters LPD = 80 us, BPW = 200 ms, and DT = 800 ms is shown in
figure 5.26 and 5.28, respectively. Figure 5.27 and 5.29 show CWF normalized by
respective bias. The LPD was chosen short enough to eliminate the space charge
formation, and DT was long enough to suppress the memory effects between
consecutive bias pulses. The detector is fully depolarized after each pulse period.
No visible changes of the CWF shape were observed with an LPD from 80 µs
up to 500 µs. We thus consider the detector unpolarized at each bias with a
constant electric field for LPD = 80 µs. Without any space charge the transit
time scales with bias and when CWFs time are multiplied by corresponding bias,
their falling edge overlaps (see figures 5.27 and 5.29), which also verifies that no
space charge is present. It is important to point out that the noise in figures
5.27 and 5.29 is more visible for lower biases because of the current normalization
by corresponding bias. Fast oscillations apparent at the start of the electron
waveforms in figure 5.27 and others in this section are generated by the adjoint
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Figure 5.27: Pulsed bias dependence of the electron CWFs normalized by respec-
tive bias.

electronics. We do not study this feature in detail here. The relevant study is
in section 5.1. The black dashed lines in figures 5.26 and 5.28 as well as in all
consecutive figures are the MC fits, which are discussed later in the text.

Figure 5.30 shows the bias dependence of the electron CWFs for illumination
of the cathode using a DC bias with laser pulsing period of 1 s. The dashed lines
represent the MC simulations. Before measuring CWFs the detector became fully
polarized in less than one second and retained a stable space charge during the
measurements. The inset in figure 5.30 shows the bias dependence of the electric
field profile within the detector, which reveals a strong electric field dependence
on position inside the detector with a nearly zero electric field under the anode.
Figure 5.31 shows the evolution of the electron CWFs under a -400 V pulsed bias
using an LPD ranging from 80 µs up to 200 ms and PP = 1 s. The correspond-
ing MC simulation is shown by the dashed line. Current waveforms were also
measured in the range of laser pulse delay 80 µs–500 µs. Since no visible change
was observed using an LPD < 500 µs, the data are not shown in figures 5.31 and
5.33. We found that the detector remains fully depolarized in the LPD interval of
80 µs − 500 µs with no apparent space-charge formation, and the CWFs are only
slightly damped due to the charge trapping. CZTS material shows long-term sta-
bility in the range of pulsed and DC biases used in our experiments. No material
change was observed after many hours of applied DC bias, and repeatable results
for the L-TCT experiments were measured. The main difference between DC and
pulsed bias is the DT, which allows the elimination of the space charge. By using
short BPW and long DT, the detector polarization can be prevented. The mea-

82



Figure 5.28: Pulsed bias dependence of the hole current waveforms. The dashed
lines represent the MC fit.

surements with DC and pulsed bias are otherwise the same. The space-charge
formation is caused by the redistribution of charge on the energy levels, and a
repeatable result of the L-TCT experiment was measured after many hours of
applied DC bias. The detector reveals gradual polarization for an LPD > 500 µs,
which causes the corresponding tilting of the CWF. The polarization saturates
around LPD = 200 ms when the electric field reaches almost zero value under
the illuminated anode. The inset in figure 5.31 shows the LPD dependence of the
electric field profile obtained by MC simulations, which correlates with the space
charge formation.

Analogous experiments illuminating the anode were performed to measure
the CWF for holes. Figure 5.32 shows the DC bias dependence of the hole
CWF with a laser pulsing period of 1 s, and the inset in figure 5.32 shows the
electric field obtained from MC simulations. The hole cloud generated under
the illuminated anode drifts at the beginning through the area with a relatively
low electric field, which amplifies the surface recombination due to the low drift
velocity (see equation 2.64). The low electric field is also responsible for the carrier
cloud broadening, which creates the wide tail of the CWF. Figure 5.33 shows the
evolution of the hole CWFs under a 400 V pulsed bias using an LPD ranging from
80 µs up to 200 ms and PP = 1 s. The dashed lines represent MC simulations.
The inset in figure 5.33 shows the evolution of the electric field profile dependence
on the LPD as obtained by MC simulations. Space charge density corresponding
to electric field profile evolution is shown if figure 5.34. We note that the electric
field profiles deduced both from the electron and hole L-TCT signals are identical
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Figure 5.29: Pulsed bias dependence of the hole CWFs normalized by respective
bias.

within the experimental error. This observation verifies our model and affirms
the validity of the technique for the characterization of transport properties for
both carrier types. The nearly constant depth at which the electric field profiles
cross (see inset in figures 5.31 and 5.33) stems from the applied bias (-400 V),
which requires a fixed value of the electric field integral over the sample thickness.
Since the electric field profile is an almost linear function, the profiles intersect
at nearly the same point.

5.3.2 Model
To describe the electron and hole charge transport properties in the CZTS sam-
ple, a combination of custom MC simulation with a program solving 1D coupled
Poisson’s equation and DDE were used. The electric field profile and level occu-
pancies were calculated at specific conditions as defined by the bias, delay time
after biasing, etc., by DDE and inserted into the MC simulation, which was then
used to calculate the current waveforms. Three defect levels, which were suffi-
cient to describe all observed effects, were obtained by fits based on the SRH
model (see section 2.6). A schematic of the energy levels is shown in figure 5.35.
We evaluated one dominant recombination level with energy Et = EC − 0.73 eV,
with a concentration of Nt = 7.3 × 1011 cm−3 and with electron and hole capture
cross-section σe = 3.5 × 10−14 cm2 and σh = 6.5 × 10−14 cm2, respectively. The
redistribution of charge carriers on this deep level is responsible for space-charge
formation inside the detector. In addition, one shallow electron trap and one shal-
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Figure 5.30: DC bias dependence of the electron current waveforms. Inset shows
respective electric field profiles. The dashed lines plot the MC fit.

low hole trap were added. Carrier trapping and detrapping processes on shallow
levels were characterized by the trapping time τT and detrapping time τD (see
section 2.6). The shallow electron trap is characterized by trapping and detrap-
ping time τeT S = 300 ns and τeDS = 10 ns, respectively, and the shallow hole trap
is characterized by trapping and detrapping time τhT S = 4 µs and τhDS = 1.2 µs.
Comparable parameters of shallow traps can be found for CdTe and CdZnTe in
ref. [83]. The shallow traps are responsible for the charge delay and widening of
the CWF fall edge. The energy and concentration of these shallow levels cannot
be determined using MC simulation, since there is not enough information con-
veyed from the L-TCT data, and only the trapping and detrapping times can be
determined. We used the Fermi level position in the bulk EF = EC − 0.73 eV
corresponding to the measured sample resistivity of 1.1 × 1010 Ωcm. The con-
tact properties are defined within the drift-diffusion model [87] by the fitted
band bending VB = 90 meV evoking the electron (hole) depletion (injection),
respectively. In our case, the hole injection is caused by the type of electrical
contact. We take advantage of the hole injection to determine parameters for the
deep recombination level. By using different contact preparation techniques or
contact material, the hole injection can be decreased, and the space charge can
be decreased. The search for the ideal contact preparation technology optimiz-
ing the Schottky barrier is beyond the scope of this thesis. The Fermi level at
the surface is then fixed on both sides at. The electron and hole drift mobility
obtained from MC simulations is µe = 830 cm2/Vs and µh = 40 cm2/Vs, respec-
tively, and electron and hole lifetime connected with the recombination center are
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Figure 5.31: Evolution of the electron current waveforms at a pulsed bias of
-400 V (arrows show the direction of the electric field evolution) depending on
LPD. Inset represents the evolution of the electric field profile within the detector
at several different values for the LPD. The dashed lines plot the MC fit.
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Figure 5.32: DC bias dependence of the measured hole current waveforms. Inset
shows respective electric field profiles.

τe = 2.3 µs and τh = 3.6 µs, respectively. These are similar values of mobilities
and lifetimes compared to CZT [83]. The recombination center causes losses of
free-drifting charge, leading to decays in the CWF, which are visible in 5.26 and
5.28. Thus the mobility-lifetime product of electrons and holes at pulsed bias is
(µτ)e = µe × τe = 1.9 × 10−3 cm2/V and (µτ)h = µh × τh = 1.4 × 10−4 cm2/V,
respectively, which is similar to values in ref. [41]. The measured electron (µτ)e

product is relatively high, and together with the high (µτ)h product for holes,
the material is ready for the preparation of radiation detectors for different ap-
plications. Enhancement of the mu-tau product is a technological challenge and
depends on the improvement of the crystal quality and reduction of native and
extrinsic defects. Lowering the concentration of the recombination levels found
in this thesis is expected to improve the detector quality.
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Figure 5.33: Evolution of hole current waveforms at a pulsed bias of 400 V de-
pending on LPD. Inset represents the evolution of the electric field profile within
the detector at several different values for the LPD. The dashed lines plot the
MC fit.
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Figure 5.34: Evolution of space charge density at a pulsed bias of 400 V depending
on LPD.

Figure 5.35: Schematic of the obtained energy levels with their parameters deter-
mined by numerical simulations of L-TCT waveforms. Red: electron traps. Blue:
hole traps. Red-Blue: recombination level.
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5.3.3 Spectroscopic measurements
In addition to L-TCT measurements, spectroscopic measurements with the same
sample were performed using the setup described in 4.2. The radiation source of
α-particles 241Am (Energy of the main line 5480 keV, radioactive activity 8.4 kBq)
was used for measurement.

Only the signal of electrons was measured. The collected charge is propor-
tional to the channel’s position with maximum counts. Measured α-spectra are
shown in figure 5.36. In the inset, the position of the maximum of each spec-
trum is plotted against the corresponding bias. This dependence is fitted by the
Hecht equation (2.69). The Hecht equation correctly describes measured depen-
dence with typical saturation of collected charge. From Hecht equation we get
(µτ)e = 2.0 × 10−3 cm2/V, which matches the (µτ)e obtained from L-TCT.

Figure 5.36: Pulse height spectra of α-source 241Am. Inset: Bias dependence of
collected charge and Hecht equation fit.

5.3.4 Discussion
The positive space charge formation in this sample comes from a weak injection of
holes from the anode that creates a positive space charge by trapping on the hole
recombination center distributed throughout the whole sample. Subsequently,
the positive space charge starts to shield the electric field and damps the hole
injection, forming a feedback loop that keeps the electric field almost zero near
the anode. The steady-state is assured by balancing the hole injection boosting
the space charge formation, and screening of the electric field at the anode, which
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damps the process of charging. The principle of electric field screening is inde-
pendent of the applied bias so that the space charge is implicitly adjusted to a
value sufficient to nearly screen the bias. The model consistently describes all
data collected in the range of bias 50 V – 600 V used in our experiments. The
process of the positive space charge formation stabilizes the anode screening at a
time scale of 10 – 100 ms when the hole injection attenuates. This is observed as
a saturation in the electric field evolution (see the insets of figures 5.31 and 5.33).

The presence of the space charge at DC bias prevents the standard evalu-
ation of µτ product using Hecht equation fit [72]. Likewise, a more advanced
procedure [72] incorporating the electric field profile inside the sample (see sec-
tion 2.11) cannot be used since it builds on the charge transport mediated by
purely drift current. In the hole injection regime, the electric field changes the
sign and is almost zero under the anode in the DC bias due to the band bending
combined with the positive space charge. Subsequently, integrals defining the
CCE in respective formulas diverge. A significant contribution of diffusion cur-
rent is demonstrated in figure 5.37, where the decomposition of electron and hole
current into drift and diffusion components for a detector under 200 V DC bias
is shown. The diffusion current prevails under the anode and decreases into the
bulk where the drift component dominates. We note that both total electron and
total hole current densities are not constant in the bulk due to the electron-hole
recombination through the recombination level.

Figure 5.37: Decomposition of electron and hole currents into drift and diffusion
components for the detector under DC bias at 200 V. The anode is on the right-
hand side.

91



MC simulation was used to obtain electric field profile and transport param-
eters such as charge carrier mobility and trapping and detrapping time from the
L-TCT experiment. L-TCT measurements with the pulsed bias, allows us to
get the mobility and lifetime of electrons and holes separately. The electric field
profile is also obtained, which is not accessible using the Hecht equation. The
evaluation of transport parameters in a depolarized sample allows us to get mate-
rial properties without the interference of space charge effects, which complicates
the evaluation and affects the lifetime. In the case of positive space charge, the
lifetime of holes is increased because of the filling of hole trap states by the hole
injection. Oppositely, the lifetime of electrons decreases because of the depletion
of electron trap states. In the case of recombination level considered in our model,
both features occur in parallel. This phenomenon is demonstrated in figure 5.38,
where the profiles of lifetime of electrons and holes in pulsed and DC bias 400 V
are shown. In the pulsed bias, the lifetime is constant in the bulk and decreases
for electrons and increases for holes near electrodes due to band bending. In DC
bias, significant redistribution of charge carriers on recombination level causes a
large increase of the lifetime of holes caused by saturation of the recombination
level by injected holes and thus increases the hole lifetime by an order of mag-
nitude compared to pulsed bias. Namely under the anode, there is a decrease
of the lifetime of electrons caused by electron depletion from the recombination
level. Since the depletion of electrons is not strong enough to completely negate
the effects of the recombination level, the decrease of the electron lifetime is rel-
atively small compared to the increase of hole lifetime. Lifetime depends on the
location in the sample and on the applied bias. In the case of a negative space
charge incurred by an electron injection from the cathode, the effect would be
the opposite.

Significant SR was found using MC simulations for both electrons and holes.
SR is caused by the presence of surface traps/recombination centers, which is
difficult to evaluate by the L-TCT technique due to the short time that charge
carriers spend in the thin layer under the surface. Here, the corresponding contri-
bution to the current waveform is not visible. Thus, the effective parameter used
to describe the surface imperfections collectively is surface recombination veloc-
ity s which defines the charge carrier losses before entering from the surface layer
into the bulk (see section 2.10). In our case, the surface recombination velocity is
independent of the laser intensity for all ranges used in this thesis. It is, however,
dependent on the surface treatment, aging, handling and other surface-related
conditions. Following is the discussion of theory of SR described in section 2.10.
As it is apparent from equation (2.64), in the case of negligible surface recombina-
tion where s ≪ µU/L, the onset of CWFs divided by respective bias I(t = 0)/U
should start from the same bias-independent value. Alternatively, in the case of
distinct surface recombination, I(t = 0)/U depends on the bias. This feature is
seen in figure 5.27 and 5.29 where the CWFs of electrons and holes normalized by
respective bias are shown. Distinct starts of the Current/Bias CWFs are clearly
seen, proving the presence of significant surface recombination at both contacts.
Bias dependence of the initial values of electron and hole current waveforms di-
vided by respective bias taken from figures 5.27 and 5.29 are shown in figure 5.39.
Fit using equation (2.64) is shown with red line for electrons and blue line for
holes. The surface recombination velocity for electrons se = 3.3 × 106 cm/s and
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Figure 5.38: Profile of lifetime of electrons and holes under pulsed and DC bias
400 V.

holes sh = 9.8 × 104 cm/s, respectively, was evaluated. This represents an easy
method to calculate the surface recombination directly from measured current
waveforms without the need for MC simulation. This method serves as a simple
way to detect the presence of surface recombination in the detector and helps
with the MC simulations of CWF.

It should be noted that the positive space charge formation caused by the in-
jecting anode shows distinct characteristics from the more frequently used model
describing the positive space charge formation induced by an electron depletion
affected by the blocking cathode [35, 37]. There appears especially an extensive
inactive region, essentially a inactive layer, near the anode appearing due to the
electric field screening by the excessive positive space charge localized under the
cathode. Consequently, the L-TCT signal of holes cannot be measured, unlike
in our case where the hole signal is detected. The nature of the defect respon-
sible for the charging is different in the case of electron depletion. While the
model presented in this thesis considers hole trapping where the injected holes
are stored, depleted electrons induce the positive space charge by the electron
trap detrapping of previously deposited electrons. While the hole injection and
the rate of polarization are ruled by the Schottky barrier at the anode, the polar-
ization induced by the electron depletion is defined by the electron trap energy
expressed relative to the conduction band.

93



Figure 5.39: Bias dependence of initial values of current waveforms of electrons
and holes under pulsed bias. Solid lines represent fit using equation (3), red for
electrons and blue for holes.

5.3.5 Section conclusion
In this section, we measured electron and hole current transients in a CdZnTeSe
detector using L-TCT under pulsed and DC bias. We developed a theoretical
model based on the Shockley-Read-Hall model. We successfully applied it to an-
alyze space charge formation. One dominant recombination level was identified
with energy Et = EC − 0.73 eV, concentration 7.3 × 1011 cm−3, and capture
cross-sections σe = 3.5 × 10−14 cm2 and σh = 6.5 × 10−14 cm2 for electrons and
holes, respectively. Monte Carlo simulations provided electron and hole transport
parameters, including drift mobility, surface recombination velocity, and lifetime.
We observed position-dependent lifetime variation in the detector due to hole
injection under DC bias. The CdZnTeSe semiconductor exhibited good electron
and hole transport properties, making it suitable for X-ray and gamma-ray de-
tector fabrication. Results of this section were published in [71].
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6. Conclusion
This thesis centers on the comprehensive investigation of charge transport phe-
nomena in semiconducting radiation detectors, aiming to extend and improve
existing techniques and methods.

In the theoretical part, the overview of the transport equations, generation-
recombination model, and electrical contacts is described. Important terms which
are used in numerical simulations and experimental measurements are defined.
Theoretical current waveforms for the detector with deep trap and surface re-
combination are analyzed. In the chapter about numerical simulations, the solved
equations are presented together with numerical methods to solve them. MC sim-
ulations and their combination with the numerical solution of coupled Poisson’s
equation together with the drift-diffusion equation are described. The stability
of MC simulation with examples of MC simulation is presented.

In the experimental part, GaAs, CdZnTe, and CdZnTeSe are studied using
several experimental techniques. This chapter is divided into three parts corre-
sponding to the studied semiconductor material.

In the first part, we measured electron current transients in GaAs:Cr sensor
using L-TCT in pulsed and DC bias and determined the time evolution of the
space charge formation. At the time scale of 5 ms, we observed the simultaneous
gradual formation of both the negative space charge localized near the cathode
and the positive space charge near the anode. Electron lifetime τe = 150 ns and
electron drift mobility µd = 3650 cm2/Vs were evaluated from the MC simula-
tions. All experimental results have been consistently explained by the model of
variable hole conductivity caused by chromium in-diffusion. For the elimination
of the internal electric field distortion, pulsed bias application was used. We also
showed that using L-TCT, the internal electric field profile can be determined,
giving direct feedback for the optimization of the growth technology. We demon-
strated that L-TCT represents the non-destructive method for testing charge
transport and internal electric properties in GaAs:Cr with much better precision
than may be reached by other commonly used techniques. A similar approach
may also be used for the investigation of other SI detector-grade materials.

In the second part, we studied the polarization phenomena in the CdZnTe
radiation detector induced by high-flux X-ray excitation. The electric field warp-
ing measured using the Pockels effect was modeled with a defect model solving
coupled drift-diffusion and Poisson’s equation. We have developed a procedure to
find minimal bias with optimal counting performance, which is still acceptable for
spectroscopic applications, allowing for simpler electronic circuits and the easier
portability of detector devices. We have defined the minimum bias of 300 V as
still being acceptable for the application of a 2-mm-thick detector in X-ray spec-
troscopy at high-flux 20 Mcps/mm2 excitation and analyzed its performance. We
have developed a numerical model that predicts counting and spectroscopic be-
havior in a polarized detector. We have shown that the warping of the X-ray
spectrum comes from the delayed transit time caused by detector polarization
compared to the sampling time of the counting electronics. We have proven such
a feature by calculating the spectrum with an extended sampling time of 32 ns.
The decrease in measured counts at low bias is not mainly caused by carrier trap-
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ping but by the ballistic deficit of low-energy X-ray photons, which do not cross
the threshold level, frequent pileups, and charge sharing between pixels accentu-
ated at the low electric field near the pixelated anode. The presented model may
be used as a simple diagnostic tool in sensor characterization.

In the third part, we measured the electron and hole current transients in a
CdZnTeSe detector using an L-TCT for pulsed and DC bias. A theoretical model
of the space charge formation based on the Shockley-Read-Hall model was de-
veloped and successfully applied, assuming positive space charge formation due
to the hole injection combined with the existence of the recombination level. We
identified one dominant recombination level with energy of Et = EC − 0.73 eV,
concentration 7.3 × 1011 cm−3, electron and hole capture cross-section of σe =
3.5×10−14 cm2 and σh = 6.5×10−14 cm2, respectively, together with one shallow
electron trap characterized by trapping and detrapping time τeT S = 300 ns and
τeDS = 10 ns, respectively and one shallow hole trap characterized by trapping
and detrapping time τhT S = 4 µs and τhDS = 1.2 µs. From Monte Carlo simula-
tions, we obtained electron and hole transport parameters such as electron and
hole drift mobility µe = 830 cm2/Vs and µh = 40 cm2/Vs, the electron and hole
surface recombination velocity se = 3.3 × 106 cm/s and sh = 9.8 × 104 cm/s, and
the lifetime of electrons and holes at pulsed bias τe = 2.3 µs us and τh = 3.6 µs,
respectively. Significant position dependence of the lifetime of electrons and
holes inside the detector in DC bias due to hole injection is observed. We
also proposed a simple technique for evaluating surface recombination directly
from measured current waveforms without the need for numerical simulation.
Good material quality is represented by the electron and hole mobility-lifetime
product evaluated at pulsed bias (µτ)e = µe × τe = 1.9 × 10−3 cm2/V and
(µτ)h = µh × τh = 1.4 × 10−4 cm2/V, respectively. We identified an identi-
cal electric field profile evaluated from the electron and hole transient currents,
which validate the experimental methods used in this study. We showed that
CdZnTeSe semiconductor has good electron and hole transport properties, and
the single crystals are suitable for X-ray and gamma-ray detector fabrication.

These experimental results, together with numerical simulations and presented
models, prove that MC simulations combined with the numerical solution of cou-
pled Poisson’s equation and drift-diffusion equation represent a powerful tech-
nique in determining the charge transport properties of semiconductors. Further
improvements would include laser mapping of the detector surface and thus re-
vealing the electric field profile inside the detector bulk. Extending 1D simulations
into 3D would allow us to study inhomogeneities in semiconductor detectors.
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[103] M. Bettelli, N. S. Amadè, D. Calestani, B. Garavelli, P. Pozzi, D. Macera,
L. Zanotti, C. A. Gonano, M. C. Veale, and A. Zappettini. A first principle
method to simulate the spectral response of CdZnTe-based x- and gamma-
ray detectors. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment,
960:163663, apr 2020.

[104] I. Vasylchenko, R. Grill, E. Belas, P. Praus, and A. Musiienko. Charge
sharing in (CdZn)te pixel detector characterized by laser-induced transient
currents. Sensors, 20(1):85, dec 2019.

[105] Y. Kim, T. Lee, and W. Lee. Radiation measurement and imaging using
3d position sensitive pixelated CZT detector. Nuclear Engineering and
Technology, 51(5):1417–1427, aug 2019.

[106] A. Buttacavoli, F. Principato, G. Gerardi, D. Cascio, G. Raso, M. Bettelli,
A. Zappettini, P. Seller, M. C. Veale, and L. Abbene. Incomplete charge
collection at inter-pixel gap in low- and high-flux cadmium zinc telluride
pixel detectors. Sensors, 22(4):1441, feb 2022.

[107] O. Baussens, C. Ponchut, M. Ruat, M. Bettelli, S. Zanettini, and A. Zap-
pettini. Characterization of high-flux cdznte withoptimized electrodes for
4th generation synchrotrons. In n Proceedings of the 23rd International
Workshop on Radiation ImagingDetectors, 2022.

[108] K. Iniewski, M. Veale, and M. Bazalova-Carter. High-flux czt for new
frontiers in computed tomography (ct), non-destructivetesting (ndt) and
high-energy physics. In Proceedings of the IEEE Transactions on Nuclear
Science, 2019.
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