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1. Introduction

1.1 Motivation
Perovskites have gained, especially in the last two decades, considerable atten-
tion from a wide number of scientific groups around the world, for their excellent
optoelectronic properties. These are primarily the existence of electrically inac-
tive defects, high carrier mobility, its long diffusion length and a large absorption
coefficient. Considering the mentioned properties, easy preparation and low cost
of crystal production, perovskites have considerable application potential in the
field of optoelectronic devices including photovoltaic cells, light-emitting diodes,
lasers, photodetectors, X-ray and gamma radiation detectors, phototransistors
and field-controlled transistors. The performance of optoelectronic devices based
on organic-inorganic hybrid perovskites is so far limited, as the organic compo-
nents can be easily decomposed by moisture, oxygen, heat and and radiation
under ambient circumstance. Completely inorganic perovskites, which replace
the organic group with inorganic components, have advanced stability in this di-
rection. Single crystals, which retain the intrinsic properties of perovskites, have
far fewer defects and grain boundaries, unlike polycrystalline layers, play a key
role in basic materials research and the design of efficient optoelectronic devices.
The CsPbBr3 inorganic perovskite appears in particular as a representative. An-
other modification of this structure is the introduction of mixed metal perovskite
compositions Pb/Sn, which allow to realize narrower bandgaps that cannot be
achieved with a pure Pb variant. This has achieved significant results for multi-
junction perovskite photovoltaic cells and also for light-emitting diodes in the
near-infrared region. Although their optoelectronic properties have already been
intensively studied in the past, a detailed understanding of the physics of charge
transport is still lacking.[1]

In this diploma thesis, I study charge transport in the perovskite structure
CsPbBr3 depending on the different conditions of sample preparation, in terms
of their surface treatment and variants of the electrical contacts used. The fun-
damental technique used for this purpose is the measurement of current-voltage
characteristics, including the evaluation of their hysteresis behavior, as well as the
measurement of the dependence and development of the mentioned quantities in
time and temperature. [18]

The essencial reason of my study and decision for it stays, that the subject
matter of such transport is actual, fundamental for the performance, but itself was
not fully explained yet. A number of groups is coming with various results and
surveys, but clear answers heretofore no one set forth. Therefore, I would like to
explore this issue in the direction, which was primarily given by three publications
in spite of the fact that their conclusions remain still slightly opened. Initially
Xiao et al.[2], who primarily observed current-voltage hysteresis behavior, resp.
variety of hysteresis loops with changed scanning rates, whereas current density
remains unchanged.

Next was Eames et al.[3] who concern of ionic transport and observed that ion
migration is a factor contributing to unusual behaviour, including current–voltage
hysteresis. Also reached of opinion that halide perovskites are mixed ionic-
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electronic conductors. Subsequently Zhao et al.[4] study correlations between
immobilizing ions and suppressing hysteresis in halide perovskites.

1.2 Perovskites

1.2.1 Origin
The research on perovskite materials dates back to 1839 when crystallographer
Gustav Rose determined its composition. The perovskite mineral was discovered
in the Ural Mountains of Russia by mineral collector August Kämmerer. It was
a black mineral and its composition was calcium titanate CaTiO3. Kämmerer
requested that the new mineral be named in honor of mineralogist Lev Alek-
seyevich Perovski. Researches on these oxide perovskites have led to their indus-
trial applications in electronic devices. The high dielectric constant discovered
for BaTiO3 has led the industry of ferroelectrics such as capacitors, supercon-
ductors, piezoelectric devices, proton conductors, fuel cells, and memory stor-
age devices. Although other metal oxide perovskites, such as BaTiO3, LiNbO3,
PbT iO3, SrT iO3 and BiFeO3, also work as ferroelectric ceramics and some of
them have been found to exhibit photovoltaic functions. [26], [27] However,
these oxide perovskites have large bandgaps (more than 2.5 eV) that lack in
light-harvesting ability and exhibit low efficiency in the collection of free charges.
Therefore, oxide perovskites do not exhibit good semiconducting properties suit-
able for photovoltaic absorbers. [7], [19], [20], [21]

1.2.2 Halide Perovkites
Perovskite generally represents a type of crystal structure with the chemical for-
mula ABX3 , where A and B are alkali and metal cations, respectively, and X
is an anion as shown in Figure 1.1.[1] In an ideal cubic structure, the B cation

Figure 1.1: General crystal structure of perovskite, ABX3 (X is oxygen or
halogen)[7]
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has a sixfold configuration, surrounded by an octahedron of anions, and the A
cation is in a 12-fold cuboctahedral configuration with coordination of 12 anions
as shown in Figure 1.1 right. The cubic unit cell of such compounds consists of A
cations at the cube corner positions, B sitting at the body-center position, and X
anions occupying the face-centered positions. Before halide perovskites attracted
attention as photovoltaic semiconductors, perovskites were generally known as
inorganic metal oxides (A = alkali cation, X = oxygen). The class of halide per-
ovskites differs from oxide perovskites in having halide anions in place of oxide
anions (ABX3 ; A = monovalent cation, B = divalent metal cation, X = halogen
anion). As ionic crystals, halide perovskites have higher ionic crystallinity than
oxide perovskites due to strong ionicity of halide anion. In halide perovskites,
charge neutralization is established in the lattice structure by the coordination
of a large number of cations and anions as mentioned above. Therefore, a slight
structural strain due to fluctuations in the distance between ions (or ionic radius)
and the coordination number leads to changes in the three-dimensional structure
of the crystal. Spatial halide perovskites demonstrate the semiconducting proper-
ties and strong visible light absorption desired for photovoltaic applications. The
discovery of such halide perovskites dates back to the 1890s. Wells conducted a
comprehensive study on the synthesis of lead halide crystals from solutions in-
cluding cesium Cs-based CsPbX3 (X = Cl, Br, I). Figure 1.2 shows an orange
crystal of CsPbBr3. Later, Danish researcher Møller found that CsPbCl3 and
CsPbBr3 have a perovskite structure, showing a tetragonally distorted structure
that undergoes transition to a pure cubic phase at high temperatures.[5], [22],
[23] A simple solution process for the synthesis of these lead halide crystals might

Figure 1.2: Single crystal of lead halide perovkite CsPbBr3 [7]

have inspired researchers to use other cations in place of Cs. Weber found that
organic cation CH3NH3+ replaces Cs+ to form CH3NH3MX3 (M = Pb, Sn, X
= I, Br) and reported the first crystallographic study on organic–inorganic hybrid
lead halide perovskites. Toward the end of the last century, the synthesis of a
large variety of halide perovskites composed of small and large organic cations was
conducted by David Mitzi. He focused his studies on the physical properties of
perovskite materials of low-dimensional structures such as two-dimensional per-
ovskites bearing a large organic group. Although research paved the way to the
applications of low-dimensional perovskite crystals to nonlinear optics and elec-
troluminescence by utilizing sharp monochromatic optical absorption and lumi-
nescence, at that time, it was not known that these materials could be employed
for the utilization of solar energy. This requires a wide spectral absorption to
harvest sunlight rather than having a sharp absorption and emission.[6], [24], [25]
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2. Theory
[8], [28], [29], [30]

2.1 Carrier-Transport Phenomena

2.1.1 Basic Equations
The basic equations for semiconductor-device operation describe the static and
dynamic behavior of carriers in semiconductors under external influences, such
as applied field or optical excitation, that cause deviation from the thermal-
equilibrium condition.

Current-Density Equations

The current conduction consists of the drift component, caused by the electric
field, and the diffusion component, caused by the carrier-concentration gradient.
The current-density equations are:

Jn = qµnnE + qDn∇n (2.1)

Jp = qµppE − qDp∇p (2.2)

Jcond = Jn + Jp (2.3)

where Jn and Jp are the electron and hole current densities. The values of the
electron and hole mobilities (µn and µp) will be given in section ’Drift and Mo-
bility’. For nondegenerate semiconductors the carrier diffusion constants (Dn and
Dp) and the mobilities are given by the Einstein relation Dn = (kT/q)µp.

For a one-dimensional case, equations (2.1) and (2.2) reduce to

Jn = qµnnE + qDn
dn

dx
= qµn

(︄
nE + kT

q

dn

dx

)︄
= µnn

dEF n

dx
(2.4)

Jp = qµppE − qDp
dp

dx
= qµp

(︄
pE + kT

q

dp

dx

)︄
= µpp

dEF p

dx
(2.5)

where EF n and EF p are quasi Fermi levels for electrons and holes. These equations
are valid for low electric fields.

Continuity Equations

While the above current-density equations are for steady-state conditions, the
continuity equations deal with time-dependent phenomena such as low-level in-
jection, generation and recombination. Qualitatively, the net change of carrier
concentration is the difference between generation and recombination, plus the
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net current flowing in and out of the region of interest. The continuity equations
are:

∂n

∂t
= Gn − Un + 1

q
∇ · Jn (2.6)

∂p

∂t
= Gp − Up + 1

q
∇ · Jp (2.7)

where Gn and Gp are the electron and hole generation rate, caused by external
influences such as the optical excitation with photons or impact ionization under
large electric fields, and where Un = ∇n/τn and Up = ∇p/τp are recombination
rates.

For the one-dimensional case under a low-injection condition, equations (2.6)
and (2.7) reduce to

∂np

∂t
= Gn − np − npo

τn

+ npµn
∂E
∂x

+Dn
∂2np

∂x2
(2.8)

∂pn

∂t
= Gp − pn − pno

τp

+ pnµp
∂E
∂x

+Dp
∂2pn

∂x2 (2.9)

2.1.2 Drift and Mobility
At low electric fields, the drift velocity vd is proportional to the electric field
strength E and the proportionality constant is defined as the mobility µ, or

vd = µE (2.10)

and the electric field is given by

E = Uz

l
(2.11)

where Uz is the difference of potencials between two zones of the measured sample,
and l is the distance between them. For a case where each zone (z1 and z2)
is defined by unique voltage peak, equations above reduce to one-dimensional
modifying form

vz1,z2tz1,z2 = xz1,z2

2 (2.12)

where extended form of tz1,z2 gives tz1 + tz2 = ∆t is time difference between
voltage peaks of zones. Equation (2.10) then tends to

xz1,z2

2tz1,z2
= Ez1,z2µ (2.13)

which serves this equation as
xz1

2Ez1
+ xz2

2Ez2
= ∆tµ (2.14)
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thus, final expression for mobility determination

µ = 1
2∆t

(︃
xz1

Ez1
+ xz2

Ez2

)︃
(2.15)

2.2 p-n Junctions

2.2.1 Depletion Region
Abrupt Junction

When the impurity concentration in a semiconductor changes abruptly from ac-
ceptor impurities NA to donor impurities ND, as shown in Figure 2.1a, one ob-
tains an abrupt junction. In particular, if NA ≫ ND (or vice versa), one obtains
a one-sided abrupt p+ − n (or n+ − p) junction.

We first consider the thermal equilibrium condition, that is, one without ap-
plied voltage and current flow. Then

Jn = 0 = qµn

(︄
nE + kT

q

dn

dx

)︄
= µnn

dEF

dx
(2.16)

dEF

dx
= 0 (2.17)

Similarly

Jp = 0 = µpp
dEF

dx
= 0 (2.18)

Thus the condition of zero net electron and hole currents requires that the Fermi
level must be constant throughout the sample. The built-in potential ψbi, or
diffusion potential, as shown in Figure 2.1b,c,d, is equal to

qψbi = Eg − (qϕn + qϕp) = qψBn + qψBp (2.19)

For nondegenerate semiconductors,

ψbi ≈ kT

q
ln
(︄
NDNA

n2
i

)︄
(2.20)

Since at equilibrium nnopno = npoppo = n2
i ,

ψbi = kT

q
ln
(︄
ppo

pno

)︄
= kT

q
ln
(︄
nno

npo

)︄
(2.21)

This gives the relationship between carrier densities on either side of the junction.
Since in thermal equilibrium the electric field in the neutral regions (far from

the junction at either side) of the semiconductor must be zero, the total negative
charge per unit area in the p-side must be precisely equal to the total positive
charge per unit area in the n-side:

NAWDp = NDWDn (2.22)
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Figure 2.1: Abrupt p − n junction in thermal equilibrium. (a) Space-charge
distribution. Dashed lines indicate corrections to depletion approximation. (b)
Electric-field distribution. (c) Potential distribution where ψbi is the built-in
potential. (c) Energy-band diagram.
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From the Poisson equation we obtain

−d2ψi

dx2 = dE
dx

= ρ(x)
εs

= q

εs

[︂
N+

D (x) − n(x) −N−
A (x) + p(x)

]︂
(2.23)

Inside the depletion region, n(x) = p(x) = 0,

d2ψi

dx2 ≈ qNA

εs

for −WDp ≤ x ≤ 0

−d2ψi

dx2 ≈ qND

εs

for 0 ≤ x ≤ WDn

(2.24)

The electric field is then obtained by integrating the above equations, as shown
in Figure 2.1b:

E(x) = qNA(x+WDp)
εs

for −WDp ≤ x ≤ 0 (2.25)

E(x) = −Em + qNDx

εs

= −qND

εs

(WDn − x) for 0 ≤ x ≤ WDn (2.26)

where Em is the maximum field that exists at x = 0 and is given by

|Em| = qNDWDn

εs

= qNAWDp

εs

(2.27)

Integrating equation (2.25) and (2.26) once again gives the potential distribution
ψi(x) (Figure 2.1c)

ψi(x) = qNA

εs

(x+WDp)2 for −WDp ≤ x ≤ 0 (2.28)

ψi(x) = ψi(0) + qND

εs

(︃
WDn − x

2

)︃
x for 0 ≤ x ≤ WDn (2.29)

With these, the potentials across different regions can be found as

ψp =
qNAW

2
Dp

2εs

(2.30)

|ψn| = qNDW
2
Dn

2εs

(2.31)

then

ψbi = ψp + |ψn| = ψi(WDn) = |Em|
2 (WDp +WDn) (2.32)

where Em can also be expressed as

|Em| =
√︄

2qNAψp

εs

=
√︄

2qNDψn

εs

(2.33)
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The depletion widths are calculated to be

WDp =
√︄

2εsψbi

q

ND

NA(NA +ND)
(2.34)

WDn =
√︄

2εsψbi

q

NA

ND(NA +ND)
(2.35)

WDp +WDn =
√︄

2εs

q

(︃
NA +ND

NAND

)︃
ψbi (2.36)

The following relationships can be deduced

|ψn|
ψbi

= WDn

WDp +WDn

= NA

NA +ND
(2.37)

ψp

ψbi

= WDp

WDp +WDn

= ND

NA +ND
(2.38)

2.2.2 Current-Voltage Characteristics
Ideal Case - Shockley Equation

The ideal current-voltage characteristics are based on the following four assump-
tions: (1) the abrupt depletion-layer approximation; that is, the built-in poten-
tial and applied voltages are supported by a dipole layer with abrupt boundaries,
and outside the boundaries the semiconductor is assumed to be neutral; (2) the
Boltzmann approximation is valid; (3) the low-injection assumption; that is, the
injected minority carrier densities are small compared with the majority-carrier
densities; and (4) no generation-recombination current exists inside the depletion
layer, and the electron and hole currents are constant throughout the depletion
layer.

We first consider the Boltzmann relation. At thermal equilibrium this relation
is given by

n = ni exp
(︃
EF − Ei

kT

)︃
(2.39)

p = ni exp
(︃
Ei − EF

kT

)︃
(2.40)

At thermal equilibrium, the pn product from the above equations is equal to
n2

i . When voltage is applied, the minority-carrier densities on both sides of the
junction are changed, and the pn product is no longer equal to n2

i . We define the
quasi-Fermi levels as follows

n ≡ ni exp
(︃
EF n − Ei

kT

)︃
(2.41)

p ≡ ni exp
(︃
Ei − EF p

kT

)︃
(2.42)
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where EF n and EF p are the quasi-Fermi levels for electrons and holes. From
equations (2.41) and (2.42) we obtain

EF n ≡ Ei + kT ln
(︃
n

ni

)︃
(2.43)

EF p ≡ Ei + kT ln
(︃
p

ni

)︃
(2.44)

The pn product becomes

pn = n2
i exp

(︃
EF n + EF p

kT

)︃
(2.45)

For a forward bias, (EF n + EF p) > 0 and pn > n2
i , for a reversed bias, (EF n +

EF p) < 0 and pn < n2
i . From equations (2.4),(2.41) and the fact that E ≡ ∇Ei/q

we obtain

Jn = qµn

(︄
nE + kT

q
∇n

)︄
= µnn∇Ei + µnkT

[︃
n

kT
(∇EF n − ∇Ei)

]︃
= µnn∇EF n

(2.46)

Similarly, we obtain

Jp = µpp∇EF p (2.47)
Thus, the electron and hole current densities are proportional to the gradients of
the electron and hole quasi-Fermi levels, respectively. If EF n = EF p = constant
(at thermal equilibrium), then Jn = Jp = 0.

The idealized potential distributions and the carrier concentrations in a p −
n junction under forward-bias and reverse-bias conditions are shown in Figure
2.2. The variations of EF n and EF p with distance are related to the carrier
concentrations as given in equations (2.43) and (2.44), and to the current as
given by equations (2.46) and (2.47). Inside the depletion region, EF n and EF p

remain relatively constant. This comes about because the carrier concentrations
are relatively much higher inside the depletion region, but since the currents
remain fairly constant, the gradients of the quasi-Fermi levels have to be small.
In addition, the depletion width is typically much shorter than the diffusion
length, so the total drop of quasi-Fermi levels inside the depletion width is not
significant. With these arguments, it follows that within the depletion region

qV = EF n − EF p (2.48)
Equations (2.45) and (2.48) can be combined to give the electron density at the
boundary of the depletion-layer region on the p-side (x = −WDp):

np(−WDp) = n2
i

pp

exp
(︃
qV

kT

)︃
≈ npo exp

(︃
qV

kT

)︃
(2.49)

where pp ≈ ppo for low-level injection, and npo is the equilibrium electron density
on the p-side. Similarly

pn(WDn) = pno exp
(︃
qV

kT

)︃
(2.50)
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Figure 2.2: Energy-band diagram, with quasi-Fermi levels for electrons and holes,
and carrier distributions under (a) forward bias and (b) reverse bias.

at x = WDn for the n-type boundary. The preceding equations are the most-
important boundary conditions for the ideal current-voltage equation.

From the continuity equations we obtain for the steady-state condition in the
n-side of the junction:

−U + µnE dnn

dx
+ µnnn

E
dx

+Dn
d2nn

dx2 = 0
(2.51)

−U − µpE dpn

dx
− µppn

E
dx

+Dp
d2pn

dx2 = 0
(2.52)

In these equations, U is the net recombination rate. Multiplying (2.51) by µppn

and (2.52) by µnnn, and combining with the Einstein relation D = (kT/q)µ, we
obtain

−pn − pno

τp

− nn − pn

(nn/µn) + (pn/µn)
Edpn

dx
+Da

d2pn

dx2 = 0 (2.53)

where
Da = nn + pn

nn/Dp + pn/Dn
(2.54)

is the ambipolar diffusion coefficient, and

τp ≡ pn − pno

U
(2.55)
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From the low-injection assumption equation (2.53) reduces to

−pn − pno

τp

− µpE dpn

dx
+Da

d2pn

dx2 = 0 (2.56)

In the neutral region where there is no electric field, equation (2.56) further
reduces to

d2pn

dx2 − pn − pno

Dpτp

= 0 (2.57)

The solution of equation (2.57), with the boundary conditions of (2.50) and
pn(x = ∞) = Pno, gives

pn(x) − pno = pno

[︃
exp

(︃
qV

kT

)︃
− 1

]︃
exp

(︄
−x−WDn

Lp

)︄
(2.58)

where

Lp ≡
√︂
D + pτp (2.59)

At x = WDn, the hole diffusion current is

Jp = −qDp
dpn

dx

⃓⃓⃓⃓
⃓⃓
WDn

= qDppno

Lp

[︃
exp

(︃
qV

kT

)︃
− 1

]︃
(2.60)

Similarly, we obtain the electron diffusion current in the p-side

Jn = qDn
dnp

dx

⃓⃓⃓⃓
⃓⃓
−WDp

= qDnnpo

Ln

[︃
exp

(︃
qV

kT

)︃
− 1

]︃
(2.61)

The total current is given by the sum of equations (2.60) and (2.61):

J = Jp + Jn = J0

[︃
exp

(︃
qV

kT

)︃
− 1

]︃
(2.62)

which is Shockley equation (also ideal didode law), where the saturation current
density J0 is used.

The Shockley equation adequately predicts the current-voltage characteristics
of germanium p−n junctions at low current densities. For p−n junctions of other
materials, the ideal equation can only give qualitative agreement. The departures
from the ideal are mainly due to: (1) the generation and recombination of carriers
in the depletion layer, (2) the high-injection condition that may occur even at
relatively small forward bias, (3) the parasitic IR drop due to series resistance,
(4) the tunneling of carriers between states in the bandgap, and (5) the surface
effects.

The surface effects on p−n junctions are primarily due to ionic charges on or
outside the semiconductor surface that induce image charges in the semiconduc-
tor, and thereby cause the formation of the so-called surface channels or surface
depletion-layer regions. Once a channel is formed, it modifies the junction deple-
tion region and gives rise to surface leakage current.
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2.3 Metal-Semiconductor Contacts

2.3.1 Introduction
Schottky suggested that the potential barrier could arise from stable space charges
in the semiconductor alone without the presence of a chemical layer. The model
arising from this consideration is known as the Schottky barrier. Mott also de-
vised a more appropriate theoretical model for swept-out metal-semiconductor
contacts that is known as the Mott barrier. Ideas about the role of the space
charge in determining the shape of the barrier were advanced by Davydov.

2.3.2 Formation of Barrier
When metal makes contact with a semiconductor, a barrier is formed at the metal-
semiconductor interface. This barrier is responsible for controlling the current
conduction as well as its capacitance behavior. Consider the basic energy-band
diagrams leading to the formation of the barrier height and some effects that can
modify the value of this barrier.

Ideal Condition

Consider the ideal case without surface states and other anomalies. Figure 2.3
shows the electronic energy relations of a high work function metal and an n-type
semiconductor which are not in contact and are in separate systems. If the two are
allowed to communicate with each other charge will flow from the semiconductor
to the metal and thermal equilibrium is established as a single system. The Fermi
levels on both sides will line up. Relative to the Fermi level in the metal, the
Fermi level in the semiconductor is lowered by an amount equal to the difference
between the two work functions.

Figure 2.3: Energy-band diagrams of metal-semiconductor contacts. Metal and
semiconductor (a) in separated systems, and (b) connected into one system. As
the gap δ (c) is reduced and (d) becomes zero.

The work function is the energy difference between the vacuum level and
the Fermi level. This quantity is denoted by qϕm for the metal, and is equal
to q(χ + ϕn) in the semiconductor, where qχ is the electron affinity measured
from the bottom of the conduction band Ec to the vacuum level, and qϕn is
the energy difference between Ec and the Fermi level. The potential difference
between the two work functions ϕm − (χ + ϕn) is called the contact potential.
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As the gap distance δ decreases, the electric field in the gap increases and an
increasing negative charge is built up at the metal surface. An equal and opposite
charge (positive) must exist in the semiconductor depletion region. The potential
variation within the depletion layer is similar to that in one side of a p−n junction.
When δ is small enough to be comparable to the inter-atomic distances, the gap
becomes transparent to electrons, and we obtain the limiting case, as shown on
Figure 2.1d. It is clear that the limiting value of the barrier height qϕBn0 is given
by

qϕBn0 = q(ϕm − χ) (2.63)

The barrier height is the difference between the metal work function and the
electron affinity of the semiconductor. Conversely, for an ideal contact between
a metal and a p-type semiconductor, the barrier height qϕBn0 is given by

qϕBp0 = Eg − q(ϕm − χ) (2.64)

For any given semiconductor and metal combination, the sum of the barrier
heights on n-type and p-type substrates is expected to be equal to the bandgap,
or

Eg = q(ϕBn0 + ϕBp0) (2.65)

Depletion Layer

The depletion layer of a metal-semiconductor contact is similar to that of the
onesided abrupt (p+−n) junction. When a metal is brought into intimate contact
with a semiconductor, the conduction and valence bands of the semiconductor at
the surface are brought into a definite energy relationship with the Fermi level in
the metal. Once this relationship is established, it serves as a boundary condition
to the solution of the Poisson equation in the semiconductor, which proceeds in
exactly the same manner as in a p − n junction. The energy-band diagrams for
metals on both n-type and p-type materials are shown, under different biasing
conditions, in Figure 2.4.
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Figure 2.4: Energy-band diagrams of metal on n-type (left) and p-type (right)
semiconductors under different biasing conditions. (a) Thermal equilibrium. (b)
Forward bias. (c) Reverse bias.

Interface States

The barrier heights of metal-semiconductor systems are determined by both the
metal work function and the interface states. A general expression of the barrier
height can be obtained on the basis of the following two assumption: with inti-
mate contact between the metal and the semiconductor, and with an interfacia1
layer of atomic dimensions, this layer will be transparent to electrons but can
withstand potential across it, and the interface states per unit area per energy at
the interface are a property of the semiconductor surface and are independent of
the metal.

A more detailed energy-band diagram of a practical metal-n-semiconductor
contact is shown in Figure 2.5. The various quantities used in the derivation that
follows are defined in this figure. The first quantity of interest is the energy level
qϕ0 above EV , at the semiconductor surface. It is called the neutral level above
which the states are of acceptor type (neutral when empty, negatively charged
when full) and below which the states are of donor type (neutral when full of
electrons, positively charged when empty). Consequently, when the Fermi level
at the surface coincides with this neutral level, the net interface-trap charge is
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zero. This energy level also tends to pin the semiconductor Fermi level at the
surface before the metal contact was formed.

Figure 2.5: Detailed energy-band diagram of a metal-n-semiconductor contact
with an interfacial layer (vacuum) of the order of atomic distance

The second quantity is qϕBn0, the barrier height of the metal-semiconductor
contact, it is this barrier that must be surmounted by electrons flowing from
the metal into the semiconductor. The interfacial layer will be assumed to have
a thickness of a few angstroms and will therefore be essentially transparent to
electrons.

Consider a semiconductor with acceptor interface traps (since in this partic-
ular example EF is above the neutral level) whose density is Dit states/cm2-eV,
and is a constant over the energy range from qϕ0 + EV to the Fermi level. The
interface-trap charge density on the semiconductor Qss is therefore negative and
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is given by

Qss = −qDit(Eg − qϕ0 − qϕBn0) (2.66)
The quantity in parentheses is simply the energy difference between the Fermi

level at the surface and the neutral level. The interface-trap density Dit times
this quantity yields the number of surface states above the neutral level that are
full.

The space charge that forms in the depletion layer of the semiconductor at
thermal equilibrium is given as

Qsc = qNDWD =

⌜⃓⃓⎷2qεSND

(︄
ϕBn0 − ϕn − kT

q

)︄
(2.67)

In the absence of any space-charge effects in the interfacial layer, an exactly
equal and opposite charge, QM , develops on the metal surface. For thin interfacial
layers such space-charge effects are negligible and QM can be written as

QM = −(Qss +Qsc) (2.68)
The potential ∆ across the interfacial layer can be obtained by applying

Gauss’law to the surface charge on the metal and semiconductor by

∆ = −δQM

εi

(2.69)

where εi is the permittivity of the interfacial layer and δ its thickness. Another
relation for ∆ can be obtained by inspection of the energy-band diagram of Figure
2.3

∆ = ϕm − (χ+ ϕBn0) (2.70)
This relation results from the fact that the Fermi level must be constant through-
out this system at thermal equilibrium.

If ∆ is eliminated from equations (2.69) and (2.70), and (2.68) is used to
substitute for QM , we obtain

ϕm − χ− ϕBn0 =

⌜⃓⃓⎷2qεSNDδ2

ε2
i

(︄
ϕBn0 − ϕn − kT

q

)︄
− qDitδ

εi

(Eg − qϕ0 − qϕBn0)

(2.71)
Equation (2.71) can now be solved for ϕBn0. We introduce the quantities

c1 = 2qεSNDδ
2

ε2
i

(2.72)

c2 = εi

εi + q2δDit
(2.73)

which contain all the interfacial properties. Equation (2.72) can be used to calcu-
late c1 if values of δ and εi are estimated. Neglecting square-root term in (2.71)
it reduces to

ϕBn0 = c2(ϕm − χ) + (1 − c2)
(︄
Eg

q
− ϕ0

)︄
≡ c2ϕm + c3 (2.74)
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With known c2 and c3 from experiments of varying ϕm, the interfacial properties
are given by

ϕ0 = Eg

q
− c2χ+ c3

1 − c2
(2.75)

Dit = (1 − c2)εi

c2δq2 (2.76)

There are two limiting cases which can be obtained directly from equation (2.74):
When Dit → ∞, then c2 → 0 and

qϕBn0 = Eg − qϕ0 (2.77)

In this case the Fermi level at the interface is pinned by the surface states at
the value qϕ0 above the valence band. The barrier height is independent of the
metal work function and is determined entirely by the surface properties of the
semiconductor.

When Dit → 0, then c2 → 1 and

qϕBn0 = q(ϕM − χ) (2.78)

This equation for the barrier height of an ideal Schottky barrier where surface
state effects are neglected, is identical to equation (2.63).

Schottky effect

Also Schottky-barrier lowering, is the image-force-induced lowering of the barrier
energy for charge carrier emission, in the presence of an electric field. Consider
a metal-vacuum system first. The minimum energy necessary for an electron to
escape into vacuum from an initial energy at the Fermi level is the work function
qϕm as shown in Figure 2.6.

When an electron is at a distance x from the metal, a positive charge will be
induced on the metal surface. The force of attraction between the electron and
the induced positive charge is equivalent to the force that would exist between
the electron and an equal positive charge located at −x. This positive charge is
referred to as the image charge. The attractive force toward the metal, called the
image force, is given by

F = −q2

4πε0(2x)2 = −q2

16πε0x2 (2.79)

where ε0, is the permittivity of free space. The work done to an electron in the
course of its transfer from infinity to the point x is given by

E(x) =
∫︂ x

∞
Fdx = −q2

16πε0x
(2.80)

This energy corresponds to the potential energy of an electron placed at a distance
x from the metal surface, shown in Figure 2.6, and is measured downwards from
the x-axis. When an external field E is applied (in this example in the −x
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Figure 2.6: Energy-band diagram between a metal surface and a vacuum. The
metal work function is qϕm. The effective barrier is lowered when an electric field
is applied to the surface. The lowering is due to the combined effects of the field
and the image force.

direction), the total potential energy PE as a function of distance is given by the
sum

PE(x) = − q2

16πε0x
− q|E|x (2.81)

This equation has a maximum value. The image-force lowering ∆ϕ and the
location of the lowering xm, (as shown in Figure 2.6), are given by the condition
d(PE)/dx = 0, or

xm =
√︄

q

16πε0|E| (2.82)

∆ϕ =
√︄
q|E|
4πε0

= 2|E|xm (2.83)

The field should be replaced by the appropriate field at the interface, and the
free-space permittivity ε0 should be replaced by an appropriate permittivity εs,
characterizing the semiconductor medium, that is

∆ϕ =
√︄
qEm

4πεs

(2.84)

Inside a device such as metal-semiconductor contact, the field is not zero even
without bias due to the built-in potential. Because of the larger values of εs,
in a metal-semiconductor system, the barrier lowering is smaller than that in a
corresponding metal-vacuum system.

In a practical Schottky-barrier diode, the electric field is not constant with
distance, and the maximum value at the surface based on the depletion approxi-
mation can be used

Em =
√︄

2qN |Ψs|
εs

(2.85)
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where the surface potential εs, (on n-type substrate) is

|Ψs| = ϕBn0 − ϕn + VR (2.86)

Substituting Em into equation (2.84) gives

∆ϕ =
√︄
qEm

4πεs

=
[︄
q3N |Ψs|
8π2ε3

s

]︄1/4
(2.87)

Figure 2.7 shows the energy diagram incorporating the Schottky effect for a metal
on n-type semiconductor under different biasing conditions.

Figure 2.7: Energy-band diagram incorporating the Schottky effect for a metal
n-type semiconductor contact under different biasing conditions. The intrinsic
barrier height is qϕBn0. The barrier height at thermal equilibrium is qϕBn. The
barrier lowerings under forward and reverse bias are ∆ϕF and ∆ϕR respectively.

Barrier Height Adjustment

For an ideal Schottky barrier, the barrier height is determined primarily by the
characters of the metal and the metal-semiconductor interface properties and is
nearly independent of the doping. Usual Schottky barriers on a given semicon-
ductor (n-type or p-type) therefore give a finite number of choices for barrier
height. However, by introducing a thin layer (= 10 nm or less) of controllable
number of dopants on a semiconductor surface (by ion implantation), the effective
barrier height for a given metal-semiconductor contact can be varied. This ap-
proach is particularly useful in order to select a metal having the most desirable
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metallurgical properties required for reliable device operation and at the same
time to be able to adjust the effective barrier height between this metal and the
semiconductor in a controlled manner.

Figure 2.8 shows the idealized controlled barrier contacts with a thin n+-layer
or a thin p+-layer on an n-type substrate for barrier reduction or barrier increase,
respectively. Consider the reduction of barrier first.

Figure 2.8: Idealized controlled barrier contacts with a thin n+-layer or a thin
p+-layer on an n-type substrate for barrier reduction (left) or barrier increase
(right). Dashed lines indicate original barrier with uniform doping.
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The field distribution in Figure 2.8 is given by

E = −|Em| + qn1x

εs

for 0 <x < a

E = −qn2

εs

(W − x) for a <x < W
(2.88)

for 0 < x < a where Em is the maximum electric field at the metal-semiconductor
interface, and is given by

|Em| = q

εs

[n1a+ n2(W − a)] (2.89)

The image-force lowering due to Em is given by equation (2.87). Although the
image-force lowering contributes to the barrier reduction, generally the tunneling
effect is more significant. For an application parameters n1 and a should be prop-
erly chosen so that in the forward direction the larger Schottky-barrier lowering
and the added tunneling current will not substantially degrade the ideality factor
η. And in the reverse direction, they will not cause large leakage current in the
required bias range. If opposite doping is formed in the thin semiconductor layer
at the interface, the effective barrier can be increased. As indicated in Figure 2.8,
if the n+-region is replaced by p+-region, it can be shown that the energy-band
profile will be qϕB at x = 0 and reach a maximum at x = ∆, where

∆ = 1
p1

[ap1 − (Q− a)n2] (2.90)

The effective barrier height occurs at x = ∆ and is given by

ϕ
′

B = ϕB + Em∆ − qp1∆2

2εs

(2.91)

Equation (2.91) approaches ϕB + qp1a
2/2εs if p1 ≫ n2 and ap1 ≫ Wn2.

Therefore, as the product ap1 increases, the effective barrier height will increase
accordingly.

2.3.3 Current Transport Processes
The current transport in metal-semiconductor contacts is due mainly to majority
carriers, in contrast to p − n junctions where the minority carriers are respon-
sible. Figure 2.9 shows five basic transport processes under forward bias (the
inverse processes occur under reverse bias). These five processes are (1) emission
of electrons from the semiconductor over the potential barrier into the metal,
(2) quantum-mechanical tunneling of electrons through the barrier (important
for heavily doped semiconductors and responsible for most ohmic contacts), (3)
recombination in the space-charge region (identical to the recombination process
in a p − n junction), (4) diffusion of electrons in the depletion region, and (5)
holes injected from the metal that diffuse into the semiconductor (equivalent to
recombination in the neutral region). In addition, we may have edge leakage
current due to a high electric field at the metal-contact periphery or interface
current due to traps at the metal-semiconductor interface.

For common high-mobility semiconductors the transport can be adequately
described by this thermionic-emission theory. Consider also the diffusion theory
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Figure 2.9: Five basic transport processes under forward bias. (1) Thermionic
emission. (2) Tunneling. (3) Recombination. (4) Diffusion of electrons. (5)
Diffusion of holes.

applicable to low-mobility semiconductors and a generalized thermionic-emission-
diffusion theory that is a synthesis of the preceding two theories.

Schottky diode behavior is to some extent electrically similar to a one-sided
abrupt p−n junction, and yet the Schottky diode can be operated as a majority-
carrier device with inherent fast response. Thus, the terminal functions of a p−n
junction diode can general be performed by a Schottky diode with one exception
as a charge-storage diode. This is because the charge-storage time in a majority-
carrier device is extremely small. Another difference is the larger current density
in a Schottky diode due to the smaller built-in potential as well as the nature
of thermionic emission compared to diffusion. This results in a much smaller
forward voltage drop. By the same token, the disadvantage is the larger reverse
current in the Schottky diode and a lower breakdown voltage.

Thermionic-Emission Theory

The thermionic-emission theory is derived from the assumptions that (1) the
barrier height qϕBn is much larger than kT , (2) thermal equilibrium is established
at the plane that determines emission, and (3) the existence of a net current
flow does not affect this equilibrium so that one can superimpose two current
fluxes - one from metal to semiconductor, the other from semiconductor to metal,
each with a different quasi Fermi level. If thermionic emission is the limiting
mechanism, then EF n is flat throughout the deletion region (Figure 2.9). Because
of these assumptions, the shape of the barrier profile is immaterial and the current
flow depends solely on the barrier is then given by height. The current density
from the semiconductor to the metal Js→m is then given by the concentration of
electrons with energies sufficient to overcome the potential barrier and traversing
in the x-direction:

Js→m =
∫︂ ∞

EF n+qϕBn

qvxdn (2.92)
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where EF n + qϕBn is the minimum energy required for thermionic emission into
the metal, and vx is the carrier velocity in the direction of transport. The electron
density in an incremental energy range is given by

dn = N(E)F (E)dE ≈ 4π(2m∗)3/2

h3

√︂
E − EC exp

(︄
−E − EC + qϕn

kT

)︄
dE (2.93)

where N(E) and F (E) are the density of states and the distribution function,
respectively.

If we postulate that all the energy of electrons in the conduction band is
kinetic energy, then

E − EC = 1
2m

∗v2 (2.94)

dE = m∗vdv (2.95)

√︂
E − EC = v

√︄
m∗

2
(2.96)

then
dn ≈ 2

(︃
m∗

h

)︃3
exp

(︄
−m∗v2

2kT

)︄
(4πv2dv) (2.97)

Equation (2.97) gives the number of electrons per unit volume that have velocities
between v and v+dv, distributed over all directions. If the velocity is resolved into
its components along the axes with the x-axis parallel to the transport direction,
we have

v2 = v2
x + v2

y + v2
z (2.98)

With the transformation 4πv2dv = dvxdvydvz, we obtain

Js→m =2q
(︃
m∗

h

)︃3
exp

(︄
−qϕn

kT

)︄∫︂ ∞

v0x

vx exp
(︄

−m∗v2
x

2kT

)︄
dvx∫︂ ∞

−∞
exp

(︄
−
m∗v2

y

2kT

)︄
dvy

∫︂ ∞

−∞
exp

(︄
−m∗v2

z

2kT

)︄
dvz

=
(︄

4πqm∗k2

h3

)︄
T 2 exp

(︄
−qϕn

kT

)︄
exp

(︄
−m∗v2

0x

2kT

)︄ (2.99)

The velocity v0x is the minimum velocity required in the x-direction to surmount
the barrier and is given by

1
2m

∗v2
0x = q(Ψbi − V ) (2.100)

Substituting equation (2.100) into equation (2.99) yields

Js→m =
(︄

4πqm∗k2

h3

)︄
T 2 exp

(︄
−qϕBn

kT

)︄
exp

(︃
−qV

kT

)︃

= A∗T 2 exp
(︄

−qϕBn

kT

)︄
exp

(︃
−qV

kT

)︃ (2.101)
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and

A∗ = 4πqm∗k2

h3
(2.102)

is the effective Richardson constant for thermionic emission, neglecting the effects
of optical-phonon scattering and quantum mechanical reflection. For free elec-
trons (m∗ = m0) the Richardson constant A is 120 A/cm2-K2. For multiple-valley
semiconductors the appropriate Richardson constant associated with a single en-
ergy minimum is given by

A∗

A
= 1
m0

√︂
l21m

∗
ym

∗
z + l22m

∗
zm

∗
x + l23m

∗
xm

∗
y (2.103)

where l1, l2 and l3 are the direction cosines of the normal to the emitting plane
relative to the principal axes of the ellipsoid, and m∗

x, m∗
y and m∗

z are the com-
ponents of the effective mass tensor.

Since the barrier height for electrons moving from the metal into the semicon-
ductor remains the same under bias, the current flowing into the semiconductor is
thus unaffected by the applied voltage. It must therefore be equal to the current
flowing from the semiconductor into the metal when thermal equilibrium prevails
(i.e., when V = 0). This corresponding current density is obtained from equation
(2.101) by setting V = 0,

Jm→s = −A∗T 2 exp
(︄

−qϕBn

kT

)︄
(2.104)

The total current density is given by the sum of equations (2.101) and (2.104).

Jn =
[︄
A∗T 2 exp

(︄
−qϕBn

kT

)︄]︄ [︃
exp

(︃
qV

kT

)︃
− 1

]︃

= JT E

[︃
exp

(︃
qV

kT

)︃
− 1

]︃ (2.105)

where

JT E ≡ A∗T 2 exp
(︄

−qϕBn

kT

)︄
(2.106)

Equation (2.105) is similar to the transport equation for p−n junctions. However,
the expressions for the saturation current densities are quite different.

Diffusion Theory

The diffusion theory is derived from the assumptions that (1) the barrier height
is much larger than kT , (2) the effect of electron collisions within the depletion
region (i.e. diffusion), is included, (3) the carrier concentrations at x = 0 and x =
W , are unaffected by the current flow (i.e. they have their equilibrium values),
and (4) the impurity concentration of the semiconductor is nondegenerate.

Since the current in the depletion region depends on the local field and the
concentration gradient, we use the current density equation

Jx = Jn = q

(︄
nµnE +Dn

dn

dx

)︄
= qDn

(︄
n

kT

dEC

dx
+ dn

dx

)︄
(2.107)
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Under the steady-state condition, the current density is independent of x, and
equation (2.107) can be integrated using exp[Ec(x)/kT ] as an integrating factor.
We then have

Jn

∫︂ WD

0
exp

[︄
EC(x)
kT

]︄
dx = qDn

{︄
n(x) exp

[︄
EC(x)
kT

]︄}︄ ⃓⃓⃓⃓
⃓⃓
WD

0

(2.108)

and the boundary conditions using EF m = 0 as the reference

EC(0) = qϕBn (2.109)

EC(WD) = q(ϕn + V ) (2.110)

n(0) = NC exp
[︄
−EC(0) − EF n(0)

kT

]︄
= Nc exp

(︄
−qϕBn

kT

)︄
(2.111)

n(WD) = ND = NC exp
(︄

−nϕn

kT

)︄
(2.112)

Substituting equations (2.109), (2.110), (2.111), (2.112) into equation (2.108)
yields

Jn = qNcDn

[︃
exp

(︃
qV

kT

)︃
− 1

]︃/︄∫︂ WD

0
exp

[︄
EC(x)
kT

]︄
dx (2.113)

Thermionic-Emission-Diffusion Theory

This approach is derived from the boundary condition of a thermionic recombi-
nation velocity vR near the metal-semiconductor interface. Since the diffusion of
carriers is strongly affected by the potential configuration in the region through
which the diffusion occurs, consider the electron potential energy versus distance
incorporating the Schottky lowering effect as shown in Figure 2.10. Consider the
case where the barrier height is large enough that the charge density between the
metal surface and x = WD is essentially that of the ionized donors. As drawn,
the applied voltage V between the

metal and the semiconductor bulk would give rise to a flow of electrons to-
ward the metal. The electron quasi-Fermi level EF n in the barrier is also shown
schematically as a function of distance. Throughout the region between xm and
WD

J = nµn
dEF n

dx
(2.114)

where the electron density at any point x is given by

n = NC exp
(︃

−EC − EF n

kT

)︃
(2.115)

Let us assume that the region between xm and WD is isothermal and that the
electron temperature T is equal to the lattice temperature.
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Figure 2.10: Energy-band diagram incorporating the Schottky effect to show the
derivations of thermionic-emission-diffusion theory and tunneling current.

If the portion of the barrier between xm and the interface (x = 0) acts as
a sink for electrons, we can describe the current flow in terms of an effective
recombination velocity vR at the potential energy maximum xm:

J = q(nm − n0)vR (2.116)
where nm is the electron density at xm, when the current is flowing,

nm = NC exp
[︄
EF n(xm) − EC(xm)

kT

]︄
= NC exp

[︄
EF n(xm) − qϕBn

kT

]︄
(2.117)

n0 is a quasi-equilibrium electron density at xm, the density that would occur if
it were possible to reach equilibrium without altering the magnitude or position
of the potential energy maximum (EF n(xm) = EF m)

n0 = NC exp
(︄

−qϕBn

kT

)︄
(2.118)

Another boundary condition, taking EF m = 0 as reference, is

EF n(WD) = qV (2.119)
If n is eliminated from equations (2.114) and (2.115) and the resulting expression
for EF n is integrated between xm and WD

exp
[︄
EF n(xm)
kT

]︄
− exp

(︃
qV

kT

)︃
= − J

µnNCkT

∫︂ WD

xm

exp
(︃
EC

kT

)︃
dx (2.120)
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Then from equations (2.116) and (2.120), EF n(xm) can be solved as

exp
[︄
EF n(xm)
kT

]︄
= υD exp(qV/kT ) + υR

υD + υR

(2.121)

where

υD = Dn exp
(︄
qϕBn

kT

)︄/︄∫︂ WD

xm

exp
(︃
EC

kT

)︃
dx (2.122)

is an effective diffusion velocity associated with the transport of electrons from the
edge of the depletion layer WD to the potential energy maximum xm. Substituting
equation (2.121) into (2.116) gives the end result of the thermionic-emission-
diffusion theory

JT ED = qNCυR

1 + (υR/υD) exp
(︄

−qϕBn

kT

)︄ [︃
exp

(︃
qV

kT

)︃
− 1

]︃
(2.123)

In this equation, the relative values of υR and υD determines the relative con-
tribution of thermionic emission versus diffusion. In summary, equation (2.123)
gives a result that is a synthesis of diffusion theory and thermionic-emission the-
ory, and it predicts currents in essential agreement with the thermionic-emission
theory.

Tunneling Current

For more heavily doped semiconductors and for operation at low temperatures,
the tunneling current may become more significant. In the extreme of an ohmic
contact, which is a metal contact on degenerate semiconductor, the tunneling
current is the dominant transport process.

The tunneling current from semiconductor to metal Js→m is proportional to
the quantum transmission coefficient (tunneling probability) multiplied by the
occupation probability in the semiconductor and the unoccupied probability in
the metal, that is

Js→m = A∗∗T 2

kT

∫︂ qϕBn

EF m

FST (E)(1 − Fm)dE (2.124)

Fs and Fm are the Fermi-Dirac distribution functions for the semiconductor and
the metal respectively, and T (E) is the tunneling probability which depends on
the width of the barrier at a particular energy. A similar expression can be given
for the current Jm→s, which traverses in the opposite direction. In that case
Fs and Fm would be interchanged in using the same equation. The total cur-
rent density, which consists of both thermionic emission and tunneling, can be
conveniently expressed as

J = J0

[︄
exp

(︄
qV

ηkT

)︄
− 1

]︄
(2.125)

where J0 is the saturation current density obtained by extrapolating the current
density from the log-linear plot to V = 0 and η is the ideality factor, related to
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the slope. With little or no tunneling current or depletion-layer recombination,
J0 is determined by that of thermionic emission and η is close to unity. For
higher doping and lower temperature, tunneling starts to occur and both J0 and
η increase.

The tunneling current can be expressed analytically and will give more phys-
ical insight. This formulation is also used to derive the ohmic contact resistance.
Referring to the energy-band diagrams in Figure 2.11, we can roughly categorize
the components into three types: (1) thermionic emission (TE) over the barrier,
(2) field emission (FE) near the Fermi level, and (3) thermionic-field emission
(TFE) at an energy between TE and FE. While FE is a pure tunneling process,
TFE is tunneling of thermally excited carriers which see a thinner barrier than
FE. The relative contributions of these components depend on both temperature
and doping level. A rough criterion can be set by comparing the thermal energy
kT to E00, which is defined as

E00 = qℏ
2

√︄
N

m∗εS

(2.126)

When kT ≫ E00, TE dominates and the original Schottky-barrier behavior pre-
vails without tunneling. When kT ≪ E00, FE (or tunneling) dominates. When
kT = E00, TFE is the main mechanism which is a combination of TE and FE.

Figure 2.11: Energy-band diagrams showing qualitatively tunneling currents in
a Schottky diode under (a) forward bias and (b) reverse bias. TE = thermionic
emission. TFE = thermionic-field emission. FE = field emission.

Under forward bias, the current due to FE can be expressed as

JF E ≈ A∗∗Tπ exp[−q(ϕBn − VF )/E00]
c1k sin(πc1kT ) (2.127)

where

c1 ≡ 1
2E00

log
[︄

4(ϕBn − VF )
−ϕn

]︄
(2.128)
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The current due to TFE is given by

JT F E =
A∗∗T

√︂
πE00q(ϕBn − ϕn − VF )
k cosh(E00/kT ) exp

[︄
−qϕn

kT
− q(ϕBn − ϕn)

E0

]︄
exp

(︃
qVF

E0

)︃
(2.129)

where

e0 ≡ E00 coth
(︃
E00

kT

)︃
(2.130)

Minority-Carrier Injection

The Schottky-barrier diode is mainly a majority-carrier device. The minority-
carrier injection ratio γ, which is the ratio of minority-carrier current to total
current, is small because the minority-carrier diffusion is much smaller than the
majority-carrier thermionic-emission current. However, at sufficiently large for-
ward bias, the drift component of the minority carriers cannot be ignored anymore
and the increased drift component will increase the overall injection efficiency.
Both drift and diffusion of holes lead to the total current of

Jp = qµppnE − qDp
dpn

dx
(2.131)

The increased field is set up by the large majority-carrier thermionic-emission
current

Jn = qµnNDE (2.132)
consider the energy-band diagram shown in Figure 2.12 where x1 is the boundary
of the depletion layer, and x2 marks the interface between the n-type epitaxial
layer and the n+-substrate. From the junction theory, the minority-carrier density
at x1 is

pn(x1) = pn0 exp
(︃
qV

kT

)︃
= n2

i

ND

exp
(︃
qV

kT

)︃
≈ n2

i

ND

Jn

Jn0
(2.133)

where Jn0 (satur. current density) and Jn are representations of the thermionic-
emission current in the following form:

Jn = Jn0 exp
[︃(︃
qV

kT

)︃
− 1

]︃
(2.134)

The other boundary condition for pn(x2) is also necessary to calculate the diffusion
current. We use the term transport velocity Sp (or surface recombination velocity)
for the minority carriers to relate the current and concentration by

Jp(x2) = qSp [pn(x2) − pn0] (2.135)
consider the case with Sp = ∞. Under this boundary condition, the diffusion
component has a standard form as in a p − n junction. From equations (2.131),
(2.132) and (2.133) we obtain the total hole current as (for L ≪ Lp)

Jp = µpn
2
iJ

2
n

µnN2
DJn0

+ qDpn
2
i

NDL
exp

[︃(︃
qV

kT

)︃
− 1

]︃
(2.136)
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Figure 2.12: Energy-band diagram of an epitaxial Schottky barrier under forward
bias.

The injection ratio is given by

γ = Jp

Jp + Jn

≈ Jp

Jn

≈ µpn
2
iJn

µnN2
DJn0

+ qDpn
2
i

NDLJn0
(2.137)

the injection ratio for low-level bias

γ0 = qDpn
2
i

NDLJn0
(2.138)

It is evident that to reduce the minority-carrier injection ratio (to reduce the
charge storage time to be discussed below) one must use a metal-semiconductor
system with large ND (corresponding to low resistivity material), large Jn0 (corre-
sponding to small barrier height), and small ni (corresponding to large bandgap).

Another quantity associated with the injection ratio is the minority-carrier
storage time τS, which is defined as the minority carrier stored in the quasi-
neutral region per unit current density:

τS =
∫︂ x2

x1
qp(x)dx/J (2.139)

MIS Tunnel Diode

In the metal-insulator-semiconductor (MIS) tunnel diode, a thin interfacial layer
such as an oxide is intentionally introduced before metal deposition. This inter-
facial layer thickness lies in the range of 1-3 nm. This device differs from the
MIS capacitor in having appreciable current and under bias the semiconductor
is not in equilibrium, i.e. the quasi Fermi levels for electrons EF n and holes EF p

split. The major differences of this structure compared to a conventional metal-
semiconductor contact are: (1) reduced current because of the added interfacial
layer, (2) lower barrier height (some potential is developed across the interfacial
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layer), and (3) higher ideality factor η. The energy-band diagram is similar to
Figure 2.5. The current equation can be written as

J = A∗T 2 exp(−
√︂
ζδ) exp

(︄
−qϕB

kT

)︄[︄
exp

(︄
qV

ηkT

)︄
− 1

]︄
(2.140)

For the same barrier, the current is suppressed by the tunneling probability
exp(−

√
ζδ). Here ζ (in eV) and δ (in Å) are the effective barrier and thick-

ness of the interfacial layer. This added tunneling probability can be considered
as a modification to the effective Richardson constant. The ideality factor is
increased to

η = 1 +
(︄
δ

εi

)︄
(εS/WD) + qDits

1 + (δ/εi)qDitm

(2.141)

where Dits and Ditm are interface traps in equilibrium with the semiconductor
and metal. In general, when the oxide thickness is less than 3 nm, the interface
traps are in equilibrium with the metal, whereas for thicker oxides, these traps
tend to be in equilibrium with the semiconductor. The interfacial layer reduces
the majority-carrier thermionic-emission current without affecting the minority-
carrier current, which is from diffusion, and raises the minority injection efficiency.

2.3.4 Measurement of Barrier Height
Four methods are used to measure the barrier height of a metal-semiconductor
contact: the (1) current-voltage, (2) activation-energy, (3) capacitance-voltage,
and (4) photoelectric methods. We focus only on the first method, as it is widely
used in this work.

Current-Voltage Measurement

For moderately doped semiconductors, the I-V characteristics in the forward di-
rection with V > 3kT/q is given by

J = A∗∗T 2 exp
(︄

−qϕB0

kT

)︄
exp

[︄
q(∆ϕ+ V )

kT

]︄
(2.142)

Since both A∗∗ and ∆ϕ (image-force lowering) are weak functions of the ap-
plied voltage, the forward J − V characteristic (for V > 3kT/q) is represented
by J = J0 exp(qV/ηkT ), as given previously in equation (2.125), where η is the
ideality factor:

η = q

kT

dV

d(ln J) =
[︄
1 + d∆ϕ

dV
+ kT

q

d(lnA∗∗)
dV

]︄−1

(2.143)

the barrier height can be obtained from the equation

ϕBn = kT

q
ln
(︄
A∗∗T 2

J0

)︄
(2.144)
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In the reverse direction, the dominant voltage dependence is due mainly to the
Schottky-barrier lowering (for V > 3kT/q)

JR ≈ J0 ≈ A∗∗T 2 exp
⎡⎣−

q(ϕB0 −
√︂
qE⇕/4πεs

kT

⎤⎦ (2.145)

where

E⇕ =

⌜⃓⃓⎷2qND

εS

(︄
VR + ψbi − kT

q

)︄
(2.146)

If the barrier height qϕBn is sufficiently smaller than the bandgap so that the
depletion-layer generation-recombination current is small in comparison with the
Schottky emission current, then the reverse current will increase gradually with
the reverse bias as given by equation (2.146), due mainly to image-force lowering.

2.3.5 Ohmic Contact
An ohmic contact is defined as a metal-semiconductor contact that has a negligible
junction resistance relative to the total resistance of the semiconductor device. A
satisfactory ohmic contact should not significantly perturb the device performance
and can supply the required current with a voltage drop that is sufficiently small
compared with the drop across the active region of the device.

Specific contact resistance is defined as the reciprocal of the derivative of the
current density with respect to the voltage across the interface. When evaluated
at zero bias, this specific contact resistance RC is an important figure-of-merit
for ohmic contacts:

RC =
(︄
dJ

dV

)︄−1

V =0
(2.147)

For low to moderate doping levels and moderately high temperatures, kT ≫ E00,
the standard thermionic-emission expression is used to obtain

RC = k

A∗∗Tq
exp

(︄
qϕBn

kT

)︄
∝ exp

(︄
qϕBn

kT

)︄
(2.148)

Since only small applied voltage is relevant, the voltage dependence of the barrier
height can be neglected. Equation (2.148) shows that low barrier height should
be used to obtain small RC . For higher doping level, kT ≈ E00, TFE dominates
and RC is given by

RC = k
√
E00 cosh(E00/kT )

A∗∗Tq
√︂
πq(ϕBn − ϕn)

exp
[︄

q(ϕBn − ϕn)
E00 coth(E00/kT ) + qϕn

kT

]︄

∝ exp
[︄

qϕBn

E00 coth(E00/kT

]︄ (2.149)
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This type of tunneling occurs at an energy above the conduction band where the
product of carrier density and tunneling probability is at a maximum.

With even higher doping level, kT ≪ E00, FE dominates, and the specific
contact resistance is given by

RC = k sin(πc1kT )
A∗∗πqT

exp
(︄
qϕBn

E00

)︄
∝ exp

(︄
qϕBn

E00

)︄
(2.150)

Provided that the barrier height cannot be made very small, a good ohmic contact
should operate in this regime of tunneling.

Specific contact resistance is a function of the barrier height (in all regimes),
doping concentration (in TFE and FE), and temperature (more sensitive in TE
and TFE). Qualitative dependence on these parameters is shown in Figure 2.13
for a fixed semiconductor material. The trend and the regimes of operation are
also indicated in the figure. In TE, RC is independent of doping concentration
and dependent only on the barrier height ϕB. In the other extreme of FE, in
addition to ϕB, RC has a dependence of ∝ exp(N−1/2).

Figure 2.13: Dependence of specific contact resistance on doping concentration
(and E00), barrier height, and temperature. Regimes of TE, TFE, and FE are
indicated.
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3. Experiment

3.1 Samples

3.1.1 Preparation
As a initial material for sample preparation was used a planar monocrystalline
wafer of CsPbBr3 perovskite of the thickness of about 2 mm. From such form
a cut was perfomed to creation of bar-like samples. This was accomplished by a
diamond wire saw (Well Diamond Saws Inc., model 6234) using a wire of diameter
of 200 µm, which was cooled by oil during the cutting process. Oil was chosen
instead of water with redards to perovskite low durability to this medium. After
this step, the bar-shaped sample was polished using abrasive based on Al2O3 with
maximum size of grains of 0.3 µm. The process was ensured on the Polytex cloth
in WD-40 oil thick layer. The sample bar was then washed in toluene to remove
mechanical and chemical residues seated on the sample and came from previous
processes. Finally, the sample was dried using air flow.

3.1.2 Contacting
After polishing process, the samples were covered by a polymer tape alongside the
bar and the only two heads of the bar remained uncovered. This step masked the
sample for implementation the current contacts on opposite sides. For formation
of potential probes, slightly different technique was used. By using mechanical
mask with appropriate holes, with aspect to their sizes and positions, were created
contacts in a row on the longer side of the sample bar. The deposition process
itself was performed, in the sealed chamber, by vacuum evaporation from the
boat. Materials of 5n purity for this step were came by company of Safina, in
this case the chromium and gold were used. The chromium for contacts of sample
marked as CPB19, and the gold for CPB7 sample. Each with the single type of
contacts, definitely. Thereby process, contacts of tens of nanometers thickness
were achieved.

Next proceedings contained sticking the sample on a sapphire pad by ther-
mally conductive silicon paste. Then I did the coupling of contacts on the sample
with silver wires, with a diameter of 50 µm, by coloidal graphite conductive aque-
ous based adhesive (Alfa Aesar, Thermo Fisher Kindel) of resistance of 3 Ω/cm2

at 250 µm thick layer, as shown in Figure 3.1.
The sapphire pad with the sample bar was placed onto the holder and were

performed the soldering of silver wires from sample contacts to pins located on
the holder. The holder itself is the part of sample positioner which is formed
for insertion into the cryostat (Janis Research). This cryostat is suitable for
temperature dependence measurements as well as measurements under the inert
gas atmosphere, here using nitrogen of purity class 4.7.

Arrangement of contacts on the sample has two variants - in a row and later-
ally, as shown in Figure 3.2. A both variants allow measurements of conductivity,
i.e. when current contacts (pins 4 and 5) measure the current only and potential
contacts (pins 2 and 1 in Figure 3.2a or pins 3, 2, 1 in Figure 3.2b) measure the
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Figure 3.1: CPB7 sample bar: here, still with testing chromium contacts, (a) be-
fore steady coupling of contacts with silver wires, (b) after using coloidal graphite
adhesive for solid joining.

voltage only. For instance 2-1 5-4 where the first couple of numbers stand for
combination for voltage measurement and the second pair is for combination for
current measurement. This kind of connection is known as Four Point Method,
and is not appointed to characterize properties of the barrier at current contacts.
Then again, connection where one of current contacts (pins 4 or 5) or even a
both, is measuring current and voltage together, then properties of the barrier,
at corresponding current contact, are incorporated, i.e. for instance 5-2 5-4 where
the first couple of numbers stand for combination for voltage measurement and
the second pair is for combination for current measurement. Such connection
is named as Three Point Method. Furthermore, the arrangement of contacts as
shown in Figure 3.2a permits measurement of the Hall effect for recognises a type
of semiconductor. Here can be chosen the combination including voltage mea-
surement between pin 2 and 3. Regrettably, it was impossible to acquire reliable
data from such measurement due to low signal-to-noise ratio.
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Figure 3.2: Arrangements of contacts of CPB19 samples, (a) laterally located
contacts, (b) in a row contacts.

3.1.3 Dimensions
For calculations and resulting determination of transport parameters have precise
dimensions and distances, of tested samples, a crucial importance. Values in Table
3.1 are in according to Figure 3.2. Dimensions of CPB19 samples are (in mm)
1.72 x 1.46 x 12.6 (h x w x l).

Contactsa Distance [mm] Contactsb Distance [mm]

5–2 6.3 5-3 3.3
2–1 3.0 3-2 3.1
1–4 3.3 2-1 3.2
— — 1-4 3.0

Note: a sample with laterally located contacts, b sample with contacts in a row

Table 3.1: CPB19 sample: distances of contacts.

3.2 Measurement Technique
For complete fulfil of the task, the measurement technique of current-voltage
characteristics (also I-V characteristics) was chosen. It is relationship between
current which we let into the sample and relevant feedback in the form of voltage.
In our case, the proper considerations about the amount of electric current were
crucial because voltage feedback of the sample often reached the voltage limit
which was given by used current source. Derived measurement from I-V charac-
teristics are detection of hysteresis behavior and also measurement evaluation in
the time for finding time stability of carrier collection.
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3.3 Device Scheme
Measuring setup consists of individual electrical instruments and cryostat part,
where the sample has been placed. Detailed scheme is shown in Figure 3.4. Gen-
erally, it includes devices such as source (current, temperature, gas), switching
(current), sensors (pressure, temperature) and reading (current, voltage, temper-
ature, pressure).

As a central instrument of the measuring setup was the current source Keith-
ley 220 controlled by computer. It has bipolar voltage limit up to 105 V and
ranges (for our purposes) 1 nA, 10 nA and 100 nA, with response time < 3 ms.
For guarding measurement was used the Guarded Adapter Keithley 6167 directly
connected to the current source instrument. A brief scheme of guarded measure-
ment is shown in Figure 3.3, where IMeas = IDUT + ILeak = IDUT + VSet/RLeak

for Figure 3.3a, whereas IGuard ≈ 0 and IMeas = IDUT for Figure 3.3b. Hereafter
subsumed current source Keithley 2450 had guarding option already integrated
in the body.

Figure 3.3: Guarding technique: (a) without guarding, (b) with guarding.

The picoammeter Keithley 6485 was subsumed into the system for reading
of the actual current values. It has current range from 2 nA to 20 mA, which
was a problem due to our measurements commonly performing in the region
from 0 nA to 5 nA and beyond. For combinations changing purposes, i.e. for
quick and proper reconnection of the current and voltage pins of the sample, was
subsumed Switch System Keithley 7001 with the Low Current Matrix Card model
7152 inside. The Low Current Card was chosen for high resistivity measurement
ability and for matrix configuration of 4 rows by 5 columns. Voltage reading was
ensured by set of two Programmable Electrometers Keithley 6514 with burden
voltage correction for minimizing of total voltage offset, connected to Autoranging
Multimeter Keithley 2010.

All of mentioned electrical instruments are connected via GPIB interfaces to
the PC within the framework of bi-directional communication.
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Figure 3.4: Scheme of measuring setup.
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4. Results and Discussion
This chapter incorporates a summary of finally selected measurements, their re-
sults and analyses. All results have been acquired on two samples - CPB19 and
CPB7, as mentioned in the previous chapter. Each of samples was subjected
of measuring technique of current-voltage characteristics. Post-processing of re-
trieved data allows to represent them to two various forms, which tell us not only
the development of the bias and the current dependences, but also comprehensive
behavior in time evolution.

4.1 Current-Voltage Characteristics
The measurement uses two methods: in group and not in group. The first men-
tioned approach involves measurements where all measured combinations are
measured immediately after each other, so almost at once. They thus have a
very small time distance from each other. In contrast, the second method per-
forms measurements by measuring one whole combination at a time and only
then proceeding to measure the next combination. Furthermore, it is necessary
to mention that all measurements took place under the voltage limit of 100 V,
which was given by the current source used, as mentioned in the previous chapter.

By performing several test measurements, I found that it is not possible to
perform measurements at a temperature of 300K, due to the rapid reaching of the
voltage limit. At the same time, it was necessary to measure at currents whose
signal would have a distance from noise. The only option was to increase the
temperature by 33K. Therefore, successful measurements are mainly reported at
a temperature of 333K. Furthermore, by measuring the current-voltage charac-
teristics, the hysteresis was detected, as shown in Figure 4.1. Since it was still
present in subsequent control measurements, I decided to examine it in more de-
tail, as shown in Figure 4.2 for sample CPB19 with chromium contacts [15] and
in Figure 4.3 for sample CPB7 with golden contacts [16], [17]. For both mea-
surements, the entire hysteresis curve was run for four times. The presence of a
barrier is evident here, for some voltage, the current rises, and its breakthrough
through the tunnel effect. This is a reversible process.

Due to the small current range of these mentioned measurements, I proceeded
to extend it up to values in the range of ± 30 nA. Two such measurements
are shown in Figure 4.4 and in Figure 4.5. These measurements were taken
considering how the curve would evolve if I stayed at one value after some steady
steps. I did this at values of 10 nA, 20 nA and 30 nA, where I measured ten
values each time. However, the curves shown differ considerably, although they
are the same measurements, over the same and entire sample. The only difference
was the time interval between these measurements. While the 4.4 was taken on
12.4.2023, the 4.5 then on 30.6.2023 Thus, a wild development is noticeable in
the sample, which was subjected to additional measurement loads in the time
between these measurements.

Nevertheless, I still proceeded to explore the moment in the curve when I
require the measuring apparatus to run up to the point where I will measure
repeatedly. Therefore, around such a point I set the measurement of ten values
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before and ten values after. The results are shown in Figure 4.6 in the voltage
expression and in Figure 4.7 in the time expression. Overall, however, it can
be seen that due to unremitting changes in the results of the current-voltage
characteristics, it is not possible to determine the contact characteristics from
them. It is noticeable that the hysteresis changes depending on time and history
of the measurement, so I proceeded to preferably measure the time characteristics.
Similarly, finding that the hysteresis changes depending on how fast I measure,
i.e. the acquisition time of each measured point. It is also important to state
that the cause of hysteresis behavior is electromigration or rather ion migration,
respectively.

Figure 4.1: I-V characteristics of sample CPB19, measured in group at 333K,
chromium contacts, coloured numbers close by curves denotes order of measure-
ments.

In the case of I-V characteristics, we see a binding phenomenon - at low
voltages and currents, the resistance increases, at higher currents, on the contrary,
the resistance decreases. We are then working on a model explanation of the
phenomenon and we are not yet clear about it. We observe these phenomena not
only on the entire sample bar, but also on the middle zone between contacts 1 and
2 in Figure 4.1. Such development is impossible in the ideal four-point method.
For the sake of explanation, I consider the carrier depletion model under the
dominant contact, that is, the one that supplies the sample with the majority of
carriers, in our case apparently holes. Due to the small concentration of carriers
and electrically active defects with levels close to the Fermi energy, it can easily
lead to a situation where the depletion thickness spreads over the entire sample
bar, which would lead to the observed phenomena. However, further experiments
will be necessary to confirm the model.
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Figure 4.2: I-V characteristics of sample CPB19, measured not in group at 333K,
chromium contacts, green numbers close by curves denotes order of measure-
ments.

Figure 4.3: I-V characteristics of sample CPB7, measured not in group at 300K,
golden contacts, green numbers close by curves denotes order of measurements.
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Figure 4.4: I-V characteristics of sample CPB19, measured 12.4.2023 at 333K,
chromium contacts, green numbers close by curves denotes order of measure-
ments.

Figure 4.5: I-V characteristics of sample CPB19, measured 30.6.2023 at 333K,
chromium contacts, green numbers close by curves denotes order of measure-
ments.
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Figure 4.6: I-V characteristics of sample CPB19, measured at 333K, chromium
contacts.

Figure 4.7: U-t-I evolution of sample CPB19, measured at 333K, chromium con-
tacts.
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4.2 Time Stability of Carrier Collection
As an initial measurement, I chose a time characteristic with three temperature
levels, to see how temperature would affect this kind of experiment. As you can
see in Figure 4.8, the effect is not so convincing, rather in the expression of the
resistance, and its slight increase for low temperature is noticeable in Figure 4.9.
So I made a measurement to monitor the behavior over time at variable current
values of ±4 nA and ±15 nA in Figure 4.10 and Figure 4.11

The result was, similar to the previous measurement, the presence of the
phenomenon of electromigration, or ion migration. So I proceeded to the mea-
surement, which would take place in both directions through the sample, with
the observation of the development and the possibility of symmetrical behavior
of such an experiment. I set it at two temperatures as shown in Figure 4.12
and in Figure 4.13. By comparing the results, it can be said that significant
differences occur mainly in the direction of the current of combination 4 − 5.
In order to evaluate the transport parameters that I want to obtain, I therefore
decided to measure in one direction of the current with a sample in combination
5−4. I processed it in Figure 4.14, Figure 4.15 and Figure 4.16 for three different
temperatures.

Figure 4.8: Temperature dependence measurement in group, sample CPB19, bias
expression, chromium contacts.

We can see advancing waves of resistance growth, moving from anode to cath-
ode. This fact we regard as a fundamental of this thesis. This is a proven elec-
tromigration of the defect. These defects are undoubtedly positively charged and
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Figure 4.9: Temperature dependence measurement in group, sample CPB19, re-
sistance expression, chromium contacts.

rapidly drift in eletric field by the whole sample bar. At the same time, we prove
with these measurements that it is a p-type material. This is also a non-trivial
result. Finding the type of conductivity in a semiconductor with low electron
mobility and holes by measuring the Hall effect can be difficult. Here we see it
indirectly, but clearly interpretable.

Due to the speed of diffusion, I suspect that the defects drift along the surface
of the sample, where such rapid processes can be expected. The concentration
of defects will be low and will not block the electric field inside the sample.
Therefore, it is not possible to determine from our measurements whether the
defects are on the surface or in the volume.

In measurements, we can see the phenomenon of electromigration at low volt-
ages, when ions drift relatively slowly and we are able to capture their movement
between zones. At higher voltages, this process happens quickly and we can
see some subsequent relaxation that leads to a decrease in resistance. This phe-
nomenon is common to the measurement of I-V curves at higher currents.
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Figure 4.10: Current dependence measurement in group, sample CPB19, bias
expression, chromium contacts.

Figure 4.11: Current dependence measurement in group, sample CPB19, resis-
tance expression, chromium contacts.
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Figure 4.12: U-t-I evolution of sample CPB19, measured in group at 313K,
chromium contacts.

Figure 4.13: U-t-I evolution of sample CPB19, measured in group at 333K,
chromium contacts.
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4.2.1 Transport Parameters Calculation
Based on the data that are shown in Figures 4.14, 4.15, 4.16, the transport
parameters were calculated, always for the last four current intervals. The results
are listed in tables below and are within the ranges reached in accordance with
[9], [10], [11], [12] and [13], [14].

Relations for calculation of transport parameters are presented in Chapter 2.
Specifically, relation (2.11) was used to calculate the electric field and it is the
field between the peaks of the respective curves in one interval. The mobility of
the ions was given by the relation (2.10), more detailed (2.15), respectively. I
obtained the value of the diffusion coefficient from Einstein relation (2.53). In
tables below, I present the numbers to one decimal place, as an error in tens of
percent is expected.

It can be seen from the results that the temperature dependence of both the
mobility and the diffusion constant is non-monotonic in the indicated temper-
ature interval of 300 to 333K. This result is highly suspect due to the narrow
temperature range used. From a general point of view, it is unlikely that I would
hit directly at the temperature where a change in the transport mechanism oc-
curs, which would lead to the observed development. Therefore, I present the
results as preliminary, which will require repeated measurements, including an
extended temperature interval, in order to verify that the result is repeated.

However, the observed development is not in principle impossible. There are
models that could lead to an observed non-monotonic dependence. Their principle
is relatively non-trivial and is related to the defect structure of the perovskite and
the chemical reaction between the defects. I originally planned to also find out
the effect of temperature on the rate of reactions. However, due to the non-
monotonic behavior of mobility, drawing an Arrhenius graph is unnecessary. I
will most likely not determine anything from him. [31] One can only expect an
energy value with an enormous error from the interpolation, and this error will
be larger than the detected value.
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Figure 4.14: U-t-I evolution of sample CPB19, measured in group at 300K,
chromium contacts.

Table 4.1: Calculated values at 300K for the region between contacts 5-3 and 3-2.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

3 4.4e-4 4.1 1.1e-4 2.8e-6
4 2.6e-4 4.0 6.5e-5 1.7e-6
5 4.4e-4 4.0 1.1e-4 2.9e-6
6 2.2e-4 3.8 5.8e-5 1.5e-6

Table 4.2: Calculated values at 300K for the region between contacts 3-2 and 2-1.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

3 1.3e-3 3.0 4.4e-4 1.1e-5
4 1.3e-3 3.3 4.0e-4 1.0e-5
5 6.6e-4 2.9 2.3e-4 5.9e-6
6 1.3e-3 3.2 4.1e-4 1.1e-5
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Figure 4.15: U-t-I evolution of sample CPB19, measured in group at 313K,
chromium contacts.

Table 4.3: Calculated values at 313K for the region between contacts 5-3 and 3-2.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

4 4.4e-4 2.2 2.0e-4 5.4e-6
5 4.4e-4 2.2 2.0e-4 5.3e-6
6 6.5e-4 2.2 3.0e-4 8.1e-6
7 4.4e-4 2.2 2.0e-4 5.4e-6

Table 4.4: Calculated values at 313K for the region between contacts 3-2 and 2-1.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

4 4.3e-4 1.6 2.7e-4 7.2e-6
5 4.3e-4 1.8 2.4e-4 6.6e-6
6 6.6e-4 1.6 4.1e-4 1.1e-5
7 4.3e-4 1.7 2.5e-4 6.7e-6
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Figure 4.16: U-t-I evolution of sample CPB19, measured in group at 333K,
chromium contacts.

Table 4.5: Calculated values at 333K for the region between contacts 5-3 and 3-2.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

3 3.3e-4 1.5 2.3e-4 6.5e-6
4 6.9e-5 1.5 4.8e-5 1.4e-6
5 3.3e-4 1.5 2.2e-4 6.4e-6
6 7.3e-5 1.4 5.1e-5 1.5e-6

Table 4.6: Calculated values at 333K for the region between contacts 3-2 and 2-1.

Interval Drift velocity El.field Mobility Diffusion coeff.
No. [cm/s] [V/cm] [cm2/V.s] [cm2/s]

3 3.3e-4 0.8 3.9e-4 1.1e-5
4 4.3e-4 1.0 4.4e-4 1.3e-5
5 3.3e-4 0.8 4.1e-4 1.2e-5
6 4.3e-4 1.0 4.3e-4 1.2e-5
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Conclusion
This thesis presents the results of measurements on the material CsPbBr3, which
is a metal halide perovskite. It focuses on the characterization of this material,
especially with chrome contacts, but also provides information on a sample with
gold contacts. In the first chapter, it was explained why I want to deal with
this material. Its advantages, differences and above all its potential in the field
of applications were defined. In the following chapter, devoted to the theory,
the issues of transport, p − n transition and metal-semiconductor contact were
discussed in detail. In the experimental part, I discussed the preparation of
samples, contacting them, and went on to describe the measuring apparatus,
including a detailed description of the most important properties of the devices
used, taking into account our requirements and the nuances that affected our
measurements. Everything was finished with a precise diagram of the complete
measuring apparatus.

The chapter itself, dedicated to the presentation of the results and their dis-
cussion, is basically divided into three parts. The part dedicated to I-V character-
istics was properly discussed. It only remains to add that a model was proposed
that would explain the phenomenon that resistance increases at low voltages and
currents, while resistance decreases at higher currents. However, further experi-
ments will be necessary to confirm this model. In the following section, I deal with
the issue of measurement depending on time. Among other things, the proven
electromigration made it possible to determine the type of conductivity of the
material. This is an important result, as attempts to determine this data using
a more common method in a magnetic field were not successful due to the small
signal-to-noise ratio. In the third part of this chapter, I focused on the calculation
of transport quantities. By analyzing them, I came to believe that the detected
non-monotonicity is related to the defect structure of the perovskite and also to
the chemical reactions between the defects. However, a detailed analysis of such
a model is beyond the scope of this thesis. Since the thesis is primarily experi-
mental and the results will have to be verified in the future, the formulation of
theoretical models is premature at this level.
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