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Preface

With the development of semiconductor technology after the Second WorldWar, Si and Ge
became the common materials used for X-ray and γ-ray spectrometers since they offered
better resolution as compared to other detectors (gas chambers, proportional counters,
scintillators) available at the time. However, in the following years some disadvantages of
these materials appeared, limiting their use in certain applications. These were, in the case
of Si, low sensitivity of detection of radiation with energy higher than several tens of keV,
and, in the case of Ge, its relatively high volume (up to 100 cm3) necessary for efficient
operation. Because of their small bandgaps (1.12 eV for Si, 0.67 eV for Ge at 300 K), both
materials must have been cooled down to liquid nitrogen temperatures to avoid excessive
thermal currents. In the consequent search for a new material of high detection ability
that could be operated at room temperature while lower volumes of the material would
be needed, Cadmium-Telluride (CdTe) has proved to be a proper candidate.

In the 1950s first detailed investigations of CdTe were made and since then numerous
papers reporting various properties and applications have been published. The first com-
prehensive studies were published in 1955 by Kröger and de Nobel [1], and by Boltaks,
Konorov, and Matveev [2], followed by the work of de Nobel [3], where basic struc-
tural, electrical, and optical properties were reported. Simultaneously with the develop-
ment of CdTe, two related compounds were being examined: Cadmium-Mercury-Telluride
(HgCdTe, CMT) and Cadmium-Zinc-Telluride (CdZnTe, CZT). Due to the feasibility of
tuning the bandgap energy of CMT in the range of 0–1.5 eV by controlling of the Hg mole
fraction, from late 1960s it played a major role in infrared (IR) detection systems cover-
ing the most important IR range from 1 to 14 µm (including two important atmospheric
windows: 3–5 µm and 8–14 µm). Because of its high IR absorption coefficient, thin CMT
films (thickness around 10 µm) were sufficient for efficient detection. Preparation of thin
films further stimulated the development of epitaxial techniques in 1980s—LPE, MOCVD,
MBE, etc. In order to reduce the amount of defects and stress between a thin film and
a substrate, epitaxial films of CMT were prepared with success on CZT because of ex-
cellent matching of their lattice constants. High IR transmissivity of CZT enabled the
deposition of a thin CMT film on the backside of the CZT substrate to protect the film.
Developments in the crystal growth of CZT that should originally serve as a substrate
for epitaxial layers later approved that CZT itself can efficiently operate as a radiation
detector as well as CdTe does, and, moreover, it overcomes CdTe in particular properties,
e.g., resistivity at room temperature. Both these materials have been studied intensively
due to their potential applications in detecting X-ray and γ-ray radiation [4, 5].

In the field of radiation detectors, independently of which semiconductor material
is employed, there are certain material properties required for the realization of high
performance spectrometers that provide both good spectral resolution and high counting
efficiency. Key properties can be summarized as follows [6]:

(i) High atomic number, Z, for efficient radiation–atomic interactions.

(ii) Large enough bandgap for high resistivity and low leakage current at room tem-
perature. Low leakage currents are critical for low noise operation; high resistivity
(>109 Ωcm) is achieved by using larger bandgap materials with low intrinsic carrier
concentrations and by controlling the extrinsic and intrinsic defects to pin the Fermi
level near the midgap. Values above about 1.5 eV are normally needed.
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(iii) Small enough bandgap so that the electron–hole ionization energy is small (<5 eV).
This results in the number of generated electron–hole pairs being reasonably large
and the statistical variation small, ensuring higher signal-to-noise ratio.

(iv) High intrinsic mobility–lifetime product, µτ , for efficient charge collection. Since
the charge collection is determined by what fraction of the detector thickness pho-
togenerated electrons and holes traverse during the time when charge is collected,
the carrier drift length is required to be far greater than the detector thickness to
ensure complete collection.

(v) High-purity, homogeneous, defect-free material with acceptable cross-sectional area
and thickness. For high sensitivity and efficiency, large detector (single-crystal)
volumes are required to ensure that as many incident photons as possible have the
opportunity to interact in the detector volume. The requirement of homogeneity
and low defect density ensures good charge transport properties and low leakage
current.

(vi) Contacts that produce no defects, impurities or barriers to the charge collection
process and which can be used effectively to apply a uniform electric field across the
device. Related to this is the requirement for the detector to be free of polarization
effects, i.e., any processes (e.g., space-charge buildup within the device) that over
time change the magnitude or uniformity of the electric field within the device and
thus produce temporal changes in the detector operation.

(vii) Surfaces with sufficiently high electrical resistivity, noise of which due to surface
conduction is low. The surfaces should be stable over time to prevent increase in
the surface leakage current and to prevent problems of incomplete charge collection
and buildup of surface charges.

Among other materials meeting the above requirements, CdTe and CZT have become the
forefront in applications covering X-ray and γ-ray spectrometers as they reliably produce
high resolution spectra over a wide energy range [7].

1 General properties of CdTe and CZT

1.1 Basic properties

Both CdTe and ZnTe have the cubic zincblende structure [8]. This can be described as two
interpenetrating face-centered cubic sub-lattices shifted from each other by a quarter of
a unit cell diagonal. The Cd or Zn cation occupy one sublattice, the Te anions the other.
CZT can ideally be regarded as a CdTe crystal with Zn atoms randomly substituted for
a fraction x of the Cd atoms, Cd1−xZnxTe [6]. As the lattice constants of CdTe and
ZnTe are different, the substitution of Zn atoms for Cd is accompanied by a change in
the average unit cell dimension. It is usually assumed that the resulting lattice constant,
a(x), is a linear interpolation between the two constituents. This so called Vegard’s law
can be written in the following way:

a(x) = a(CdTe)(1− x) + a(ZnTe)x, (0.1.1)
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Figure 0.1.1: (a) Band structure of CdTe [6], k is the wave vector. (b) Comparison of
bandgaps and lattice constants of a variety of II–VI and III–V compounds [11].

where a(CdTe) = 0.648 nm and a(ZnTe) = 0.610 nm are, respectively, the lattice constants of
CdTe and ZnTe at room temperature [9]. CdTe and ZnTe are direct-bandgap semiconduc-
tors with bandgaps at room temperature of approximately 1.5 eV and 2.2 eV, respectively.
Thanks to direct bandgap these compounds are attractive for optical devices. The band
structure of CdTe is shown in Fig. 0.1.1a. CdTe has relatively low effective mass for
electrons (approximately 0.11m0, m0 being the electron rest mass), which gives it good
transport properties. For holes one must remember that there are different effective mass-
es for the separate valence bands (light holes, heavy holes, split-off band).

The band structure of CZT is more difficult as it is a ternary semiconductor. Simple
approximation proposed by the virtual crystal approximation assumes that the crystal
potential can be considered a linear interpolation between the two constituents (CdTe
and ZnTe), implying, e.g., that the bandgap should vary linearly with x. In practice, the
measured dependence of the bandgap, Eg(x), as a function of composition x is always
found to have some curvature. It is often expressed by equation [10]

Eg(x) = (1− x)E(CdTe)
g + xE(ZnTe)

g − bx(1 − x) (0.1.2)

with the bowing parameter, b, which is attributed to short-range disorder. However,
the published values of b vary substantially. The latter equation may be the basis for
tuning the bandgap energy of CZT by controlling the fraction of Zn atoms, a bandgap
engineering, analogously to the practice in technology of III–V compounds. Naturally,
the bandgap is the function of temperature and external pressure. More details will be
discussed in Part II of this thesis.

As mentioned in the Preface, Zn atoms are not the only ones which are added to
CdTe to produce a ternary alloy. Technologies have been developed to produce CMT
(Hg1−xCdxTe), a compound the bandgap of which can be tuned from 0.0 eV (HgTe)
to 1.5 eV (CdTe) by controlling the amount of Cd to Hg, see Fig. 0.1.1b. Equations
analogous to Eqs. (0.1.1) and (0.1.2) exist for CMT as well, which are the basis of proper
lattice constant matching of CMT and CZT in the technology of IR radiation detectors
based on these materials [11].

CdTe has a density of 5.85 g/cm3 and congruent melting point of 1092 ◦C. High electro-
optical coefficient of 6.8 × 10−12 m/V enabled the use of CdTe as an electro-optical mo-
dulator and makes it possible to investigate the internal electric field in a detector by
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the Pockels effect. Electron mobility of ∼ 1000 cm/Vs and high intrinsic µτ are two
prerequisites for efficient radiation detection (see requirement (iv) in the Preface). These
properties are later discussed in Chapter 3 and are the key topics of Part I.

1.2 Growth methods

Based on the detail review presented in [6, 7], a short overview of growth methods used
for the growth of CdTe and CZT is given. Among the others, the most important are:
the Bridgman method (BM), vertical gradient freeze method (VGF), travelling heater
method (THM), physical vapor growth, and vapor phase epitaxy. Numerous variations
of each method have been reported. For successful use of grown crystal as a material for
radiation detectors, strict electrical and structural quality requirements must be met.

Bridgman method. The basic Bridgman method involves the movement of a crucible
containing the melt through a furnace designed to provide a suitable temperature profile.
The furnace may be either vertical or horizontal. The crucible may be transported through
the heater, or the crucible being stationary with a moving heater, or alternatively, both
stationary and the temperature profile altered by a programmed temperature controller
(VGF). The method is further differentiated according to growth pressure into the high-
pressure Bridgman method (HPB) and low-pressure Bridgman method (LPB).

In the HPB method an over-pressure of 10–150 atm of an inert gas, typically Ar, is
maintained over the melt to suppress the loss of volatile components; however, the losses
of Cd are usually not eliminated, which causes the melt to become enriched with Te during
the growth. This results in the presence of Te inclusions and precipitates in the crystal.

The LPB method has been successfully employed to produce spectrometer quality
CZT without the use of a high gas overpressure. Both vertical and horizontal designs can
be employed; however, it is believed that the horizontal one offers potential advantages
over the vertical one due to the perpendicular orientation of the gravitational field relative
to the growth axis [6].

Vertical gradient freeze method. Though it is a variation of the Bridgman method,
a separate paragraph is devoted to VGF since this technique was used in the growth labo-
ratory of the Institute of Physics of Charles University for the growth of some samples in-
vestigated in this thesis. Unlikely to classical vertical BM, both the crucible and heater are
stationary while the necessary temperature gradient is ensured by electronically-controlled
heating coils.

Travelling heater method. This is currently probably the most popular method for
commercial growth of CdTe and CZT crystals. This method has evolved from the zone
refining technique originally developed for purifying crystals. Starting polycrystalline
material is placed into an evacuated chamber or an inert atmosphere. A moving RF
heating coil is used to melt a narrow region of the crystal. Those impurities the segregation
coefficient of which is lees than unity are concentrated in the melt. While the molten zone
is slowly moved along the crystal, single-crystalline material is usually solidified and the
impurities are transported to the one end of the crystal. This part is consequently cut
off, leaving the purified grown crystal.

4



Figure 0.1.2: Native point defects in
CdTe [12]. CA and CB are impurity
atoms at places of atoms A and B; other
notation is described in the text.

1.3 Defects

In an ideal crystal all atoms form perfectly periodical crystalline lattice, e.g., the zincblende
structure in the case of CdTe. Unfortunately, this situation is theoretically possible only
at T = 0K. At non-zero temperatures, deviations from the ideal distribution of atoms
occur and various defects are formed.

Point defects. In a binary compound AB several native defects exist (Fig. 0.1.2): va-
cancies VA, VB, interstitials AI, BI, antisite defects BA, AB, and their complexes, e.g.,
Frenkel defects VA–AI, VB–BI, complex of BA–VA, etc.

Thermodynamic calculations of defect equilibria established under specific external
conditions (temperature, pressure of the gas phase of one component of AB compound)
can be treated in a quasi-chemical formalism, based on the knowledge of the formation
energies and structure of defects’ energy levels in the bandgap. Various methods may be
utilized in the investigation of both shallow and deep levels in the bandgap, including
photoluminescence (PL), photo-induced current transient spectroscopy (PICTS), deep-
level transient spectroscopy (DLTS), thermoelectric emission spectroscopy (TEES), Hall
effect measurements, etc. However, identification of observed energy levels with particular
defects does not have to be an easy task. Dominant donor-like native defects in Cd-rich
CdTe crystals are singly- and doubly-ionized interstitials, Cd+

I and Cd2+
I , and doubly-

ionized antisites, Te2+Cd. The main acceptor-like native defects are singly- and doubly-
ionized vacancies, V−

Cd and V2−
Cd [13].

Except for native defects, extrinsic point defects are of major importance for growth
technologies and subsequent treatment of CdTe crystals and related compounds. Extrin-
sic defects are either undesirable impurities present in the crystal or dopants intentionally
introduced into the material to modify its properties. It is desirable to reduce the con-
centration of impurities below the level of native point defects, i.e., under approximately
1015 cm−3 at room temperature. The most important dopants of CdTe are In and Cl.
Both behave as shallow donors and together with V2−

Cd they create an acceptor-like complex
defects, A-centers: (InCd–VCd)

− in the case of In, (ClTe–VCd)
− in the case of Cl.

The role of point defects is critical for the compensation of CdTe, a method for reaching
of a high-resistive (semi-insulating) state with resistivity higher than 109 Ωcm) which is
necessary for CdTe detectors to minimize dark current at room temperature. A way how
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to successfully accomplish this is to precisely compensate shallow charged defects while
pinning the Fermi level on a deep level in the midgap. Details are to be found in literature,
e.g., in [14].

Line defects. Crystallographic defect oriented along a particular line within the ma-
terial is called a dislocation. Typically, dislocations are formed during the growth of the
crystal to relax the stress induced within the material due to the solidification of the melt
in a crucible, which sustains the melt in a fixed volume, unabling it to expand freely to
an empty space. The presence of dislocations strongly influences material properties. Dis-
locations are formed randomly within the whole crystal grain; however, crystallographic
structure of the material predestinates several preferred directions, which can be seen
in micro-indentation experiments [15]. Two primary types of dislocations exist: edge
dislocations and screw dislocations. Mixed dislocations are intermediate between these.

Dislocation density, the total length of dislocations in a unit volume of the material,
can be revealed by measuring the edge pit density. In such an experiment, surface of the
material is etched using a special etchant that leaves an observable pit in the place where
the dislocation appears on a surface of the crystal. For CdTe and CZT, a Nakagawa etch,
consisting of HF, H2O2, and water, is used. A typical observed dislocation density is of
the order of 104 cm−2.

Planar defects. The most common type of planar defects are grain boundaries, created
in the crystal during the solidification of the melt when grains growing from different
nucleation centers (of different lattice orientations) meet. The size and number of grain
boundaries depend on growth conditions, purity of the material and crucible, roughness
of crucible walls, vibrations, etc. CdTe crystals prepared by the Bridgman method are
usually polycrystalline; however, the size of grains is large enough to make it possible to
prepare monocrystalline pieces for the fabrication of radiation detectors.

A single grain can also contain planar defects of its own. A disruption of the long-
range stacking sequence can produce stacking faults and twin boundaries. A change in the
stacking sequence over a few atomic spacings produces a stacking fault whereas a change
over many atomic spacings produces a twin region. A stacking fault is a one or two
layer interruption in the stacking sequence of atomic planes. If a stacking fault does
not correct itself immediately but continues over some number of atomic spacings, it
produces a second stacking fault that is the twin of the first one. Adjacent atomic layers
are mirrored across the twin boundary. Twin boundaries may also be found in CdTe
crystals.

Planar defects are easily observable by visual inspection on roughly polished wafers
(F600 abrasive, see Subsection 3.1.1 in Part I), in IR transmittance images, or by X-ray
diffraction topography.

Bulk defects. Although the phase diagram of CdTe is sufficiently known nowadays
[16], the complexity of the crystal growth process makes it very difficult to precisely
follow the ideal crystallization conditions and maintain the stoichiometry in the whole
crystal volume. As a result two different phases, solid and melt, with nonstoichiometry
composition appear during the solidification and consequent cooling process, giving birth
to second phase defects.

Inclusions are formed during the solidification of the melt due to thermal fluctua-
tions on the crystallization interface, which leads to the capturing of melt droplets [17].
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Depending on the excess component in a droplet, either star-shaped Cd-inclusions or tri-
angular and hexagonal Te-inclusions may be formed. Because of their size of up to tens
of micrometers and strong IR absorption, inclusions are easily investigated by means of
IR microscopy.

Precipitates are formed during the cooling of the solidified crystal due to retrograde
solubility of the excess component in the solid [17]. With its size of up to tens to hun-
dreds of nanometers, they are much smaller than inclusions. Precipitates may be formed
randomly within the whole volume of the crystal (homogeneous precipitation); however,
precipitation takes place much easier on the crystal imperfections, e.g., along dislocations,
twin or grain boundaries (heterogeneous precipitation).

Except for inclusions and precipitates, voids are small regions where there are no
atoms, and can be thought of as clusters of vacancies.

2 Interactions of radiation with matter

To employ any material as a radiation detector, radiation must interact with the matter
of the detector and efficiently lose its energy within the active volume. The knowledge
of the mechanism of how the energy is deposited in the detector is very important for
interpretation of measurements as well as for the construction of detectors. Generally,
based on the type of interaction, ionizing radiation can be divided into three groups [18]:

(i) Charged particles: electrons (e−), positrons (e+), protons (p), deuterons (d), alphas
(α), and heavy ions.

(ii) Photons: gammas (γ) and X-rays.

(iii) Neutrons (n).

For the purposes of this thesis, the first two groups are of interest.
A charged particle moving through the material interacts, primarily through Coulomb

forces, with the negative electrons and the positive nuclei that constitute the atoms of
that material. As a result of these interactions the particle loses energy continuously
and finally stops after traversing a finite distance—the range, depending on the type and
energy of the particle and on the material through which the particle moves.

Photons have no charge. They interact with matter in several ways, depending on
the energy of the radiation and the material. Since there is a finite nonzero probability
that photon may go through any thickness of any material without having an interaction,
no finite range is defined for photons. Alternatively, a linear absorption coefficient (or,
equivalently, an absorption depth) is defined, which relates to the distance the radiation
must travel in the material for its intensity being reduced to 1/e = 0.368 of the original
value.

2.1 Charged-particle interactions

Among the others the two most important ways charged particles lose its energy when
travelling through matter are (i) the Coulomb interactions with electrons and nuclei, (ii)
the emission of electromagnetic radiation (bremsstrahlung).
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Figure 0.2.3: (a) Stopping power dE/dx as a function of particle energy for several mate-
rials [20]. Symbol definitions are explained in text. (b) Number of heavy charged particles
transmitted through thickness t [18]; N0 is the initial number of particles, R is the range.

Coulomb interactions. Because of approximately 104 times higher radius of an atom
(∼10−10 m) in comparison to the radius of a nucleus (∼10−14 m), Coulomb interactions
occur much more probable with atomic electrons than with nuclei [18].

Through the Coulomb interaction the moving free particle can either ionize or excite
the atom with the electron of which it interacts. Ionization occurs when the electron
obtains enough energy to leave the atom and become a free particle with kinetic energy
equal to the energy transferred from the particle diminished by the ionization energy. The
electron freed from the atom acts like any other moving charged particle; it may cause
ionization of another atoms if its energy is high enough. It will interact with matter, lose
its kinetic energy (mostly via ionization and bremsstrahlung) and finally stop.

Excitation takes place when the electron acquires enough energy to move to an empty
state in another orbit of higher energy, thus producing an excited atom. Shortly after the
interaction, electron moves to a lower empty energy state, accompanied by an emission
of an X-ray with energy equal to the energy difference between the levels.

During its passage through material particle interacts with a huge number of elec-
trons simultaneously. To characterize the energy losses, an average energy loss per unit
distance travelled, so called stopping power, dE/dx (MeV/m), is calculated. Exact for-
mulae for dE/dx differ depending on the type of particle and are quite complicated [18].
Nevertheless, dense materials absorb charged particles better than lighter ones. Typical
dependence of dE/dx on the particle kinetic energy, T , is shown in Fig. 0.2.3a. It is worth
noting that the ionization losses are minimum no matter of the density of the medium for
that particle kinetic energy for which βγ = 3–4 [19]; γ being the relativistic factor, i.e.,
γ = (T +Mc2)/Mc2, and β = v/c, where v is the particle velocity and c is the speed of
light in vacuum.

As particle loses the energy during traversing through the medium, its speed decreases
until the particle completely stops. It has been experienced that for α-particles of energy
less than 20 MeV, the stopping power always increases (corresponding points are on the
left of curve minimum in Fig. 0.2.3a). This results in a typical curve that expresses
the number of heavy-charged particles transmitted through the material, a Bragg curve,
see Fig. 0.2.3b. To express the thickness of material that completely stops a particle of
certain kinetic energy, the range, R, is defined. Several semiempirical formulae exist, e.g.,
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for α-particles in air at normal temperature and pressure and 4 MeV≤ T ≤ 15 MeV, the
following equation is valid [18]:

R (mm) = (0.05T + 2.85)T 3/2, T in MeV. (0.2.3)

If the range is known for one material, it can be determined for any other by applying
the Bragg-Kleeman rule [18]:

R1

R2
=

ρ2
ρ1

√

A1

A2
, (0.2.4)

where ρi and Ai are the density and atomic weight, respectively, of material i. Since√
Aair = 3.84 and ρair = 1.29 kg/m3 for air at normal temperature and pressure, one

can immediately evaluate the range of 5.5 MeV α-particles of 241Am in air, Au, and
CdTe. Using Eqs. (0.2.3) and (0.2.4),

√
AAu =

√
197 and ρAu = 19.32 × 103 kg/m3, and√

ACdTe =
√
240 and ρCdTe = 5.85× 103 kg/m3, one obtains:

Rair = 40 mm in air, (0.2.5)

RAu = 10 µm in Au, (0.2.6)

RCdTe = 36 µm in CdTe. (0.2.7)

Unlikely to heavy charged particles, the number of electrons transmitted through the
material decreases gradually without any flat part typical to Bragg curve. Electrons thus
dissipate the energy along their whole path in the matter.

Bremsstrahlung. Each free charged particle that (de)accelerates loses part of its kine-
tic energy by emitting electromagnetic radiation, so called bremsstrahlung. Bremsstrah-
lung consists of photons with energies from zero up to the kinetic energy of the particle.
The intensity of emitted radiation, Ibr, is proportional to the atomic number of the medi-
um, Z, and the particle mass, M , according to the formula Ibr ∼ (z2Z2)/M2 [18], if z is
the number of elementary charges the particle consist of (particle charge). It is obvious
that more bremsstrahlung is emitted in a medium with higher Z by a lighter particle. It
is usually important for electrons only.

2.2 Interactions of photons

Photons are electromagnetic radiation covering the range from radio waves to γ-rays. For
the purposes of this text the X-rays and γ-rays are of importance. The term X-rays is
applied generally to photons with energy from 100 eV to 100 keV; gammas are the photons
with energy greater than 100 keV. X-rays are generally produced by atomic transitions
such as excitation and ionization; γ-rays are emitted in nuclear transitions. Photons are
also produced as bremsstrahlung, by accelerating or decelerating charged particles. X- and
γ-rays emitted by atoms and nuclei are monoenergetic, bremsstrahlung has a continuous
energy spectrum. The three most important interactions of photons with matter are
discussed separately as follows.

Photoelectric effect. The photoelectric effect is an interaction between a photon and
a bound atomic electron. As a result, the photon disappears and one of the atomic elec-
trons is ejected as a free electron. The kinetic energy of that electron is then T = E − Be,
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Figure 0.2.4: Typical shape of a pulse
height spectrum of a monoenergetic radi-
ation source (energy E0) recorded by a de-
tector in the absence of statistical effects
(perfect energy resolution). According to
[18].

where E is the energy of the photon and Be is the binding energy of the electron. The pro-
bability of this interaction, evaluated through the photoelectric cross-section, σph, strongly
depends on the atomic number of the medium and the energy of incident photons:

σph ∼ Zn

Em
, where n = 4–5, m = 3–5. (0.2.8)

It is thus important for materials of higher Z and less energetic photons. The photoelectric
cross-section plotted as a function of the photon energy (see Fig. 0.2.5 later) exhibits the
characteristic absorption edges (a saw-tooth structure) at energies that coincide with
binding energies of electron (sub)shells.

Compton effect. The Compton effect is a collision between a photon and a free elec-
tron. Although, under normal circumstances, all the electrons in a medium are bound,
because of much greater energy of the photon in comparison to their binding energy (keV
vs. eV), they may be considered free. After a Compton scattering, the direction and
energy of the photon are changed as part of photon energy is transferred to the electron.
These quantities are functions of the scattering angle, θ, and may be calculated on the
basis of the energy and momentum conservation laws, giving [19]

E ′ =
E

1 + (E/m0c2)(1− cos θ)
, (0.2.9)

where E and E ′ are photon energies before and after scattering, m0 is the electron rest
mass, and c is the speed of light in vacuum. The scattered photon has the minimum energy
when the backscattering takes place, θ = π. This energy is non-zero and corresponds to
the maximum energy, E

(max)
T , being transferred to the electron. From Eq. (0.2.9) one

obtains

E
(max)
T = E −E ′(θ = π) =

2E2

2E +m0c2
. (0.2.10)

The maximum energy of the scattered photon is obtained for θ = 0, which essentially
means that no collision did take place. The energy given to the electron is dissipated in
the material within a distance equal to the range of electrons. The scattered photon may
escape, resulting in no more energy being deposited in the detector. Thus, only a fraction
of the original energy of the photon is recorded by the detector in such a case. After
the recording of a plenty of events (to have good statistics), a typical shape of a pulse
height spectrum is formed with the so called Compton continuum and a sharp cut-off,
the Compton edge, at the energy of E

(max)
T , see Fig. 0.2.4. This is often the case of thin

detectors. In thick detectors multiple subsequent Compton scattering events may take
place until all of the original photon energy is deposited in the medium.
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of CdTe [21]. (b) Total mass attenuation coefficients of several materials [22].

The probability that Compton scattering will occur, the Compton cross-section, σC,
is related to the atomic number of the medium and the energy of incident photons via
the equation [18]:

σC ∼ Zf(E), (0.2.11)

where f(E) is a function of E.

Pair production. Pair production is an interaction between a photon and a nucleus. As
a result of the interaction, the photon disappears and an electron–positron pair is created.
Although the nucleus does not undergo any change sequent upon this interaction, its
presence is necessary for pair production to occur. The photon minimum energy necessary
for the interaction to take place is equal to the rest mass of electron and positron, i.e.,
2×511 keV= 1.022 MeV. Shortly after the creation of a positron, the positron annihilates,
producing two annihilation gammas.

The probability for pair production to occur, the pair production cross-section, σpair,
is a complicated function of E and Z, but may be written in a simplified form [18]:

σpair ∼ Z2f(E,Z), (0.2.12)

where f(E,Z) is a function that changes slightly with Z and increases with E. Pair
production can take place in the field of an electron as well, however, the probability of
such an interaction is much smaller and the threshold energy twice as much as in the field
of a nucleus.

Total (mass) attenuation coefficient. To express the total probability for interaction
of a photon with matter, the total attenuation coefficient, µtot, is defined. It equals to
the sum of all probabilities of particular photon interactions; especially, limiting further
advance to the three most important interactions discussed above, one can write:

µtot = σph + σC + σpair (cm−1). (0.2.13)

The value of µtot is sometimes divided by the material density, ρ, to obtain the total mass
attenuation coefficient, µtot/ρ, expressed in cm2/g. For a known material the criterion
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for which interaction prevails is the energy of incident photons. As an example, it can be
found in Fig. 0.2.5a that in CdTe it is the photoeffect for low energy photons, for energies
between 0.2–5 MeV it is the Compton scattering what prevails, until, finally, above 5 MeV
the pair production dominates. The energy dependence of mass attenuation coefficients
for several materials including CdTe is shown in Fig. 0.2.5b.

The intensity of radiation, I(t), corresponding to the number of photons that will
penetrate the thickness t without having an interaction is easily calculated using µtot

defined by Eq. (0.2.13), since the well-known exponential attenuation law holds:

I(t) = I(0)e−µtott = I(0)e−(µtot/ρ)w. (0.2.14)

Here, I(0) is the initial intensity striking the target and w = tρ is the mass thickness.
The mean free path, λmean, the average distance between two successive interactions, is
related to the attenuation coefficient via the relation λmean = 1/µtot.

3 Radiation detectors based on CdTe

In previous text general requirements for any material being utilized for detection of high
energy radiation have been stated. Properties of several semiconductor materials are
summarized in Table 0.3.1. Among other materials meeting these requirements, CdTe
based compounds have proven in recent decades to be extra suited for application in
medicine, astronomy, nuclear sciences, homeland security, military, process monitoring,
remote sensing, and many other civil, industrial, and scientific applications. It is its high
atomic number (Z = 48 for Cd, Z = 52 for Te) what ensures CdTe one to three orders-of-
magnitude higher photoelectric absorption as compared to silicon (Z = 14) or germanium
(Z = 32).1 Direct conversion of incident radiation to measurable electric signal prefers
CdTe (and other semiconductor materials) over scintillators since it offers better energy
resolution.2 Moreover, room temperature bandgap of approx. 1.5 eV enables the detectors
fabricated from CdTe to operate at room temperature without cooling, which makes it
possible to develop compact and portable detectors and detector-based solutions.

Mechanisms of interactions of high energy radiation/particles with the detector matter
were discussed in Chapter 2. For a CdTe detector intended mainly for detection of X-
rays or γ-radiation, the most important interactions are the photoelectric effect, Compton
scattering, and pair productions; α-particles interact via Coulomb interaction. Through
any of these interactions, the last step of energy loss mechanism is multiple ionization of
the matter, which creates numbers of electron–hole pairs. These carriers are spread along
the path of the particle though the matter, starting at the place of incidence and ending
where the particle completely stops. The “interaction depth” (range, mean free path or
whatever quantity related to the corresponding mechanism) depends on the interaction
cross-section, which is, e.g., for α-particles so high as to create a localized “charge cloud”
of typical dimensions of several micrometers. Dynamics of this cloud under external bias
applied on the detector is highly important as it is affected by the quality of detector
material and it determines detector efficiency. A well-known parameter indicating the

1From Eq. 0.2.8 the photoelectric cross-section is proportional to Zn, n = 4–5, which yields (50/14)n =
160–600 for silicon. Analogously for germanium.

2The full width at half maximum (FWHM) of a gaussian photopeak (and thus the resolution∼FWHM)
is proportional to 1/N , where N is the number of “carriers” generated per 1 keV of incident radiation
[18]. For semiconductors N∼200–400 electrons/keV, while for scintillators N∼5–50 photos/keV.
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Table 0.3.1: Properties of semiconductor materials at room temperature [7].

Material Ge Si GaAs CdTe CdZnTe† Diamond

Atomic number 32 14 31, 33 48, 52 48, 30, 52 6

Density (g/cm3) 5.33 2.33 5.32 6.2 ≈ 6 3.51

Bandgap (eV) 0.67 1.12 1.43 1.44 1.5–2.2 5.4

Melting point (◦C) 958 1412 1238 1092 1092–1295 4027

Pair production
energy ǫ (eV)

2.96 3.62 4.2 4.43 4.43–5.0 13.25

Resistivity (Ω cm) 50 <104 107 109 1011 -

µe (cm
2/Vs) 3900 1400 8000 1100 1350 2000

µh (cm2/Vs) 1900 480 400 100 120 1600

µτe (cm
2/V) >1 >1 8× 10−5 3.3× 10−3 1× 10−3 2× 10−5

µτh (cm2/V) >1 ≈ 1 4× 10−6 2× 10−4 6× 10−6 <1.6× 10−5

† Properties depend upon the zinc content.

material’s ability to perform well for spectrometer applications is the mobility–lifetime
product, µτ . While for the case of electrons in CdTe and CZT values of µτe ? 10−3 cm2/V
are typical, for the case of holes these values are much lower, µτh ∼ 1–10×10−5 cm2/V.
Incomplete hole collection then results in broadening of the photopeak to the low energy
side and thereby decrease of the resolution of the spectrometer. Nowadays, detectors with
resolution down to 1% at 662 keV are available.

Except for advantages offered by CdTe and CZT, there are several problems which
limit the efficiency of detectors and which therefore should be taken into account. These
are:

(i) Local distortions of the electric field within the detector bulk that could lead to
space-charge buildup (polarization) and degradation of charge collection efficiency.

(ii) Grain boundaries seriously limiting efficiency of charge collection; therefore the most
important property to improve detector performance is to increase the size of single
crystals within the grown ingots without creating new trapping sites in single-crystal
volumes [6].

(iii) Non-uniformity, which lowers the number of grown crystals that can be used for
fabrication of large-area (pixelated) detectors. It is a known issue especially for
CZT. Regions of different charge collection efficiency exist in such crystals, which
either differentiates the response of individual pixels or causes anomalous shape of
pulse height spectrum if collection is performed across non-uniform regions together.

(iv) Deep levels, which are—on the one hand—desirable to pin the Fermi level in the
midgap, may act as recombination or trapping centers if their concentration is too
high, consequently decreasing the lifetime of electrons and holes. If the deep-level
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concentration is too low, the resistivity is low and dark current too high, which
lowers signal-to-noise ratio.

(v) Second phase defects larger than several micrometers that act as trapping centers
for electrons and decrease the charge collection efficiency. This is very important
for pixellated detectors, where Te-inclusions lower the response of pixels of higher
concentration of second phase defects [23].

(vi) Similar to grain boundaries, dislocations that can affect charge collection as they ac-
cumulate high local concentrations of impurities that trap charge carriers in a man-
ner similar to point defects, but at much higher rates due to the relatively high
density of trapping centers [24].

Dislocation-related defects and Te-inclusions trap smaller fractions of the charge from the
electron cloud, but collectively and over long drift distances, they cause fluctuations in
the collected charge, and consequently, in the device response [24]. These problems pose
a challenge for further research.

4 Aim of this thesis

In previous chapters the state-of-the-art in basic research of CdTe and CZT and related
compounds has been reviewed as well as the advantages and disadvantages of utilizing
these materials as room temperature radiation detectors. Important properties, technolo-
gy, and mechanisms of particle interactions with detector matter have been summarized,
the purpose of which was to provide in one place the basics that are necessary for further
advancement.

It has already been stated in the Preface that for efficient operation the application
of external voltage on detector contacts should result in a uniform (homogeneous) elec-
tric field across the device. Thus the knowledge of the internal electric field within the
biased detector is of highest importance. By now, two different methods of measuring
of the electric field exist: measurements utilizing the Pockels effect and the time-of-flight
measurements. Transient-current technique (TCT) is one of the second kind. Though the
Pockels effect measurement is only marginally mentioned in this thesis, the TCT is the
main subject to detail analysis in Part I. After a TCT setup had been introduced to the
laboratory of the Institute of Physics of Charles University in Prague (IoP CU) and few
initial experiments had been performed, it was found that the theoretical background of
the method as published in the literature by then was very simple and could not satisfy
the demands. Therefore, extensive theoretical work has been done to fill these voids in
knowledge by providing methods that can be generally applied on any data obtained from
TCT measurements, but still limiting the analysis to a simple assumption of a constant
space-charge density within the detector. These efforts led to the development of two
iterative methods—the self-consistent procedure and direct-minimization procedure, the
details of which are to be found in Part I. These methods were thoroughly tested and
since they have proven to be very efficient, both the basic theory and applications have
been published [25, 26, 27].

In Part II of this thesis high-temperature measurements of the absorption edge of CdTe
are reported, from which the temperature dependence of the bandgap energy is deduced.
The bandgap energy is one of major parameters characterizing any semiconductor mate-
rial. Temperature dependence of the bandgap of CdTe was measured many times in the
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past utilizing both optical and transport measurements. Although there are no problems
limiting these measurements at low temperatures, high-temperature measurements of the
bandgap are much more complicated because of CdTe being a binary compound of Te
and a volatile Cd. With the help of the phase diagram, these measurements must be per-
formed under those thermodynamic conditions that prevent the decomposition of CdTe
at high temperatures. Up to now there are several published results of high-temperature
measurements carried out on CdTe, from those performed as early as in 1950s to those
reported recently. If so, problems with the CdTe decomposition are treated differently by
different authors. Results of these investigations are summarized and compared in Part II
of the thesis. But above all, a unique setup capable of measuring of the high-temperature
absorption edge of CdTe up to 1300K which was built at IoP CU is described in detail
therein together with a thorough study on various models being used for calculations of
the temperature dependence of the absorption coefficient from measured transmittance
data, terms of their use, and differences in obtained results. New procedures have been
proposed for these calculations that, taking the expected theoretical temperature depen-
dence into account, perform this task self-consistently.

The original outcomes of this work are the design and realization of two experimental
arrangements for measuring (i) of the internal electric field and (ii) of the high-temperature
absorption edge of CdTe and CZT samples in laboratories of IoP CU. Hand in hand with
these tasks, methods for processing of measured data have been developed, tested, and
demonstrated. This is what distinguishes this work from common experimental theses
since in this thesis the development and introduction of new methods was emphasized
rather than extensive research on a plenty of samples utilizing existing techniques. Both
setups (i) and (ii) have been successfully implemented among the common characterization
techniques and are prepared for further research at IoP CU.
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Part I

Measurements of the internal
electric field
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1. Introduction

It has been known since early 1970s that the performance of radiation detectors strongly
depends on the internal electric field within the detector [28]. For efficient operation
(see requirement (vi) in the Preface), uniform electric field is of great demand. If it
is degraded, regions with little or zero charge-collection could appear, which limits the
detector efficiency [29]. The lower the electric field, the fewer photo-generated carriers
are collected as they are subject to trapping. Moreover, the formation of space charge on
traps in the volume of the detector entails the screening of applied bias and could give
rise to an “inactive” region with zero electric field under the contact, limiting the charge
collection as well.

Techniques have been developed for measuring of the internal electric fields to bet-
ter understand the process of charge collection and polarization phenomena in radiation
detectors. Both the linear electro-optical effect (the Pockels effect [30, 31, 32]) and the
time-of-flight measurement (the transient-current technique—TCT [25, 33, 34]) were em-
ployed successfully to determine the profile of the electric field in CdTe and CZT detectors
both in the dark and under high-flux irradiation. Moreover, the time-evolution of the
electric field after biasing the device was also reported [35]. Recently, other researchers
incorporated additional laser illumination in their investigations of polarized detectors so
as to modify the space charge within them [36]. Further, in addition to the need for high
crystalline quality of the detector bulk material, the contacts can also crucially affect the
device performance. Consequently, to assure the best performance, the choice of material
for contacts and sometimes method of deposition must be taken into account.

Because of high electro-optical coefficient of CdTe, direct mapping of the internal
electric field based on the measuring of the Pockels effect1 has been adopted by many
laboratories all over the world. Though it is a powerful technique, it requires complex
instrumentation and samples must undergo a special treatment to prepare an optical
quality surface. On the contrary, the transient-current technique, a purely “electrical”
method based on the time-of-flight measurement of drifting charge carriers, allows the
characterization of the spatial distribution of the electric field without any special sample
preparation process while the necessary instrumentation is reduced to a current-sensitive
preamplifier and a digital storage oscilloscope.

In this part of the thesis a detailed description of the TCT experimental setup ope-
rating in the laboratory of the IoP CU is to be found as well as the complex theory of
the processing of experimental data. New iterative procedures that have been developed
to enable correct calculations of mobility–lifetime product and electric field in polarized
detectors are introduced, deeply analyzed, and their applicability is demonstrated on
several CdTe and CZT samples.

1Measurement of the light intensity passing through the sample placed between two crossed polarizers.
As the registered intensity is related to the electric-field induced change of the refractive index of the
sample, the internal field can be reconstructed.
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2. Theory of transient-current
technique

One of the original results of this thesis is the general theory covering the techniques for
the calculation of the distribution of the internal electric field within planar radiation
detectors, based on the simultaneous processing of electrical (analysis of current wave-
forms) and spectral measurements (measurements of charge-collection efficiency). The
most important results have already been published [25, 26, 27]. In the following sec-
tions a thorough derivation of equations that are important for further analysis being the
subject of Chapter 4 is given.

Recent measurements [25, 31, 34, 37] approved that in many situations a constant
space-charge density, ρ, may be anticipated in both CdTe and CZT radiation detectors:

ρ = const., (I.2.1)

thus yielding a linear profile of the electric field. However, whereas some authors report the
positive space charge [30, 31, 34], the others report the negative one [28, 38, 39], reflecting
the different quality of detector material and/or prepared contacts. At this place, the
assumption of the constant space-charge density is adopted and derivation of general
equations for the calculation of the profile of the electric field using the transient-current
technique (TCT), and for the evaluation of µτ from measurements of the charge-collection
efficiency (CCE) is given, covering both cases of positive and negative space charges.

The whole theory deduced in this chapter is based on these assumptions:

(i) The detector is planar with the thickness L. Carrier movement is treated in one
dimension with the x-axis set in such a way that x = 0 marks the cathode and
x = L represents the anode of the sample (see Fig. I.2.1). Space-charge density
within the depletion layer is homogeneous.

(ii) Free carriers are created closely below the irradiated contact as it happens with α-
or above bandgap energy photon irradiation, which allows one to take the movement
of only one type of carriers into account.

(iii) To collect electrons the detector is irradiated from the cathode side; for the collection
of holes the anode side of the sample is irradiated.

(iv) The applied bias U > 0 is considered overall in the thesis.

2.1 Transient-current technique

The theory deduced herein extends the approach applied in [33] by the involvement of the
loss of free carriers due to trapping in deep defects. Detrapping is neglected and constant
carrier mobility, µ, is assumed. The strength of the electric field, E(x), at the distance x
from the cathode of the sample, no matter of the polarity of space charge (i.e., valid for
both positive and negative space charges), can be expressed in the form

E(x) = max {0;E0 − ax} , (I.2.2)
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Figure I.2.1: Scheme of the profile of the electric field in a detector with positive accumu-
lated charge under α-particle irradiation from the cathode side.

where a is the slope of the electric field linear dependence, max{ ; } is a function returning
the greater of its arguments, and the constant term E0 is expressed as follows, taking the
boundary conditions for the Poisson’s equation into consideration:

E0 =

{

U
L
+ 1

2
aL for a ≥ 0,

U
L
+ 1

2
a(2L− L) for a < 0.

(I.2.3)

Here, the symbol L = min{L;W} is the depletion width of the detector volume; L is
calculated as the less from two quantities: (i) the detector thickness, L, and (ii) the
“theoretical” depletion width, W , corresponding to the field slope a, which is given by
the equation [40]

W =
√

2U/|a|, (I.2.4)

resulting again from the boundary conditions for the solution of the Poisson’s equation
with Eq. (I.2.1). In Eqs. (I.2.3) and (I.2.4), U denotes the applied bias. For better
understanding of defined quantities, Fig. I.2.1 might be helpful. Two situations may
occur:

(i) W < L: The electric field is completely screened near one electrode, where an
inactive region with zero electric field appears, L = W .

(ii) W ≥ L: The electric field is non-zero within the entire volume of the detector, an
inactive region does not exist, L = L.

The definition of the strength of the electric field E(x) given by Eq. (I.2.2) ensures
that E(x) is non-negative regardless of the polarity of applied bias, space-charge density
within the detector volume, and the type of collected carries (electrons/holes). In addition,
Eq. (I.2.2) involves the case of zero electric field in a certain part of the detector bulk
(implying that the bulk is not fully depleted).2

When irradiating the sample from the cathode side (collection of electrons), E0 is
important since it directly represents the electric field under that contact. Denoting by
EC the electric field under the cathode, EC = E(0), it can be expressed in the form:

EC =

{

0 if a ≤ 0 and W ≤ L,

E0 otherwise.
(I.2.5)

2The term “dead layer” is sometimes used for the region in which E(x) = 0.
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When collecting holes (sample irradiated from the anode side), the electric field under the
anode, EA, is calculated using

EA =

{

0 if a ≥ 0 and W ≤ L,

EL otherwise,
(I.2.6)

where

EL =

{

U
L
− 1

2
a(2L− L) for a ≥ 0,

U
L
− 1

2
aL for a < 0.

(I.2.7)

The sign convention for a is such that the density of the accumulated charge (space-
charge density), ρ,

ρ = ε0εra, (I.2.8)

calculated from the electronic signal is of the same sign as a, i.e., ρ > 0 for the positive
space charge, and ρ < 0 for the negative one; see Table I.2.1 and the discussion around.
In the latter equation, ε0, εr = 10.3, and e, respectively, are the vacuum- and relative-
permittivities, and the electronic charge. The spatial concentration of the charged traps,
N , corresponding to the space-charge density ρ is considered to be unsigned, i.e.,

N = |ρ|/e. (I.2.9)

As the carriers generated under the contact of a planar detector travel to the corre-
sponding electrode, the loss of drifting charge, Q, due to carrier trapping is given by

Q(t) = Q0e
−t/τ (I.2.10)

with the trapping time τ and the initial generated charge Q0.
Using Eq. (I.2.2) the kinetic equation describing electron drift through the sample,

dx/dt = v(t) = µE(x), is easily solved as

x(t) =
E0

a

(

1− e−aµt
)

. (I.2.11)

On generalization of latter equation for holes, the current i(t) induced by moving charge
carriers generated by α-particles irradiating the appropriate electrode of a planar detector
(cathode when collecting electrons, anode when collecting holes) can be written in the
form

i(t) =
Q(t)v(t)

L
=

Q0E0µ

L
e−(±a+ 1

µτ
)µt ∝ e−ct. (I.2.12)

In this equation as well as further in the text where ± or ∓ are used, the upper signs hold
for collection of electrons, the lower signs for collection of holes. With all charge carriers
being created at one moment and immediately starting to drift in applied electric field, the
current transient would be described by the latter equation, having infinitesimally sharp
rising and trailing edges, see Fig. I.2.2a. However, because of the plasma effect that delays
the charge collection, sample inhomogeneities, carrier trapping/detrapping, or distortion
of the waveform due to electronics, the actual observed current transient when using an
α-particle radiation source is much more similar to that shown in Fig. I.2.2b, i.e., with
finite rising and trailing edges. After its rise up, the waveform is exponentially decreasing
(increasing) according to Eq. (I.2.12) and then it breaks at the moment when the forefront
of the charge “cloud” generated under the irradiated electrode have travelled the whole
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Figure I.2.2: (a) Idealized current waveform and (b) a typical current waveform recorded
by a digital storage oscilloscope performing a TCT measurement using α-particles.

thickness of the sample and reaches the opposite electrode. With increasing bias the
waveform shrinks and its transit time decreases since it takes less time for carriers to drift
through the sample, as will be seen later.

Eq. (I.2.12) can be fitted to the experimental data and the damping parameter

c =

(

±a+
1

µτ

)

µ (I.2.13)

can be established. It should be noted that using a damped exponential in the form given
by Eq. (I.2.12) even for the fitting of rising current waveforms is essential for correct
interpretation of results of measurements.

If the depletion region spreads over the whole detector volume (L = L), the applied
bias U is related to the electric field:

U = E
(L

2

)

L = E0L− 1

2
aL2. (I.2.14)

The arrival of drifting carriers to the opposite electrode identified by a clear drop of
a current transient allows to determine the charge transit time, ttr. For electrons the
following equation holds:

x(ttr) =
E0

a
(1− e−aµttr) = L. (I.2.15)

When the polarization can be neglected, i.e., for the case of a → 0, the latter equation
reduces to x(ttr) = E0µttr = L. This easily originates from the first two terms of the
Taylor expansion of the exponential e−aµttr ≈ 1−aµttr that holds for small a. Then, since
E(x) = E0 = U/L from Eqs. (I.2.2) and (I.2.14) (homogeneous electric field within the
detector), the last equation can be written in the form

µttr =
L2

U
, (I.2.16)

which is often used for the evaluation of the carrier mobility from the measurements of
the transit time ttr. The assumption of homogeneous electric field is crucial in this case.

When polarization occurs the experimental data µτ , c, and ttr can be combined to-
gether with Eq. (I.2.15), where E0 and µ are eliminated with the help of Eqs. (I.2.13)
and (I.2.14). After generalizing the result also for the case of hole collection, the final
transcendental equation for a is obtained:

cttr =

(

1± 1

aµτ

)

ln

(

1± aL2

2U

1∓ aL2

2U

)

. (I.2.17)
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Table I.2.1: Interpretation of the results of calculations

Solution of Strength of the Space-charge
Eq. (I.2.17)§ electric field E(x) density ρ

a > 0 Decreasing from C → A† Positive, ρ > 0

a < 0 Decreasing from A → C† Negative, ρ < 0

§ In Eqs. (I.2.12)–(I.2.17) the upper sign in ± or ∓ terms corresponds
to collection of electrons (α-source from the cathode side), the low-
er sign must be used for measurements collecting holes (detector
irradiated from the anode side).

† “C” marks the cathode, “A” marks the anode of the detector.

Though the transcendental equation must be solved numerically, the field slope a and,
consequently, all remaining parameters E0 and µ may be found for each current pulse.

If the applied bias is low and the electric field is completely screened near one contact
(L = W < L), an inactive region appears under that electrode and the transit time is
undefined in such a case. Eq. (I.2.17) cannot be used since ttr → ∞. If, however, the
experimental setup allows to apply higher voltage sufficient to overcome the dead layer (see
Eq. (I.2.23) later in the text), nothing prevents from using Eq. (I.2.17). Then, adopting
the assumption of the bias-independent µ, the value determined from the analysis of
current pulses at high biases can be inserted into Eq. (I.2.13) to calculate the profile of
the electric field at low bias voltages.

To reconstruct the profile of the electric field from the solution of Eq. (I.2.17), one
can use Eqs. (I.2.2) and (I.2.3). However, to successfully solve Eq. (I.2.17), the following
important note must be taken into account: The shape of a recorded current transient
is governed by the profile of the electric field in the direction of carrier motion, whereas
the field strength E(x) in Eq. (I.2.2) describes the profile from the cathode to the anode.
Consequently, as holes drift from the anode towards the cathode, the signs in terms
containing a in Eqs. (I.2.12)–(I.2.17) for holes are opposite to those for electrons. One must
take care and precisely follow the sign convention, otherwise wrong results are obtained.

Two examples are provided for clarity: Firstly, let us assume that electron signal
from TCT was recorded and, at a particular bias U1, a1 = 3 kV/cm2 was obtained by
solving Eq. (I.2.17) with upper signs (Fig. I.2.3a). From Table I.2.1, one can immediately
find out that since a1 > 0, the electric field is decreasing from the cathode towards the
anode. To calculate its spatial distribution, a = a1 should be used in Eqs. (I.2.2) and
(I.2.3) (Fig. I.2.3b). The trap concentration N1 = 1.7 × 1010 cm−3 results directly from
Eq. (I.2.9). Secondly, moving the α-particle source so as to irradiate the anode of the
sample, at a bias U2 high enough to collect holes, the field slope, e.g., a2 = −4 kV/cm2

may result from Eq. (I.2.17) written with lower signs (Fig. I.2.3c). Again from Table I.2.1,
a2 < 0 yields that the electric field is increasing from the cathode towards the anode
(Fig. I.2.3d). Trap concentration N2 = 2.3× 1010 cm−3 is evaluated from Eqs. (I.2.9) and
(I.2.8) in this case.
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Figure I.2.3: TCT calculations
and application of Table I.2.1
demonstrated on two examples
from the text. Note that the
electron and hole transients look
the same although the slopes of
the electric field profiles are op-
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2.2 Charge-collection efficiency

As discussed above, CdTe and CZT detectors are primarily used for room-temperature
detection of high energy radiation, i.e., γ-, X-ray, or α-particles from various sources.
Since these materials are semiconductors, incident radiation/particle generates electron–
hole pairs, which are collected by the internal electric field within the device. To evaluate
the amount of collected charge, so called charge-collection efficiency (CCE) is used. It is
defined as a dimensionless quantity

CCE ≡ Q/Q0, (I.2.18)

where Q is total charge collected on detector electrodes when irradiated by a source
generating the charge Q0 in the detector. The definition of CCE ensures that CCE ≤ 1,
if no gain is introduced during collection. The value of Q0 is different for different detector
materials since the number of generated electron–hole pairs is material dependent. Q0

can be calculated from the electron–hole pair production energy, ǫ, the values of which
for some common materials are summarized in Table 0.3.1. The following relation holds:

Q0 = eE0/ǫ, (I.2.19)

if E0 is the energy of a particular peak in the pulse height spectrum of the radiation
source and e is the electronic charge. Typical values of generated charge are, respectively,
Q

(100 keV)
0 ≈ 4 fC and Q

(5MeV)
0 ≈ 200 fC for 100 keV and 5 MeV source, and ǫ = 4 eV.

There is a simple idea which shows that it is the mobility–lifetime product, µτ , what
is the important material parameter indicating of how well a material will perform for
spectrometer applications. Assuming a uniform volume excitation that generates free
electrons, then the generated photocurrent, Iph, is expressed by [7]

Iph ∝ µτU/L2.

Here, L is the detector thickness and U is the applied bias. Although it is the integrated
charge what is measured during the CCE measurements rather than actual current, it
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holds true that CCE in Eq. (I.2.18) strongly depends on µτ and U ; CCE → 1 with
increasing values of these two quantities.

For the case of homogeneous electric field within a planar detector and under the
assumption of dominant effect of one type of carriers (either electrons or holes) on charge
collection, Eq. (I.2.18) can be expressed in the form of well-known single-carrier Hecht
equation [41]:

CCEHecht(U) =
µτU

L2

(

1− e−
L2

µτU

)

. (I.2.20)

Charge trapping according to Eq. (I.2.10) and generation of carriers close to the contact
are involved in latter equation.3

When the electric field is inhomogeneous, Eq. (I.2.20) cannot be used. In this case,
the general expression [42]

CCE =
1

L

L
∫

0

exp

(

−
x′

∫

0

dξ

µτE(ξ)

)

dx′ (I.2.21)

has to be employed to calculate CCE. Generally, CCE depends on the polarity of the
accumulated charge and the type of collected carriers. For the case of linear electric field
profile, CCE(U, a) as a function of applied bias and field slope can be calculated after the
substitution of Eq. (I.2.2) into Eq. (I.2.21), yielding

CCE(U, a) =























0 for ± a ≤ 0, U ≤ Uth,

1
L

µτa
µτa±1

W for ± a > 0, U ≤ Uth,

1
L

µτa
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[

(

L
2
∓ U

La

)

(

U
La

−L
2

U
La

+L
2

)
1

µτa

+ L
2
± U

La

]

for U > Uth,

(I.2.22)
where

Uth =
|a|L2

2
(I.2.23)

is the minimum (threshold) voltage necessary to suppress the dead layer within the device.
Eq. (I.2.22) is applicable whatever the space charge and carrier type. It is, however, im-
portant to use correct signs (even in the conditional statements in Eq. (I.2.22)), depending
on the carriers being collected.

Accumulated space charge could be so high as to cause the incomplete depletion of
the sample. In such a situation, the depletion width calculated using Eq. (I.2.4) is less
than the detector thickness and an inactive region (a dead layer) of zero charge collection
appears within the bulk, L = W < L, as illustrated in Fig. I.2.1. This inconvenience can
be overcome by increased bias greater than its threshold value given by Eq. (I.2.23).

It is interesting to note that Eq. (I.2.22) diverges for a = ∓1/µτ , which for typical
values of µτ = 10−3 cm2/V for electrons and the detector thickness of L = 1 mm yields
a = ∓1 kV/cm2 and Uth = 5 V. These values represent practically non-polarized detector
with nearly flat profile of the electric field, and, naturally, with fully-depleted volume as

3General expression for position-dependent CCE exists, which can be used to calculate CCE(x) at
any position x within the detector bulk. This is interesting for applications utilizing γ- or X-ray radiation;
however, for α-particles it is the value of CCE(x = 0) what is important since the carrier generation takes
place close to the surface because of high absorption coefficient (low penetration depth) of α-particles in
matter.
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usual operating voltages of hundreds of volts are two orders-of-magnitude greater than the
threshold voltage. It would be inconvenient to discard such cases from analysis because
of problems with Eq. (I.2.22). Fortunately, it is easy to show that the limit of Eq. (I.2.22)
for a → ∓1/µτ exists and that this equation can be continuously extended on all values of
a. For an unpolarized detector (a → 0), Eq. (I.2.22) reduces to the simple Hecht formula
(I.2.20).

2.3 Relation between TCT and CCE

The TCT is based on the analysis of current transients, i(t), induced by moving carriers
and measured by a current-sensitive preamplifier (CSP). If one identifies the moment when
generated carriers start to drift with t = 0, then, neglecting the plasma effect (see later
Section 2.7) and carrier trapping/detrapping, the transient ends at t = ttr, see Fig. I.2.2.
The total amount of charge, Q, induced on the electrodes of the detector during the
carrier movement (and calculated by the integration of i(t)) must be the same as that
which would be directly registered, all other things being equal, by the charge-sensitive
preamplifier (ChSP) placed instead of CSP. Mathematically,

Q =

∫ ttr

0

i(t) dt. (I.2.24)

Substituting for i(t) from Eq. (I.2.12), the latter equation can be evolved in the following
way:

Q =
Q0E0µ

L

∫ ttr

0

e−(±a+ 1

µτ
)µt dt =

Q0E0µ

L

1

(±a+ 1
µτ
)µ

[

1− e−(±a+ 1

µτ
)µttr

]

. (I.2.25)

To proceed further, little simplification has to be made. Therefore, under the assumption
that the polarization of the detector is very low, a → 0, which as shown in Section 2.1
implies that E0 = U/L and ±a ≪ 1

µτ
, a can be neglected both in the exponent and

denominator in Eq. (I.2.25). Thus,

Q = Q0
µτU

L2

(

1− e−
ttr
τ

)

. (I.2.26)

Finally, since Eq. (I.2.16) holds in the case of little polarization, one obtains

Q

Q0
=

µτU

L2

(

1− e−
L2

µτU

)

. (I.2.27)

Taking into account the definition of CCE given by Eq. (I.2.18), one immediately realizes
that the latter equation is the well-known Hecht equation, Eq. (I.2.20). Thus, there is an
integral relation between TCT and CCE.

This procedure can be used to verify measured TCT and CCE data; however, prac-
tical realization is limited due to relatively high noise in numerically integrated current
transients in comparison to directly measured CCE.

2.4 Iterative procedures: The conjunction of the TCT

and the CCE analysis

To precisely evaluate µτ , Eq. (I.2.22) should be used instead of Eq. (I.2.20). However,
using Eq. (I.2.22) necessitates the information about the polarization state of the detector,
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Figure I.2.4: Flow chart of the self-consistent procedure (SCP) for the evaluation of µτ
in polarized detectors.

since a is required for the calculation. This could be achieved by TCT measurement as
the solution of Eq. (I.2.17) brings values of the field slope a. The proper evaluation
sequence would then be firstly calculate the field slope and then evaluate µτ . Since it
is necessary to know the value of µτ before calculating a, the procedure has to be done
iteratively. As both the TCT and CCE measurements performed in the laboratory of
IoP CU use the same radiation source (α-particles from 241Am) and it could be easily
arranged that the source–detector distance is the same in both experiments, the electric
field profile could be measured under the same conditions as the collection of radiation
spectra. Two iterative approaches for the calculation of µτ are described in the following
sections. These methods represent one of the original results of this thesis and push the
way of processing of experimental data forward as both the TCT and CCE measurements
are processed simultaneously to bring results which would not be accessible by separate
measurements. The interest in these methods was proven by their publication in reputable
journals [26, 27].

2.4.1 Self-consistent procedure

The iterative procedure—so called the self-consistent procedure (SCP), is carried out as
follows (see Fig. I.2.4):

(a) From the TCT measurement the values of c and ttr for different applied bias voltages
U are obtained. Measured radiation spectrum (CCE) is processed to obtain the ini-
tial value of mobility–lifetime product, (µτ)0. This can be done by fitting CCE(U)
either via the Hecht equation (I.2.20) or using Eq. (I.2.22) with the bias-independent
effective field slope, a = aeff .

(b) The estimated value of mobility–lifetime product is used to solve Eq. (I.2.13), yield-
ing the field slope a as a function of U ; the electric field profiles are then easily
calculated using Eqs. (I.2.2) and (I.2.3).

(c) CCE is fitted according to Eq. (I.2.22), taking into account the bias dependence of
a determined in step (b). Improved value of µτ is obtained.

(d) The value of µτ from the previous step is used for the next iteration, starting at
step (b). The procedure runs in a loop until it converges or required precision is
achieved.
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It is important to note that in step (c) the measured bias dependence of the electric
field slope a is included into calculations, in contrary to the procedure presented in [29],
where an “effective” bias-independent field slope aeff is one of the fitting parameters.
The procedure with aeff is referred to as the Matz approach later in the text. This
approximation is only used in step (b) to obtain the initial guess of mobility–lifetime
product. In SCP, bias dependence of the profiles of the electric field is considered and,
instead of a common one-dimensional curve fitting (Hecht [41], Matz and Weidner [29]),
two-dimensional surface fitting of the data points [U, aU , CCEU ] is performed according
to Eq. (I.2.22) in the three-dimensional space. The symbol aU was used to denote the
resulting value of the field slope corresponding to the measured damping parameter c and
the transit time ttr at bias U , CCEU marks the corresponding CCE.

After each iteration, not only µτ and the electric field profiles are improved, the
carrier mobility, µ, is amended as well due to the involvement of the refined field profile.
Convergence of the method decreases with increasing |a| over 1/µτ . For |a| ≫ 1/µτ , the
exact value of µτ cannot be evaluated properly. Further discussion of this case is given
in Subsection 2.4.3 later in the text.

2.4.2 Direct-minizimation procedure

Instead of using the self-consistent procedure, one can try to directly minimize the function

χ2(µτ) =
∑

U

[CCEU − CCE(U, aU(µτ))]
2 (I.2.28)

representing the sum of squares of differences between the measured values of the charge-
collection efficiency CCEU at bias U from their theoretical values calculated with the help
of Eq. (I.2.22). The symbol aU(µτ) denotes the solution of Eq. (I.2.17) corresponding to
the experimental values c and ttr measured at bias U , but calculated for the instant value
of µτ during the computation. This direct-minimization procedure (DMP) is carried out
in the following way (see Fig. I.2.5):

(a) From the TCT measurement the values of c and ttr for different applied bias voltages
U are obtained. Measured radiation spectrum (CCE) is processed to obtain the
initial value of mobility–lifetime product, (µτ)0.

(b) The estimated value of mobility–lifetime product is used to evaluate Eq. (I.2.28),
yielding the initial value of χ2.

(c) Eq. (I.2.28) is minimized with respect to µτ ; for any instant value of µτ the corres-
ponding field slope aU(µτ) is calculated using Eq. (I.2.17).

(d) When the procedure converges, the µτ that best fits the experimental data and the
profiles of the electric field are provided.

Though no analytical solution of the transcendent Eq. (I.2.17) exists, aU(µτ) must be
calculated numerically in step (c). The function χ2, dependent only on the value of µτ ,
is minimized using some common numerical method [43].

The main difference between the direct-minimization and the self-consistent proce-
dures is that the DMP takes the local variations of a into account for any arbitrarily
small change in µτ , whereas in the SCP a is fixed at each step to find the improved
value of µτ . Consequently, it may happen that the SCP converges to a solution which is
not a minimum of χ2. The comparison of these two methods and their applications are
reported in Section 2.5 as well as in Chapter 4.
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2.4.3 Strongly-polarized detectors

For strongly-polarized detectors, i.e., those for which |a| ≫ 1/µτ holds, the fundamental
equations can be further simplified. Consequently, Eq. (I.2.13) reduces to

c = ±aµ if |a| ≫ 1/µτ. (I.2.29)

It is reasonable to suppose that for voltages U in the order of hundreds of volts the applied
bias is less that the threshold value, U < Uth. Thus, the inactive region occupies the
significant portion of the detector volume, the current pulse is pure exponential according
to Eq. (I.2.12) with no break corresponding to the transit time, and only the first two cases
in Eq. (I.2.22) come into question. For a ≤ 0 for electrons or a ≥ 0 for holes, no further
information can be brought out from radiation pulse height spectra since CCE ≡ 0 in
this case. If, however, a > 0 for electrons or a < 0 for holes, the CCE simplifies to W/L
and using Eq. (I.2.4), it can be written in the form

CCE(U, c) =
W

L
=

1

L

√

2µU

c
if |a| ≫ 1/µτ. (I.2.30)

The mobility–lifetime product cannot be determined for strongly-polarized detectors be-
cause there is no µτ in Eq. (I.2.30). Nevertheless, at least the estimate of carrier mobility,
µ, can be calculated by fitting Eq. (I.2.30) to experimental data; with no need for self-
consistent procedure or χ2 minimization.

2.5 Iterative procedures in detail: Simulated experi-

mental data

Simulations were performed to assess the benefits of the two iterative methods on artificial
data. Eq. (I.2.22) was used to generate CCEs for three “fictional” detectors D1, D2, and
D3, each of thickness L = 1.5 mm, mobility µ0 = 1000 cm2/Vs, and mobility–lifetime
product µτ0 = 1×10−3 cm2/V. The polarization states of these detectors are assumed to be
as follows: the detector D1 is attributed to be almost unpolarized, having a0 = 5 kV/cm2

not varying with applied bias; the more polarized detector D2 with the constant field
slope of a0 = 25 kV/cm2 is not fully depleted until the bias of 300 V is applied; and,
finally, the strongly-polarized detector D3, the entire volume of which is depleted just
above 700 V, has a varying from 30 kV/cm2 at 100 V to 70 kV/cm2 at 800 V.
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Table I.2.2: Results of µτ calculations on simulated data

Sample

µτ (10−3 cm2/V)

Hecht Matz
our approach

SCP DMP

D1 1.14 1.00 1.00 1.00

D2 0.17 1.00 1.00 1.00

D3 0.12 0.09 0.92 0.93
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Figure I.2.6: Fits of simulated CCEs of “fictional” detectors D1, D2, and D3. Solid
lines show the fits according to the Hecht equation, dashed lines refer to the Matz fits.
Although they give physically wrong results, the fits of D3 describe the simulated data
well.

These data were analyzed utilizing various procedures to calculate the mobility–
lifetime product of a particular detector, the value of which was then compared with
the initial value µτ0. The values of µτ were obtained by four methods:

(i) fitting of CCE via the Hecht equation (I.2.20);

(ii) fitting of CCE according to Matz and Weidner [29] using Eq. (I.2.22) with a = aeff ;

(iii) the self-consistent procedure (SCP) according to Subsection 2.4.1;

(iv) the direct-minimization procedure (DMP) according to Subsection 2.4.2.

The results of (i) and (ii) applied on D1, D2, and D3 detectors are depicted in Fig. I.2.6,
those of (iii) and (iv) are shown in Fig. I.2.7. Overall summary is given in Table I.2.2.

For the detector D1 the calculated value of µτ = 1.14×10−3 cm2/V is 14% higher than
the original true value µτ0; for the D2 and D3 detectors µτs are one order-of-magnitude
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Figure I.2.7: (a) Two-dimensional surface fits of simulated CCEs of “fictional” detectors
D1, D2, and D3, and (b)–(d) the reconstructed profiles of the electric fields in these
detectors.

less than µτ0. It is clearly demonstrated that the fitting of CCE according to the Hecht
equation yields sufficient results only when the detector polarization is low enough to be
neglected; the systematic error of the method increases with increasing polarization.

More interesting are the results of the Matz fits. For the D1 and D2 detectors this
method gives absolutely exact results and, additionally, recovers the original polarization
of the detectors, i.e., a0 = 5 kV/cm2 for D1 and a0 = 25 kV/cm2 for D2. This is not
very surprising, since the constant field slope is the assumption of this method and the
“experimental” data for D1 and D2 were simulated with a = aeff . However, when the slope
of the electric field varies with bias, which is the case of the detector D3, the evaluation
of µτ from CCE measurements fails, giving almost the same wrong value as the Hecht
analysis. It is, however, worth noting that the “goodness of fit” (measured, e.g., through
the coefficient of determination,4 R2) is high, R2 → 1, as seen in Fig. I.2.6 for both the
Hecht and Matz fitting procedures applied on D3. Therefore, care should be generally
taken during the interpretation of the results of CCE analysis, since R2 → 1 need not be
a good criterion for the assessment of the correctness of the fitting method (and validity
of obtained results). There is, however, no way how to examine the results based on the
CCE measurements only without the additional information about the field profile. If the
polarization cannot be neglected (U < Uth in some part of applied bias range) and the
field slope varies with applied bias, µτ can be seriously underestimated even by the Matz
approach.

4R2 indicates how well data points fit a curve. In most cases R2 is defined as 1−Sres/Stot, where Sres

and Stot are, respectively, the residual and the total sum of squares.
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Both the SCP (0.92×10−3 cm2/V) and DMP (0.93×10−3 cm2/V) converge after several
iterations close to µτ0 = 1 × 10−3 cm2/V. Though the original value is not restored, the
results are much better than those obtained by the first two methods, giving the error less
than 10%. The reason for why even the advanced methods did not converge exactly to
the original value lies in the relation between a and µτ . As mentioned in Section 2.4, the
convergence of the methods decreases with increasing |a| over 1/µτ . For the detector D3,
a could be as high as 70 kV/cm2 while 1/µτ0 = 1 kV/cm2. Even is such a disadvantageous
situation the procedures converge quite well and yield more precise results than any other
procedure. In addition, the mobility is recovered excellently to µ = 1001 cm2/Vs.

All above observations can be easily explained with the help of Fig. I.2.7. The fitting
procedure according to Hecht tries to fit the three-dimensional data [U, aU , CCEU ] forming
a curve in space by a function given by Eq. (I.2.20), which, however, lies in the plane a = 0.
The fitting procedure according to Matz and Weidner does the same using Eq. (I.2.22)
with a constant a, trying to find the optimum value aeff for which the projections of
[U, aU , CCEU ] on the plane a = aeff are best fitted. This could only be sufficiently done if
aU does not change significantly with U . On the contrary, both iterative methods do not
project the actual three-dimensional data on a plane but rather try to find such a surface
described by Eq. (I.2.22) that satisfies the corresponding convergence criterion. This is the
only suitable way how to acquire correct results on detectors with extended polarization.

2.6 The conjunction of the Pockels effect and the

CCE analysis

Iterative self-consistent and direct-minimization procedures presented in previous sections
are specific procedures applied to calculations utilizing the TCT since Eqs. (I.2.17) and
(I.2.22) have to be solved simultaneously. After each iteration (change in instant value
of µτ), the consecutive value of aU changes as the procedure advances since it is cU (the
damping parameter corresponding to bias U) rather than aU that is measured directly in
the experiment. If, however, aU were directly measurable, Eq. (I.2.22) could be downright
used to perform the surface fitting and obtain µτ . That is exactly what the Pockels effect
experiment offers. In conjunction with CCE measurements, the correct value of µτ can
be calculated taking the polarization of the detector into account. However, problems
could arise ensuring both measurement being made under same conditions.

It is advisable to perform further investigations in the field of detector polarization
utilizing presented methods. Discarding the polarization could lead to significant error in
the evaluation of µτ .

2.7 Plasma effect

In contrast to fast rising edge of the current waveform depicted in Fig. I.2.2, experimen-
tal observations show that the transient rise time, t(rise), could be much longer and it
could take even more than 10 ns for the pulse to reach its maximum. In addition, t(rise)

is observed to decrease with increasing bias applied on a detector. Such behaviour can
be attributed to the plasma effect [44, 45, 46, 47]. Assuming that a ∼5 MeV α-particle
is completely absorbed 10–20 µm5 under the irradiated contact and that the energy for

5Combined effect of α-particle penetrating metal contact and detector bulk.

31



creating an electron–hole pair is 4.4 eV in CdTe (see Table 0.3.1), then approximate-
ly 106 electron–hole pairs are created along the path of an α-particle, thereby forming
a charge cloud. These carriers are subject to electric field in a detector; however, it
takes some time for the electric field to erode the cloud since the electrons and holes
are electrostatically attracted to one another and the applied field is screened within the
cloud.

Away from complex numerical simulations, the plasma effect can be phenomenologi-
cally understood on a very simple basis. The charge motion in a detector of linear electric
field profile is described by Eq. (I.2.11), implying that the induced current recorded on the
detector electrodes is exponentially decreasing with time according to Eq. (I.2.12). Sup-
posing that any carrier escaping from the cloud starts to drift towards the corresponding
electrode immediately after its emission from the cloud while its motion is governed by
Eq. (I.2.11) except that the movement is delayed by time t′ the carrier spent in the cloud,
its contribution ∆i(t, t′) to the total current measured at time t is

∆i(t, t′) = i0e
−c(t−t′)χ〈0,ttr〉(t− t′), (I.2.31)

where ttr denotes again the transit time and χ〈a,b〉(t) is the normalized boxcar function,
which is zero for all values of t except those from a single interval 〈a, b〉, i.e.,

χ〈a,b〉(t) =

{

1 if t ≥ a and t ≤ b,
0 otherwise.

If all carriers are emitted from the cloud with a constant rate and brought under the
effect of inner electric field within the time tp needed for the plasma cloud to erode, then
the total current i(t) is calculated as

i(t) =

∫ tp

0

∆i(t, t′) dt′. (I.2.32)

Otherwise, if the emission rate is time-dependent a phenomenological function n(t), an
emission rate of charge carriers from the plasma cloud which represents the number of
carriers per unit time emitted from the cloud, can be defined so that Eq. (I.2.32) can be
written in the form

i(t) =

∫ tp

0

n(t′)∆i(t, t′) dt′. (I.2.33)

It can be assumed that the plasma cloud totally erodes before first carries reach the
opposite contact, i.e., tp < ttr. Then, it follows straightforwards from Eqs. (I.2.31) and
(I.2.33) that the recorded current transient stays exponential in the interval 〈tp, ttr〉 no
matter of plasma erosion mechanism determining the character of n(t). That is because
when all carriers are already in motion, the contribution of any of them to measured
current i(t) is exponential according to Eq. (I.2.31) and does not change the shape of
i(t). Consequently, although the true shape of the current transient for t < tp need not
be available by the TCT experiment due to the plasma effect distortion, the transient
exponential damping parameter c is not affected by plasma effect for t > tp and the
electric field, even under the irradiated electrode, can be calculated (the profile close to
the irradiated contact can be extrapolated from the field behaviour in the rest of the
detector). Typical current waveforms calculated for three different emission rates are
shown in Fig. I.2.8.
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Figure I.2.8: Typical current waveforms distorted due to the plasma effect. All waveforms
have been normalized to demonstrate the same exponential behaviour in the middle part
of the pulse. Solid lines show curves corresponding to (a) gaussian, (b) linear, and (c)
quadratic carrier emission rate n(t) depicted in the insets; dashed green and magenta lines
show the first (beginning at t = 0) and the last (beginning at t = tp) normalized pulse.
The exponential-shaped transient for t < tp (marked as “inaccessible region”) cannot be
recorded correctly because of the plasma-effect distortion.

In addition, n(t) can be calculated from current waveforms. To do so, Eq. (I.2.33)
should be rewritten as follows:

i(t) =

∫ tp

0

n(t′)∆i(t, t′) dt′ =

∫ ∞

−∞

n(t′)∆i(t, t′) dt′ = (n ∗∆i)(t), (I.2.34)

where, after the third equal sign, the convolution of carrier emission rate n(t) and single-
carrier current contribution ∆i(t) is identified. The extension of integration limits from
〈tp, ttr〉 over the whole real line was possible due to the presence of the boxcar function
in Eq. (I.2.31). The convolution operator “∗” acting on functions f and g is defined as
usual:

(f ∗ g)(x) =
∫ ∞

−∞

f(y)g(x− y) dy.

Looking directly for the solution n(t) of the integral equation (I.2.33) for the measured
current waveform i(t) would be pretty complicated. However, one can use the advantage
of the well-known convolution theorem of the Fourier transform instead:

FT {f ∗ g} = FT {f}FT {g}, (I.2.35)

where the symbol FT was used for Fourier transform operator. Then, the application of
Eq. (I.2.35) on Eq. (I.2.34) yields

FT {i} = FT {n}FT {∆i},

from which after simple math

n(t) = FT −1

{ FT {i}
FT {∆i}

}

. (I.2.36)
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Here, the symbol FT −1 marks the inverse Fourier transform. For fast numerical pro-
cessing, one can utilize some of common codes for the discrete Fourier transform [43].
Emission rates of real CdTe and CZT detectors calculated using Eq. (I.2.36) are shown
in Chapter 4.
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3. Experimental techniques

In Table I.3.1 the overview of samples studied in Part I of this thesis is given. Only the
properties concerning the origin of samples are summarized therein, another properties
are shown in detail in corresponding sections, references of which are to be found in the
last column of the table. Some of the samples were grown in the growth laboratory
of the Institute of Physics of Charles University in Prague (IoP CU), the others were
either bought as commercially available detectors or the material for their fabrication was
obtained thanks to cooperation between IoP CU and other laboratories interested in the
same research area.

3.1 Sample preparation

Investigation of detector properties always starts with the preparation of suitable samples
for measurements.

3.1.1 Primary treatment

At first planparallel wafers are cut from a grown crystal perpendicularly to growth axis
using a diamond-wire saw Model 6234 from Well Diamond Wire Saws, Inc. The slices
with the thickness of approx. 2–3 mm are then polished by a boron-carbide (B4C) abra-

Table I.3.1: Samples studied in Part I of this thesis.

Sample Material Growth
technique

Origin (Vendor)
Section in
the thesis

AC211 CdTe:Cl THM§ Acrorad Co. Ltd. 4.1.3

AC31C1 CdTe:Cl THM Acrorad Co. Ltd. 4.1

B39KB3 CdTe:In VGF† IoP CU1 4.1, 4.2

BNL2E2 Cd0.85Zn0.15Te HPBM‡ Brookhaven NL2 4.3

BNL2E5 Cd0.85Zn0.15Te HPBM Brookhaven NL 4.1.3

BNL2E9 Cd0.85Zn0.15Te HPBM Brookhaven NL 4.1

BNL2G1F3 Cd0.85Zn0.15Te HPBM Brookhaven NL 4.3

E46D3I Cd0.96Zn0.04Te VGF IoP CU 4.2

E67A1C Cd0.9Zn0.1Te VGF IoP CU 4.2

E67A1G Cd0.9Zn0.1Te VGF IoP CU 4.1.3

§ Travelling Heater Method
† Vertical Gradient Freeze method
‡ High-pressure Bridgman method
1 Institute of Physics of Charles University in Prague
2 Brookhaven National Laboratory
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sive F600 to reveal grain boundaries within the wafer. This is important since only the
monocrystalline pieces of the wafer are suitable for further investigations. The wafer
is consequently cut on a steal-wire saw to supply planparallel samples with dimensions
usually around 5× 5× 2 mm3 which should contain no grain boundaries or twins.

After the cutting, samples are polished by a B4C abrasive F1000 to remove the dama-
ged surface layer and to prepare the sample surface for the following chemical–mechanical
treatment. This is accomplished by chemical polishing of the sample in a 3% bromine–
ethylene glycol solution on a silk cloth, 1 minute for each side. Consequently, the sample
is etched in a 3% bromine–methanol solution for 1 minute and then thoroughly rinsed
in methanol and then acetone or isopropyl alcohol. This process removes the remains of
abrasives and provides the mirror-like surface. For electrical measurements, contacts have
to be prepared in the next step.

3.1.2 Deposition of metal contacts

To enable the piece of CdTe/CZT operate as a radiation detector and to allow the re-
alization of various measurements of electrical properties (some of them are discussed
in Chapter 4), electrical contacts are prepared on the chemically–mechanically treated
surface. Various metals can be utilized (Au, Pt, In, Al, etc.); however, the choice of the
metal must be done carefully with respect to the quality of detector material as well as
the intended application. In the laboratory of IoP CU, gold contacts are mostly pre-
pared from a 1% AuCl3 solution in water. In addition, Au, In or other metals can be
vacuum-evaporated from a resistive heating boat.

No matter of deposition technique, detectors are prepared in a planar geometry, i.e.,
two contacts are produced on the opposite faces of the sample. Before contacting, sample
faces that are not designated for deposition are covered by a resist, whereas those that
are to be deposited are left unmasked. After baking of the resist, the contact is deposited
either chemically from the solution or by evaporation. At the end of deposition process,
the resist is removed in acetone, leaving the unmasked face(s) contacted. If both contacts
were not prepared at once, the whole process can be repeated; otherwise the detector is
ready for being bonded and wired.

This proceeds by bonding the detector onto a small printed-circuit board (PCB) hold-
er6 by a conducting graphite (or silver) paste, which tightly fixes the detector in place
but can be easily rinsed in acetone when needed. The bonded face serves as one elec-
trode (cathode/anode depending on the polarity of applied bias), the opposite face (ano-
de/cathode) is connected to the PCB using a 50 µm Ag wire. In the geometry that
enables α-particle irradiation from both faces, the detector is fixed on the PCB holder
by its uncontacted wall-side. This removes the need for unbonding, turning the detector
around, and bonding it again. In such a geometry both the anode and cathode are con-
nected by Ag wires to the PCB. When fixed to the PCB holder, the detector is ready for
measurements.

6A piece of custom-made PCB with a large gold electrode and three small gold pads for wiring. Four
pins in the corners enable easy fitting of the board with the sample to various experimental setups used
in the laboratory without the need for unbonding the detector.
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Figure I.3.1: (a) Typical shape of the pulse height spectrum of a CdTe detector for various
voltages. (b) Charge-collection efficiency (CCE) evaluated from the measured pulse height
spectrum is fitted according to a theoretical model to obtain µτ of the detector.

3.2 Radiation spectra measurements

Measurements of the charge-collection efficiency (CCE) provide important information
about the quality of the detector through the evaluation of the mobility–lifetime product
(µτ) deduced from the measured bias dependence of CCE, see Fig. I.3.1. According to
Eq. (I.2.18) one must calculate the amount of charge, Q, collected by the detector biased
to a particular voltage when irradiated by a radiation source of known energy, E0. For
CCE measurements presented in this thesis, a 5.49 MeV 241Am α-particle source was
used.

The experimental setup based on a common arrangement for radiation spectra mea-
surements [18] is shown in Fig. I.3.2. The detector connected to a charge-sensitive pream-
plifier (ChSP) is biased to the desired DC voltage by an Iseg SHQ 122M through a series
load resistor within the ChSP housing. To minimize energy losses of α-particles irradi-
ating the detector, both the detector and the radiation source are placed in a vacuum
chamber while simultaneously keeping the source–detector distance as short as possible.
The signal induced on detector electrodes by drifting carriers is fed via a blocking capaci-
tor (to remove the high-voltage DC part of the signal) to the input field-effect transistor
(FET) of the Amptek A250 preamplifier. After the pre-amplification it is then shaped
and additionally amplified by an Ortec 671 shaping amplifier, the purpose of which is
to modify the transients to a form easily registered by a multichannel analyzer (MCA).
Shaping of the transient on particular stages along the signal path is depicted at the
top of Fig. I.3.2. A digital storage oscilloscope (DSO) is used for real-time checking of
the shaped signal during the measurement. Finally, an Ortec Easy-MCA multichannel
analyzer supplies the pulse height spectrum recorded and analyzed by a PC. Shielded
coaxical cables terminated by either BNC connectors (for signal path) or SHV connectors
(for HV supply) were used to interconnect particular instruments.

To calculate CCE as a dimensionless quantity from the pulse height spectrum, i.e., from
the distribution of recorded transients according to their height with channel numbers on
the horizontal axis, one must find the relationship between a particular MCA channel
and a certain energy. This could be achieved in two ways: (i) by performing a pulser
calibration; (ii) by using a silicon detector.
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Figure I.3.2: Experimental arrangement for CCE measurements.

3.2.1 Pulser calibration

The most reliable method of performing a calibration is to use a charge terminator (CHT),
i.e., a special capacitor of known capacitance in a shielding metal housing. CHT is placed
between the pulser and the preamplifier input in place of the detector. In Fig. I.3.2
instruments and cabling for this type of calibration are in grey color and marked by
a dashed rectangle. The calibration proceeds in following steps:

(i) The attenuated output from a precision pulser is connected to the CHT via one
channel of the digital storage oscilloscope (DSO) (CH2 in Fig. I.3.2) with its termi-
nation set to 1 MΩ. This simulates pulses coming from a real detector. The output
from the CHT is connected to the detector input of the preamplifier. Cables should
be kept as short as possible.

(ii) The output of the shaping amplifier is connected to the second channel of the DSO
(CH1 in Fig. I.3.2), the trigger of which is set to this channel. Averaging is enabled
to improve noise on very small pulser signals. This ensures that both the sourcing
and processed pulses are triggered and displayed clearly by adjusting the trigger
level.

(iii) Pulse height spectra on MCA are acquired for several different pulser signals. The
amplitudes are chosen so as to cover the whole MCA channel range. For each ampli-
tude, the peak-to-peak height of the pulser signal (in millivolts), Vp, is measured on
CH2 of the DSO and the corresponding MCA peak centroid7 (in channel numbers),
is measured on CH1.

Then, the energy of each pulse, Ep, is calculated from the capacitance of the CHT, Cp:

Ep (keV) =
ǫVpCp

1.602× 10−19 C
= 6.242× Vp (mV)× Cp (pF)× ǫ (eV), (I.3.1)

where the electron–hole pair production energy, ǫ, for CdTe/CZT is to be found in Ta-
ble 0.3.1. Consequently, one is able to find the dependence between channel numbers

7The channel number corresponding to the maximum of the peak in the pulse height spectrum.
Usually, this quantity is fitted from the measured data using a gaussian fit.

38



measured on MCA and the energy, E , corresponding to a charge collected by a studied
detector. Usually, such a dependence is considered to be linear in full MCA channel range:

E (keV) = m × channel number + p, (I.3.2)

where the constants m and p are determined from the linear fit. Finally, Eq. (I.2.18) can
be rewritten in the form

CCE =
E
E0

(I.3.3)

with E0 = 5490 keV for α-particles from 241Am source and E calculated from Eq. (I.3.2),
enabling direct evaluation of CCE from the measured peak centroid.

3.2.2 Calibration using a silicon detector

As an additional check to the pulser calibration, the studied detector can be replaced by
a precharacterised silicon detector while keeping all other electronics and readout system
the same. Then, using various radiation sources that produce radiation/particles in the
desired energy range, each recorded pulse height spectrum provides one additional point
to the calibration line according to Eq. (I.3.2). The data points obtained by this proce-
dure should lie on the line of the pulser calibration with calculated m and p.

The above calibration is valid for particular settings of the experiment and should be
renewed every time anything is changed, e.g., shaping time or shaping type (gaussian,
triangular) of a shaped pulse, MCA channel range, etc.

3.2.3 Rough estimate of µτ

Except for the exact methods of calculation of CCE described in two previous sections, one
can sometimes skip the time-consuming calibration of the experimental setup to quickly
obtain an estimate of CCE on a set of detectors where the precise value of µτ is not
required on behalf of mutual comparison of quality of several detectors. In such a situation,
“CCE” can be measured directly in channel numbers (peak centroids corresponding to
a particular photopeak) rather than normalizing this value to the channel corresponding
to the energy E0 of used radiation source. For the evaluation of µτ , an additional fitting
parameter, C0, must then be introduced to the chosen model. E.g., for the calculation
utilizing the Hecht equation, Eq. (I.2.20), the fitting formula reads

CCE
′

Hecht(U) = C0
µτU

L2

(

1− e−
L2

µτU

)

,

where the prime symbol was used to distinguish this equation from the original dimension-
less Eq. (I.2.20). C0 now represents the channel corresponding to the maximum collected
charge. Though this value is not interesting while proceeding with this simplified proce-
dure, it should be close to the channel number calculated from Eq. (I.3.2) for E = E0 if
the calibration were known.

3.3 Transient-current technique

TCT measurements were performed in the experimental setup schematically shown in
Fig. I.3.3, the detail is depicted in Fig. I.3.4. The arrangement originates from the setup
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Figure I.3.3: Experimental arrangement for TCT measurements.

Figure I.3.4: Detailed view of the TCT experiment. All electronic parts including the
current-sensitive preamplifier are placed inside a shielding box to protect them from dis-
turbing electromagnetic interference.

presented in [33], however, several improvements were introduced to make it most suitable
for measurements carried out in our laboratory.

CdTe/CZT samples are graphite-bonded onto a prefabricated PCB holder as described
in Subsection 3.1.2, which is then placed inside a metal shielding box (galvanized sheet),
and biased by an Iseg SHQ 122M high-voltage supply. Samples are irradiated in air by
a 5.5 MeV 241Am α-particle source at a distance of 3–5 mm. Because of lack of vacuum
conditions in our TCT setup, the limited range of α-particles in air causes their energy
loss. It was examined that this energy loss of approximately 0.5 MeV measured using
a conventional charge-sensitive preamplifier corresponds well to values measured in [48].
As the signal-to-noise ratio of the TCT signal is sufficient, the lower energy of incident
particles due to ionization losses does not affect calculated field slope since it is the
transient damping parameter rather than height of the transient that is significant for
calculations.

Carriers generated in the detector bulk are collected by the applied bias and a current
signal, induced on the electrodes due to drift of carriers throughout the sample, is amplified
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by a 3 GHz Miteq AM-1607-3000R amplifier. Preamplifier supply voltage of +15 V is
stabilized by a blocking tantalum capacitor C2; a ferrite bead around the supply cable
reduces the effects of electromagnetic interference. Two anti-parallel Schottky diodes D1,
D2 (type 1N5711) were placed at the input of the preamplifier to protect it from large
pulses that occur accidentally and could damage the input stage. It was proven that
these diodes do not distort the signal. Values of other electronic components were not
modified with respect to original values [33] and are figured in detail in Fig. I.3.4. The
effect of different choice of values of these components on a current transient is discussed
in Subsection 4.1.3.

Current signal is converted into a voltage pulse on a precise 50 Ω termination resistor
at the input of either a 350 MHz LeCroy WaveSurfer 434 DSO or a 4 GHz LeCroy
WaveRunner 640 Zi DSO. As it is clear from Eq. (I.2.12) that the damping parameter
c of measured transient can be extracted without the need for estimation of a pulse
height (amplitude), there are situations where the knowledge of the “absolute” transient
height is necessary (e.g., the evaluation of plasma erosion time according to Section 2.7
or estimation of CCE from a current transient). In this case, one need to know the gain
of the preamplifier, G. The current I is then calculated from the voltage U using the
formula

I (µA) =
103

50 Ω×G
× U (mV) =

U (mV)

Z , (I.3.4)

where 50 Ω in the denominator is the input impedance of the DSO. On the right-hand
side of the latter equation, Z is the overall voltage-to-current conversion factor, in lite-
rature [33] referred to as the transimpedance. For G = 130 estimated in our early TCT
experiments Z = 6.5 mV/µA.

All electronic components as well as the current-sensitive preamplifier are placed within
a copper shielding box while keeping the cable length of signal path as short as possible.
Shielded coaxial cables were used. Double shielding (galvanized sheet and copper box)
approved to be necessary to protect the electronic parts from electromagnetic interference
(EMI) while simultaneously increasing the signal-to-noise ratio. Careful shielding together
with the introduction of a 4 GHz DSO instead of former one with a bandwidth of 350 MHz
made it possible to increase the sensitivity of the method and, on particular detectors,
to extend the lower limit of measurable signal down to only several tens of volts applied
on a detector. Moreover, short transients of thin samples as well as fast rising edges,
theoretically down to 1/(4 GHz) = 0.25 ns, could be easily measured due to extended
bandwidth of the DSO.

Sample capacitance, estimated to be in the order of several picofarads,8 i.e., three
orders-of-magnitude lower than the capacitance of the coupling capacitor C1 = 3.3 nF,
is insufficient to affect the measurement. To avoid the distortion of the current tran-
sients by electronic artifacts inadvertently triggering the DSO (e.g., short pulses of a few
nanoseconds probably arising from the preamplifier feedback or mobile-phone-induced
EMI), advanced triggering options of the DSO together with computer-aided signal ac-
quisition were adopted.

Advanced TCT setup incorporated also the Peltier cooler to stabilize the sample tem-
perature during measurements to 295 K. In that case, marked in Fig. I.3.3 by a grey
rectangle, temperature variations did not exceed 1 K. To prevent water vapour from air
condensating on the detector and electronics within the shielding box when lowering the

8Typical dimensions of studied samples are 5 × 5 mm2 of faces area and 1.5 mm in thickness, which
with the relative dielectric constant of 10.3 yields the capacitance of 1.5 pF.
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temperature down to 0 ◦C, the box is equipped with dry air/water-free gas inlet for purg-
ing the cooled chamber. However, there are no measurements of temperature dependence
of electric field profile presented within this thesis.

An additional note concerning the excitation source used in TCT experiment is worth
mentioning. In contrast to the setup implemented in the laboratory of IoP CU where
α-particles are used to generate electron–hole pairs within the detector bulk, at Hokkaido
Institute of Technology a nitrogen laser (λ = 337 nm) running at a repetition rate of
8 Hz is used as the excitation source [34]. Incorporation of the above bandgap radiation
ensures high absorption coefficient of laser light in CdTe, implying the charge carriers
being generated near the surface of the irradiated electrodes. Similarly to TCT, this so
called time-of-flight (TOF) measurement enables one to calculate the electric field profile
in a studied sample from current waveforms recorded by a DSO. As the diameter of the
laser beam can be suitably adjusted to be comparable to sample dimensions, concen-
tration of generated carriers—though their number can be several orders-of-magnitude
higher than in the case of TCT—is less as compared to the carrier concentration in the
charge cloud in the case of α-irradiation. This successfully removes the problem with
the plasma effect deteriorating rising edges of current transients. However, in contrast to
TCT where maximum energy of an α-particle is absorbed at finite distance of ∼10–20 µm
from sample surface (because of Bragg curve, see Fig. 0.2.3b), photons interact differently
with the matter (see Section 2) and electron–hole pairs are generated with the highest
rate at the surface of the sample and then the rate exponentially decreases towards the
bulk. Therefore, the surface recombination must be taken into account in TOF calcula-
tions, which makes them more complex than TCT ones. Additionally, experimental setup
involving a laser source is more complicated than the simple arrangement presented in
Section 3.3.
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4. Results and Discussion

Since the penetration depth of α-particles in CdTe is of the order of tens of micrometers,
electron–hole pairs are generated close to the irradiated electrode. By changing the po-
larity of the applied bias, this feature allows to study either electron or hole signal using
the theoretical results of Chapter 2. As the hole mobility is much lower than that of
electrons, the hole-induced signal is weak. It would require the use of a second amplifier
connected to the output of the amplifier in Fig. I.3.3 to sufficiently increase the signal
to provide a satisfactory signal-to-noise ratio. Only the electron-induced measurements
(detector irradiated from the cathode side) are presented in this chapter.

4.1 Basic demonstration of TCT

Before proceeding with deeper study of TCT which resulted in the development of SCP
and DMP procedures, the reader is introduced to the basics of TCT analysis though the
study of typical current waveforms representing the detector response to α-irradiation.
Most of this results were published in [25]. For now, iterative treatment is neglected.

4.1.1 Calculation of mobility, space-charge density, and deple-

tion width

Bias dependence of current pulses measured on BNL2E9, B39KB3, and AC31C1 detectors
are, respectively, shown in Figs. I.4.1a, I.4.2a, and I.4.3a. These detectors were fabrica-
ted by a common process described in Section 3.1; Table I.4.1 summarizes same of their
properties interesting for this analysis. To lower the noise of input data, all measure-
ments were integrated over 500 events during the acquisition on LeCroy WaveSurfer 434
DSO. No time evolution of the current waveforms was observed, i.e., all waveforms were
proven to remain in a steady state during measurements. Thus, any probable charging of
the detector bulk (polarization) must have occurred just after applying the bias on the
detector. Time resolved measurements of such detector polarization on a scale of several
seconds after biasing were not available since it takes time of approximately 1 minute to
safely bias the detector and set up the DSO.9

In all detectors the maximum of current signal appeared shortly after triggering the
pulse. The pulse rise time was several nanoseconds long and shortened with increasing
bias. The rise time of current transients in AC31C1 (Fig. I.4.3a) was very short. Estimated
values of about 3 ns represent the oscilloscope limit given by its bandwidth of 350 MHz.
Shorter waveforms could not be recorded correctly.10 The fast rising edge of the pulse
followed by the “dib” at t ≈ 5 ns, which was seemingly bias-independent, was likely to be
a triggering effect or the result of signal back-scattering in cables.

It is the characteristics of TCT that the current waveform of a charge carrier drifting
in a decreasing electric field decreases (as shown in Chapter 2 the decrease is exponential if
the field profile is linear) and breaks at the time when the forefront of the carrier “cloud”
reaches the opposite electrode (t = ttr, Eq. (I.2.15)), which is evidenced as a “break”

9Detectors are biased either in a linear staircase sweep regime with 1 or 2 steps of several volts per
second through a computer program or manually by increasing bias from zero to the desired value to
prevent the preamplifier from being damaged by applying high voltage at one moment.

10A 4 GHz oscilloscope WaveRunner 640 Zi was not available at the time of these measurements.
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Table I.4.1: Sample properties

Sample Material Contacts Thickness
L (mm)

µτ
(cm2/V)

µ
(cm2/Vs)

BNL2E9 Cd0.85Zn0.15Te Au/Au 1.1 2× 10−3 979†

B39KB3 CdTe:In Au/Au 1.7 2× 10−4 918†

AC31C1 CdTe:Cl Au/Au 1.8 3× 10−4 900§

§ From rise time of a charge signal via charge-sensitive preamplifier.
† From TCT measurements via current-sensitive preamplifier.
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Figure I.4.1: (a) Current transients in BNL2E9 recorded for different applied biases. The
inset shows the bias dependence of the space-charge density N both considering trapping
(solid symbols) and neglecting it (open symbols). (b) Calculated strength of the electric
field in BNL2E9 detector as a function of the distance from cathode for different applied
biases.

(a “shoulder”) in the current pulse (a transition between exponential part and a trailing
edge). This situation is recognized readily in Figs. I.4.1a and I.4.2a, but does not pertain
to Fig. I.4.3a. With increasing bias the pulses shrink and their transit times ttr decrease
since it then takes less time for electrons to drift through the sample.

Fitting the experimental data according to Eq. (I.2.12) brings the values of parameter
c. Since the estimation of ttr is easy and can be done directly from Figs. I.4.1a and
I.4.2a, the electron mobility, µ, is obtained by solving Eq. (I.2.17) with upper signs using
values of µτ and L shown in Table I.4.1. Values of µτ products were determined from
measured CCE spectra via the Hecht equation. For precise calculations of µτ in the case of
inhomogeneous electric field (but still based on CCE measurements only, i.e., without any
further information from TCT or Pockels measurements), the advanced approaches can be
used [49, 50]. For precise calculations utilizing TCT measurements, iterative procedures
are necessary. This will be discussed later in a separate section.

For different biases the calculated electron mobilities according to Eq. (I.2.13) are
slightly different. The average values are µ = (979 ± 19) cm2/Vs and µ = (918 ±
11) cm2/Vs, respectively, for BNL2E9 and B39KB3. Low statistical uncertainty proves

44



0 25 50 75 100 125
0

1

2

3

4

5

6

7

 

 

C
ur

re
nt

 (
A)

Time (ns)

 300 V   400 V
 500 V   600 V
 700 V   800 V
 exponential fit

800 V

300 V

(a)

300 800
1.3x1011

1.7x1011

2.1x1011

2.5x1011

N
  (

cm
-3
)

Bias (V)

1.4

1.5

1.6

1.7

W
  (m

m
)

0 400 800 1200 1600
0

2

4

6

8

800 V

Anode

 

 

El
ec

tri
c 

fie
ld

 s
tre

ng
th

 (k
V/

cm
)

Distance from cathode ( m)

 300 V
 400 V
 500 V
 600 V
 700 V
 800 V

Cathode

300 V

(b)

Figure I.4.2: (a) Current transients in B39KB3 recorded for different applied biases. The
inset shows the bias dependence of the space-charge density N and the corresponding
values of the depletion width W calculated from Eq. (I.2.4) both considering trapping
(solid symbols) and neglecting it (open symbols). Dashed line in the inset marks the
thickness of the detector (1.7 mm). (b) Calculated strength of the electric field in B39KB3
detector as a function of the distance from cathode for different applied bias voltages.

that the mobility can be considered field-independent. It is worth noting that commonly
used formula µ = L2/(ttrU) (Eq. (I.2.16)) cannot be utilized here as it is valid only for
a uniform electric field. If used, the mobility of B39KB3 neglecting the field profile would
be estimated to be as low as 723 cm2/Vs. The mobility of AC31C1 could not be evaluated
by TCT as there was no apparent break in recorded current transients, see Fig. I.4.3a.
For further calculations the value of µ = 900 cm2/Vs, determined via a charge-sensitive
preamplifier from measurements of the rise time of a charge signal induced by α-particles
irradiating the detector [51], is used.

The exponential decrease in current signal after the initial rise-up can be explained
in terms of a positive space charge within the detector. Having determined the values
of parameter c, the slope a of the electric field is calculated from Eq. (I.2.13); further-
more, the space-charge density and depletion width can be estimated using Eqs. (I.2.4)
and (I.2.8). A space-charge density of the order of 1010 cm−3 was found for BNL2E9
and 1011–1012 cm−3 for B39KB3 and AC31C1, varying with applied bias in all detectors.
These values agree with observations of several authors [30, 31, 34, 52]. For BNL2E9
and B39KB3 the space-charge density rises with increasing bias. The bias dependencies
are plotted in the insets of Figs. I.4.1a, I.4.2a, and I.4.3a both considering trapping and
neglecting it (τ → ∞). The trapping times were calculated from the values of µτ and
the estimated values of µ, giving τ = 2 µs, 220 ns, and 330 ns for BNL2E9, B39KB3,
and AC31C1, respectively. It is clear that trapping has the largest effect on B39KB3
transients, for which there may be a difference as high as 13% between the value calcu-
lated in the absence of trapping and that evaluated when trapping is considered. For
BNL2E9 and AC31C1, respectively, this difference does not exceed 7% and 3%. Though
all studied samples have gold contacts, which are typically characterized as ohmic, the
positive charging of the detector bulk implies that band bending at the contacts occurs,
forming electron-blocking cathode and hole-injecting anode.
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Figure I.4.3: (a) Current transients in AC31C1 recorded for different applied biases. The
inset shows the bias dependence of the space-charge density N and the corresponding
values of the depletion width W calculated from Eq. (I.2.4) both considering trapping
(solid symbols) and neglecting it (open symbols). (b) Calculated strength of the electric
field in AC31C1 detector as a function of the distance from cathode for different applied
bias voltages.

4.1.2 Calculation of electric field profile

The profiles of the electric field of BNL2E9 and B39KB3 detectors were calculated from
parameters a and E0 determined from the analysis of the current transients. The results
are shown in Figs. I.4.1b and I.4.2b. The absence of transient breaks in Fig. I.4.3b
does not allow to directly evaluate the electric field in AC31C1 since the transit time is
undefined in this case even for high biases. Nevertheless, since the electron mobility of
900 cm2/Vs was determined from the rise time of charge signal measured with the help
of a charge-sensitive preamplifier, the electric field could still be calculated, yielding the
profile depicted in Fig. I.4.3b. The electric fields of all detectors show maxima at the
cathode and then linearly decrease towards the anode. Such behaviour is consistent with
the positive charging of studied samples as already outlined above.

With increasing bias the evaluated space-charge density increases in BNL2E9 and
B39KB3, but slightly decreases in AC31C1. The reason for this difference could originate
from larger E0 for strongly polarized AC31C1 and reduction of the Schottky barrier at
the cathode due to the Schottky effect [40]. Conversely, the increasing N in BNL2E9 and
B39KB3 results from enhanced electron depletion and hole injection with rising bias.

As discussed above the space-charge density is one order-of-magnitude less in BNL2E9
than in B39KB9 and the entire volume of the detector is depleted even at a minimum bias
of 300 V (see Fig. I.4.1). In contrast to B39KB3, Fig. I.4.1b demonstrates that the strength
of the electric field in BNL2E9 is nearly constant. Average values of the field strength
agree well with the theoretical field strengths, E(theor), calculated under the assumption of
a homogeneous field throughout the sample. Moreover, using the formula E(theor) = U/L,
for, e.g., 300 V the value E(theor) = 2.7 kV/cm is obtained, while E0 = 3.1 kV/cm is the
field strength under the cathode at 300 V. The missing profile for 800 V reflects the large
uncertainty of the exponential fit in Fig. I.4.1a.

For biases larger than 500 V, a break in the current pulses recorded on B39KB3
becomes clearly visible, see Fig. I.4.2b. For lower biases the break vanishes since an
inactive region with zero electric field appears under the anode and hence one could not
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evaluate the transit time. It should be noted that the formation of the inactive region
is confirmed independently both by the disappearance of the break in current waveforms
and by the fits of the transients’ damped parts according to Eq. (I.2.12), which are purely
exponential below 500 V. The presence of an inactive region then seriously limits the
detector spectroscopic performance. It is illustrated with the help of Eq. (I.2.4) and
the inset in Fig. I.4.2a that the depletion layer can extend to the entire volume of the
detector by increasing bias voltage. For measurements carried out at 300 V and 400 V,
the depletion width W is less than the detector thickness. Therefore, generated charge is
not collected by the whole volume of the detector. As the bias is increased above 500 V,
the calculated values of W reach the value of detector thickness and its total volume
becomes active. For higher bias voltages the detector is already operating under complete
depletion.

The excellent applicability of the theoretical model to experimental data proves the
correctness of the assumption of a constant space-charge density (and thus a linear electric
field) in studied samples.

4.1.3 Deeper analysis of current waveforms

It is apparent that rise times of the current waveforms of BNL2E9 and B39KB3 detectors
are much longer than those of AC31C1. Such behaviour is attributed to the plasma
effect, refer to Section 2.7. Around 106 electron–hole pairs are created along the path of
an α-particle in the detector (10–20 µm because of low range of α-particles in matter),
thereby forming a charge cloud. These carriers are subject to electric field in a detector.
To roughly describe their motion, an estimate of the distance ldiff (ldrift) that carriers travel
by diffusion (drift) in ∆t = 14 ns, which is the rise time for the 300 V current waveform
in Fig. I.4.1a, is calculated at first. For diffusion one obtains ldiff =

√

µkBT∆t/e ≈ 6 µm
at room temperature T = 300 K, whereas for drift ldrift = µU∆t/L ≈ 380 µm, if kB
is the Boltzmann constant. As ldrift ≫ ldiff, drift dominates over diffusion in a direction
perpendicular to the detector contacts. Therefore, it is the electric field in a sample rather
than diffusion that is responsible for the initial acceleration of carriers and the erosion of
the charge cloud.

The screening of externally applied bias within the charge cloud can be estimated in the
following way: the electric field E created by 106 electrons and holes in two parallel planes
separated by 10 µm from one another, i.e., approximately half the penetration depth of
α-particles in CdTe, is calculated from the Coulomb’s law, giving E ≈ 14 kV/cm. As
the electric field under the cathode of BNL2E9 for bias of 300 V is E0 ≈ 3 kV/cm (see
Fig. I.4.1b) and since E > E0, it is obvious that the plasma effect can be strong enough
to delay signal formation and extend the transient rise time to observed values.

When the bias is increased the estimated value of E remains valid, but the electric field
E0 increases. Thus, for higher bias voltages the plasma effect becomes less important and
can be suppressed overall as clearly demonstrated in Figs. I.4.1a and I.4.2a by shortening
of pulse rise times. The absence of the plasma effect in Fig. I.4.3a is easily explained after
realizing that in the range of bias voltages applied on AC31C1, only about a half of the
detector volume is depleted. Therefore, the electric field under the cathode is higher than
in other two samples (compare Figs. I.4.1b, I.4.2b to Fig. I.4.3b) and current waveforms,
even those at 300 V, are already unaffected by the plasma effect.
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Figure I.4.4: Reconstruction of current waveforms measured in BNL2E9 detector accord-
ing to the plasma-effect model in [33]. The inset shows the bias dependence of fitting
parameters ts and τr introduced in the model.

In [33] a simple model of the plasma effect was used to reconstruct the current wave-
forms i(t):

i(t) = Q0

(

1− e−t/τr
)µ

L

(

(E0 − ax(t)
)

, (I.4.1)

x(t) =

[

E0

a
+

(

x0 −
E0

a

)

e−aµ(t−ts)

]

(

1− e−t/τr
)

, (I.4.2)

where a and E0 are the field slope and electric field strength under the cathode, x0 is the
absorption depth of α-particles in CdTe/CZT, and τr and ts are parameters describing
the plasma effect: τr ∼ reduced signal charge and charge carrier velocity, and ts ∼ delayed
signal formation. Eqs. (I.4.1) and (I.4.2) were used to simulate the current pulses recorded
in BNL2E9 detector, see Fig. I.4.4. It shows that the rising parts of the waveforms
measured for higher bias voltages are reconstructed sufficiently; however, for low applied
biases when the plasma effect most affects the carrier movement, the applicability of the
model decreases.

The reconstruction of current transients according to phenomenological model pre-
sented in Section 2.7 was more successful than the application of Eqs. (I.4.1)–(I.4.2), see
Fig. I.4.5. For the modelling procedure the data points from the beginning of the pulse to
its maximum were considered for the analysis of the plasma effect, the data points from
the exponentially decreasing (middle) part were used for the estimation of the field slope.
The whole shape of the waveform including its trailing edge may then be unambiguously
calculated according to Eq. (I.2.34). Both the rising edges and exponential parts of cur-
rent waveforms for both low and high applied biases are modelled well; however, slight
differences appear on trailing edges of the waveforms. Since the model differs from the
experimental data more at low biases for which the transients are much shorter than at
higher bias, fast rising edges of short waveforms might be affected by the electronics. This
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Figure I.4.5: Reconstruction of current waveforms measured in BNL2E9 detector accord-
ing to phenomenological model presented in Section 2.7. The inset shows calculated
emission rates for different bias voltages (symbols show experimental data, lines mark
parabolic/Gaussian interpolation of those).

distortion is, however, unintentionally involved into calculation as the whole rising edge
is processed to obtain the carrier emission rate n(t). Thus the calculated rates depicted
in the inset of Fig. I.4.5, specially at 800 V and 600 V, need not to be an actual feature
of the detector but the combined result of the plasma effect and the electronic distortion.
To dispose of this problem correctly, a response function of the electronic circuit should
be considered. Nevertheless, these calculation are not included in this thesis, but should
be a challenge for future work.

In the inset of Fig. I.4.5 the calculated emission rates of charge carriers from the
plasma cloud are shown. Though the data are quite noisy, the analysis reveals that the
emission rate rises from zero to its maximum and then decreases again toward the zero;
the maximum emission is identified with the inflection point in the transient rising edge.
In all four current waveforms analyzed in Fig. I.4.5, the emission rate can be approximated
by a parabolic or Gaussian function shown by solid curve in the inset.

Although this model can be successfully applied to the data measured on B39KB3 and
AC31C1 detectors as well, its predictions around the trailing edges (for t > ttr) deviate
from experimental data. There might be, away from the distortion of fast edges due to
electronics, another reason for this behaviour. The plasma effect is not only responsible
for the long rise times of current waveforms for low bias voltages, but it also prolongs the
pulse trailing edges. It follows directly from the general theory presented in Section 2.7
that if no other effects but the delayed carrier emission were present, the transient rise
and fall times would be equal. It is, however, not seen in Fig. I.4.5. E.g., for 300 V where
the electronics distortion of the rising edge is believed to be negligible, the electrons that
start drifting close to the cathode at t ≈ −5 ns reach the anode at t ≈ 40 ns. The signal is
completely built at t ≈ 10 ns, signalizing that even the most delayed electrons are already
in motion (thus tp ≈ 15 ns). The last of them should arrive at the anode at t ≈ 15 ns
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Figure I.4.6: Plasma erosion time tp of BNL2E9, B39KB3, and several other CdTe/CZT
detectors as a function of the electric field EC under the cathode. Following [46] the solid
line shows the inversely proportional fit of the experimental data to EC .

+ 40 ns = 55 ns and the pulse should come to an end. In reality, the pulse terminates
not until t ≈ 60 ns, implying that the pulse fall time is approximately 5 ns slower. One
can follow the same analysis of waveforms recorded for different biases. If the difference
∆t between the pulse fall time and rise time were bias-independent, the observed effect
could be assigned to the detrapping of carriers. On the contrary, if the difference decreased
with increasing bias, inhomogeneities in the sample would be responsible. Such an analysis
had been tried on BNL2E9 and B39KB3 samples but no unambiguous relation between
∆t and the applied bias was found. The reason for the slower fall time of recorded
waveforms thus cannot be recognized readily. This result once again pointed out on
the possible effect of the electronics on the shape of a current transient. Consequent
preliminary experiments with different values of circuit components at the input of the
Miteq AM-1607 preamplifier, i.e., capacitance of C1 and resistances of R1 and R2 (see
Fig. I.3.4), showed up that component values affect the difference ∆t. Fine-tuning of
the most-suitable values of these components was not performed, however, it would be
an interesting topic for a separate study. Although the shape of a current transient can
be slightly modified by a different choice of values of C1, R1, and R2, corresponding
changes are small and important only for a deeper analysis of the transient. The effect
on quantities important for the reconstruction of field profiles, i.e., c and ttr, is negligible
and within the error of calculations.

Additionally, a short comment concerning the field reconstruction process is provided.
The electric field profiles are calculated from parameters a and E0 determined from fits of
the exponential parts of current transients instead of performing a direct “transformation”
of current waveforms into profiles of the electric field according to [33]. Consequently,
distortion of calculated field profiles under the contact due to the plasma effect is removed,
as explained in Section 2.7 and clearly demonstrated in Figs. I.4.1b–I.4.3b.
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The decreasing impact of the plasma effect on current transients with increasing bias
can be demonstrated by the relationship between the plasma erosion time tp and electric
field EC under the cathode (Eq. (I.2.5)). In [46] tp is defined as the time needed to bring
all carriers under the influence of the applied bias. If one identifies tp with 10–90% rise
time of current transients, the dependence of tp on EC can be plotted as seen in Fig. I.4.6
for several detectors. Though tp should approach zero for large electric fields, values lower
than 2–3 ns cannot be observed because of limited bandwidth of the DSO. As values
representing measurements on different materials follow the same curve, one can deduce
that for CdTe/CZT detectors—under the experimental setup described in Chapter 3—
the plasma effect depends on the electric field under the irradiated electrode rather than
on the material being irradiated. This finding can be used for quick estimation of the
strength of the electric field under the contact just by a comparison of tp measured on
a studied sample with those in Fig. I.4.6. For different source–detector distance the energy
of the incident α-particles should be evaluated using published stopping powers [48] at
first. Then, assuming that tp scales with the cube root of the energy of the incident
α-particles [46], the data in Fig. I.4.6 could be recalculated to allow a new estimation of
tp. The dependence tp(EC) determined experimentally is completed in Fig. I.4.6 by the
fit tp ∝ 1/EC proposed in [46]. The fit describes the data relatively well although the
drawbacks of the fit are apparent. Thus, improving the theory of plasma erosion, implying
a refined relation for tp(EC), is advisable.

4.2 Advanced TCT techniques: Iterative procedures

In the previous section the fundamentals of TCT technique have been demonstrated. In
this section the advanced iterative procedures introduced in Section 2.4 are applied on
real experimental data acquired on CdTe and CZT detectors. It is extensively illustrated
that these procedures represent the state-of-the-art of TCT calculations in comparison to
other simple methods commonly used.

To demonstrate the applicability of SCP and DMP methods for the evaluation of
µτ on real experimental data, the same analysis as earlier performed in Section 2.5 on
artificial D1, D2, and D3 detectors was carried out on the measurements acquired on
three CdTe and CZT planar detectors, see Table I.4.2. These detectors were fabricated
by a common process described in Section 3.1. Only the electron signal was used, i.e.,
samples were irradiated from the cathode side. The collected α-particle spectra are shown
in Fig. I.4.7. The decreasing height and FWHM of photopeaks in Fig. I.4.7c were the
results of increasing tendency of E46D3I to polarize with increasing bias; the ongoing
polarization after the biasing limited the analysis to 600 V and the collection of spectra
to 10 seconds only. Different µτ -products of detectors in Fig. I.4.7 are expectable because
of diverse CCEs. First of all, measurements performed on E67A1C and B39KB3 are
discussed. The results of Hecht and Matz approaches are depicted in Fig. I.4.8, those of
SCP and DMP are presented in Fig. I.4.9. Summary is given in Table I.4.3.

In Fig. I.4.8 the curves representing the Hecht and Matz fits of the CCE of E67A1C
are identical and match well with the measured data. While the Hecht analysis yields
µτ = 1.72× 10−3 cm2/V, the one according to Matz and Weidner brings either the same
value as Hecht or µτ = 1.55 × 10−3 cm2/V, depending on the initial guess. Although
it was not explicitly mentioned above, introducing a new parameter to the model (e.g.,
aeff in the case of Matz) brings the necessity to provide an initial value of this parameter
to start the fitting procedure. Any additional parameter increases the complexity of the
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Table I.4.2: Sample properties

Sample Material Contacts
Dimensions†

(mm×mm×mm)

E67A1C Cd0.9Zn0.1Te:In Au/Au 4.8× 5.5× 0.91

B39KB3 CdTe:In Au/Au 4.6× 4.6× 1.65

E46D3I Cd0.96Zn0.04Te Au/Au 5.5× 6.0× 2.48

† Width × depth × thickness L
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Figure I.4.7: 241Am α-spectra
taken by (a) E67A1C, (b)
B39KB3, and (c) E46D3I detec-
tors. Note the different scale of
vertical axes, resulting from dif-
ferent collection times (300 sec-
onds in (a) and (b), 10 seconds
in (c) in order to prevent the
recorded spectrum from being
distorted by evolving polariza-
tion) and collection efficiency.

problem as it becomes multivariate. During the fitting the procedure may converge to
different solutions depending on the initial guesses. Applied to our situation, the Matz fit
converges to either the Hecht solution with no space charge within the detector (aeff = 0),
or to the solution µτ = 1.55× 10−3 cm2/V with aeff = 4.9 kV/cm2. Both values of µτ are
similar and one cannot decide which one is correct. Anyway, the polarization is small in
either case.

However, in the case of SCP and DMP different results are obtained. Though the
mobility–lifetime product is amended just a little, the slopes of the profiles of the electric
field show major dependence on the applied bias and—for high biases—are much greater
than aeff yielded from Matz approach, see Fig. I.4.9a. At 800 V a reaches 100 kV/cm2,
which implies that the concentration of charge traps is as high as 6 × 1011 cm−3. This
information could not be obtained unless using the SCP or DMP methods.

In B39KB3 detector the Hecht equation does not describe the measured experimen-
tal data well. By contrast, they are excellently approximated using the Matz fitting
procedure, yielding µτ = 0.66 × 10−3 cm2/V and aeff = 16 kV/cm2. These results are
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Table I.4.3: Results of µτ calculations on real samples

Sample

µτ (10−3 cm2/V)

Hecht Matz
our approach

SCP DMP

E67A1C 1.72 1.72/1.55 1.62 1.62

B39KB3 0.27 0.66 1.23 0.80

E46D3I 0.31 not available, µ only
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Figure I.4.8: Fits of measured CCEs of E67A1C and B39KB3 detectors. Solid lines show
the fits according to the Hecht equation, dashed lines refer to the Matz fits. The Hecht
equation fails to describe the data for B39KB3 well.

confirmed by utilizing both the SCP and DMP: the mobility–lifetime product is refined
to 1.23 × 10−3 cm2/V and 0.80× 10−3 cm2/V, while the field slopes are nearly constant
with the average of 16.5 kV/cm2. The discrepancy in obtained values of µτ is the direct
consequence of the different computation routines (the reader is advised to compare the
flow charts of these methods in Figs. I.2.4 and I.2.5); different treatments imply different
results when convergence criterions are fulfilled.

Both iterative procedures provide more information about studied samples than the
Hecht or Matz approaches. The SCP is easier to incorporate to user routines as it is simple
and illustrative. On the other hand, DMP is more complex but it requires the numerical
solution of a transcendental equation as part of the fitting procedure. As the requirement
for the best match between the experimental data and theory is its prerequisite through
the minimization of χ2, it should be the preferred procedure to implement. Last but
not least, the assumption of sample homogeneity has to be satisfied for these methods to
give meaningful results. Several CCE and TCT measurements on E67A1C and B39KB3
detectors with a small orifice placed in between the sample and α-source have proven
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Figure I.4.9: Two-dimensional surface fits of CCEs of (a) E67A1C and (b) B39KB3 de-
tectors calculated using DMP. Dashed lines show the projections of the three-dimensional
data [U, aU , CCEU ] to the ground plane, where the bias dependence of the slope of the
electric field profile can be found. TCT waveforms are not shown.

that such an assumption is valid as different parts of a particular sample, except for the
locations near the edges, showed comparable charge collection.

Finally, the measurement performed on E46D3I detector is reported. During the
measurements of CCE this detector proved to be strongly polarized because of low charge
collection and weak TCT signal. In Table I.4.3 the value µτ = 0.31 × 10−3 cm2/V was
shown as the result of the Hecht analysis; however, the result is likely to be distorted due
to strong polarization. Supposing that |a| ≫ 1/µτ , Eq. (I.2.30) can be used to directly
fit the CCE as a function of damping parameters c and applied bias U . If the assumption
is correct, CCE(c, U) ∝

√

U/c should be observed. This was indeed confirmed, see
Fig. I.4.10.

Strongly-polarized detectors usually do not show a good charge collection. To calculate
CCE correctly as a ratio of charge collected at a particular bias to the maximum collected
charge, nearly saturated collection should be achieved, i.e., the bias must be increased
until most of the generated charge is collected. In the case of E46D3I this would require
the application of voltage far above a thousand of volts. It was observed that at higher
bias the polarization of this sample evolves so quickly that it is impossible to measure the
radiation spectrum in a (quasi-) steady-state for at least few seconds necessary for the
determination of the peak centroid. Unfortunately, since the voltage must be applied in
a sweep rather than by a step change in the present experimental setup, the measurements
above 800 V could not be realized because the charge signal was already too weak before
the sample was biased and prepared for measurement. Consequently, the MCA channel
Qm corresponding to the maximum collected charge could not be determined. This is
why the “CCE” is plotted in channel numbers in Fig. I.4.10 rather than normalized to
Qm as usual.

From Subsection 2.4.3 it is known that µτ cannot be evaluated using Eq. (I.2.30); ne-
vertheless, at least the carrier mobility, µ, can be obtained. Without the normalization the
right-hand side of Eq. (I.2.30) must be multiplied by Qm to fit the available measurements.
Although Qm could not be measured directly, it has been experienced that—for various
another detectors—Qm usually lies between channel numbers 1000 and 1200 in our setup,
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Figure I.4.10: “CCE” fit of the strongly-
polarized detector E46D3I. Because of
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yielding the electron mobility between 1600 and 1100 cm2/Vs in E46D3I. Though it is
just an estimate, the mobility is good regardless of high polarization.

4.3 Application example: Effect of contacts on elec-

tric field

Since both the basic and advanced concepts of utilizing TCT method for the calculation of
electric field profiles were already extensively discussed in previous sections, the attention
is now focused on an exemplary application.

In addition to the need for high crystalline quality of the detector bulk material,
the electrical contacts can also crucially affect the device performance. To assure that
a detector performs the best in its applications, the choice of material for contacts and
sometimes method of deposition must be taken into account. It is generally accepted
that ohmic contacts effectively suppress polarization, while Schottky contacts enhance it
[37, 53]. In this section the TCT measurements taken on both ohmic- and Schottky-type
CZT detectors are presented. It is argued that the proper choice of metals for detector
contacts helps to reduce problems with polarization and that experimental results reported
here could lead to conclusions different from those now widely accepted. Most of these
findings have already been published in [27].

Studied samples were fabricated by a common process described in Section 3.1. At first
Au contacts were deposited on both faces from an aqueous solution of 1% AuCl3, creating
“ohmic-type” detectors; these samples are marked by the suffix “-O” in Table I.4.4. After
all measurements had been completed, Au contacts were removed and new contacts were
deposited on the same samples: Au was prepared on one face of the detector using the
same method, while indium was evaporated onto the other side. These “Schottky-type”
samples are identified by the suffix “-S” in Table I.4.4. Bulk resistivity of bare samples
was estimated using SemiMap Contactless Resistivity Mapping system, COREMA [54].

Successful preparation process of sample contacts was checked by comparing current–
voltage (I–V ) characteristics of both ohmic- and Schottky-type detectors. The linearity of
I–V curves of BNL2E2-O and BNL2G1F3-O was proved, i.e, the slope of I–V curves was
constant over the whole measured bias range no matter of bias polarity. In Schottky-type
samples the different slopes of I–V characteristics for U > 0 and U < 0 demonstrated
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Table I.4.4: Sample properties

Sample Contacts
Thickness µτ Bulk resistivity

L (mm) (cm2/V) (Ω cm)

BNL2E2-O Au/Au 1.65 1.4× 10−3 4.6× 109

BNL2E2-S Au/In 1.58 1.8× 10−3 4.6× 109

BNL2G1F3-O Au/Au 1.92 2.0× 10−3 1.3× 1010

BNL2G1F3-S Au/In 1.85 2.5× 10−3 1.3× 1010
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Figure I.4.11: (a) TCT waveforms measured on BNL2E2 detectors at various bias voltages.
In BNL2E2-O the exponentially decreasing parts of the pulses reveal the positive space
charge within the detector. (b) Electric field profiles calculated for BNL2E2 detectors for
various bias voltages.

a (slightly) rectifying shape of I–V curves which is typical for samples with Au and In
contacts. E.g., on applying 600 V of bias voltage on the Au cathode, the current measured
in BNL2E2-O/-S and BNL2G1F3-O/-S detectors was, respectively, 19 nA/14 nA and
18 nA/12 nA.

Fig. I.4.11a depicts the TCT waveforms measured on BNL2E2 for different bias volta-
ges ranging from 200 V to 800 V; Fig. I.4.12a shows the results for BNL2G1F3. The lack
of time evolution for the waveforms observed at a fixed bias implies that the measure-
ments were acquired under steady-state conditions. All waveforms were averaged over 500
transients during computer-aided acquisition. To explain the basic characteristics of the
current waveforms in Figs. I.4.11a and I.4.12a and to better clarify evaluation of the pro-
files of the electric fields, a few comments on the general shape of a waveform are offered
at first. The start and end points of a fitting curve are chosen so as to best fit the current
transient to assumed exponential function and to cover as many data points as possible
to reduce the calculation error. Since according to Eq. (I.2.16) the transit time, ttr, scales
directly as a square of the sample thickness, L, and inversely with the applied bias, U , ttr
recorded at a fixed bias on Schottky-type samples was slightly shorter (by about 7–9%)
than that measured on the ohmic ones because the thickness of Schottky-type samples
was reduced by etching (see Table I.4.4). The extended rise time of current transient
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Figure I.4.12: (a) TCT waveforms measured on BNL2G1F3 detectors at various bias
voltages. In both ohmic- and Schottky-type detectors the nearly flat transients reveal low
polarization of samples. (b) Electric field profiles calculated for BNL2G1F3 detectors for
various bias voltages.

that is apparent especially at lower biases is related to the erosion of the electron–hole
plasma formed due to relatively large energy of the incident α-particles. As demonstrated
in Section 4.2 the plasma effect does not disturb the evaluation of the electric field profile
that is deduced from analysis of the middle part of the waveform.

Under the assumption of a homogeneous space-charge density within the detector bulk,
the current transient i(t) is given by Eq. (I.2.12). In high quality samples such as those
used in this research, µ is large (calculations gave µ around 1100 cm2/Vs in all samples)
and τ ≈ 1000 ns does not markedly influence the damping of i(t) of polarized samples
having a ≥ 1 kV/cm2. In contrast, in those samples with nearly flat profile of the electric
field (a ≪ 1 kV/cm2), it is τ what governs the damping of current transients.

The profiles of the electric fields calculated from the current transients shown in
Figs. I.4.11a and I.4.12a are displayed in Figs. I.4.11b and I.4.12b. In BNL2E2-O sam-
ple the electric field decreases from the cathode to the anode, reflecting a positive space
charge in the sample. Quantitatively, the calculations yield a space-charge density of
2 × 1010 cm−3. In the Schottky-type BNL2E2-S the evaluated space-charge density of
−3 × 109 cm−3 is of opposite sign to that of BNL2E2-O. The reason underlying this
difference in space-charge density is discussed later in the text. Experience shows that
the overall error in calculated values of space-charge density (including noise in the expe-
rimental data, fitting of current transients, and further mathematical processing) could
be as high as 1–3 × 109 cm−3, so making the TCT method unreliable for measuring
a degree of space charge less than about 109 cm−3 and a comparably low degree of po-
larization in detectors associated with such small space charge. Therefore, the calculated
value of −3 × 109 cm−3 should be (regardless of sign) considered as the upper limit for
the actual space-charge density within the BNL2E2-S sample with a nearly homogeneous
electric field. Very low polarization effects were observed in BNL2G1F3 samples when
changing the contact metals. The electric field is homogeneous in both BNL2G1F3-O and
BNL2G1F3-S detectors; in both the space-charge density was estimated to be > 109 cm−3.

It is also notable that long-term storage (for periods of months to years) of detectors
in air without any surface passivation may, in some cases, increase the surface leakage
current and/or induce changes in the electric field profile, both degrading the detector per-
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Figure I.4.13: TCT waveforms measured on BNL2G1F3-O detector at various bias volt-
ages five months after preparing the contacts. The exponential part of the pulse changed
from originally decreasing to increasing after storage.

formance. This behaviour was observed in BNL2G1F3 sample as illustrated in Fig. I.4.13.
Five months after the preparation of contacts a reversal in the sign of the space-charge
density was recorded, giving a negative space charge with the density of −8 × 109 cm−3

in BNL2G1F3-O, and, simultaneously, a significant increase of current was observed in
I–V characteristics (from 3 nA to ∼10 µA at ∼100 V).

One key result is the finding that the ohmic Au/CZT/Au sample BNL2E2-O polarizes,
i.e., a space charge is formed within the detector bulk, but the Schottky-type Au/CZT/In
BNL2E2-S does not, that is, there is no space charge or, more likely, the space charge
is below the detection limit of TCT. Nevertheless, the electric field is homogeneous in
either case. Observed modifications in the detector polarization state while changing the
contact metal of the anode only support the interpretation that a deep hole trap, probably
a deep acceptor, is responsible. Its binding energy, ET , is localized below the equilibrium
Fermi energy, EF , as schematically depicted in Fig. I.4.14. The occupancy of the hole
trap is ruled by the exchange of holes with the valence band, such that their injection
or depletion may induce significant space-charge formation on that level, regardless of
the type of material conductivity. The only criterion for charging of the level is the shift
of the hole quasi-Fermi energy in the proximity of ET . The electron/hole trap does not
unambiguously imply the donor/acceptor-like character of the defect [55].

Moreover, it can be deduced that ET is close to EF in BNL2E2-O, so that the shift of
hole quasi-Fermi energy in a biased sample markedly influences its occupancy. Assuming
that bands are bent upwards at Au contacts as sketched in Fig. I.4.14a, the injection of
holes increases the positive charge on this trap level. Conversely, using a hole blocking In
anode results in depletion of the positive charge, detrapping of residual holes on that level,
and causes the formation of a negative space charge in the detector. Because ET < EF
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(b) energy level diagram of CdZnTe. The work functions were taken from [56].

the positive charge in the Au/CZT/Au sample is significantly larger than the negative
charge in the Au/CZT/In sample, what was confirmed by the experimental results giving
2× 1010 cm−3 in BNL2E2-O in contrast to > 109 cm−3 in BNL2E2-S.

These findings contradict the conventional model of polarization of semiconductor
radiation detectors [28, 38, 55], which predicts the tendency of Schottky-type detectors to
polarize more easily than ohmic ones. In the conventional model a greater negative space
charge is apparent in Schottky-type detectors due to thermally-activated detrapping of
holes from the hole trap situated above EF ; in ohmic-type detectors the hole quasi-Fermi
energy remains far from ET and there is no clearly observable space charge. Generally,
when the cathode is left unchanged (Au) and the anode metal is changed, then the relation
between ET and EF determines the preferred contact material for the anode as follows:

(i) ET < EF is optimal for the Schottky contact, but improper for the ohmic one
(observed situation);

(ii) ET > EF is optimal for the ohmic contact, improper for the Schottky one.

Keeping these findings in mind may help to choose the preferred contact materials.
No significant effects on the profiles of the electric fields were seen in BNL2G1F3 in

both the Au/CZT/Au and Au/CZT/In contact configurations. Therefore, one can deduce
that there are no apparent trap levels in this sample near EF that could be recharged
due to quasi-Fermi level shift, i.e., the band bending does not affect trap occupancy.
As the bulk resistivity of BNL2G1F3 is approximately three times greater than that of
BNL2E2 (see Table I.4.4), its EF is shifted ∼28 meV closer to ET . If a hole-trap level in
BNL2G1F3 existed with a similar density as in BNL2E2, space-charge formation would
have been observed. Because no apparent waveform distortion is seen in BNL2G1F3, it
could be deduced that the density of hole traps is much smaller. As ET remains well
below EF even in BNL2G1F3 then because the space-charge density is not greater than
109 cm−3, the hole-trap density in this sample must be at least 60 times smaller than in
the BNL2E2 sample.

To support previous considerations, the existing code for the parallel solution of drift-
diffusion and Poisson’s equation in semi-insulating CdTe and CZT [57] was utilized to
calculate the charging of CZT detector under standard working conditions. The parame-
ters selected for the simulation were chosen as to match material characteristics of the
BNL2E2 sample and to fit the evaluated space charge and current through the detector.
The following values were used: Eg = 1.58 eV [58, 59], EF = Ec−0.73 eV = Ev+0.85 eV,
ET = Ev + 0.72 eV, trap density NT = 1.3 × 1012 cm−3, temperature T = 295 K, and
sample thickness L = 1.6 mm. It is notable that the trap characteristics was chosen rather
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arbitrarily since measurements taken at a fixed temperature do not allow to establish ET

and NT uniquely. The hole-capture cross section at the trap level does not need to be
adjusted in the steady-state experiment when neglecting electron trapping.

Fig. I.4.15a represents the computed dependence of the average space-charge density on
the band bending at the anode; it confirms excellently the observations made on BNL2E2
detectors. The calculations for bands being bent downwards at the anode (Schottky
contact) yield that the space-charge density saturates at ∼109 cm−3. This value agrees
well with the measured profiles of the electric field in BNL2E2-S (see Fig. I.4.11b and
the discussion thereof). In contrast, for bands bending upwards at the anode (ohmic
contact), the space-charge density strongly depends on the band bending, reaching the
value of 2×1010 cm−3 for the bending of 70 meV attributed to the Au contact. Calculated
values of the space-charge density are both qualitatively and quantitatively confirmed by
the results of TCT measurements, showing that BNL2E2-O becomes polarized more than
BNL2E2-S.

The dependence of the total current through the sample on the band bending at the
anode at 600 V (Fig. I.4.15b) demonstrates why Schottky In contacts are not as promising
on n-type detectors as on p-type ones. Due to the weakly blocking Au cathode, the n-type
Au/CZT/In detector shows no significant suppression of the dark current in comparison
to the same material with ohmic contacts. Simultaneously, the eventual appearance of
a hole-trap level above EF would entail significant space-charge formation and polarization
of the detector. In the present situation at 600 V, the calculations demonstrated that the
current through the sample changes very slowly with band bending; it differs only by
3 nA with a bending change of ±70 meV (see Fig. I.4.15b). This difference also agrees
well with the measured results.
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One could also speculate about an explanation of well-known different tendencies of
Schottky CdTe and CZT detectors to polarize when CdTe-S does so much more quickly
and extensively than CZT-S. Adding zinc to CdTe both increases the Eg and shifts
EF further from Ev, i.e., above the principal hole-trap level in semi-insulating material.
Consequently, such a level is filled with electrons and does not emit holes in hole-depleted
Schottky CZT detectors, while simultaneously suppressing the space-charge formation
caused by this level. In [60] a similar model of trap elimination by Fermi-level engineering
was discussed.

Regardless of polarization caused by biasing the sample, the degradation of the de-
tector performance over time could be caused by long-term processes at the metal–
semiconductor interface as well as on the detector surface, even when no bias is applied
to the sample. Since the work functions of Au, ΦAu, and CZT, ΦCZT, are very similar (see
Fig. I.4.14b) and, particularly in CZT, depend on many different factors mostly associated
with the surface and interface [61], a situation could arise when ΦAu < ΦCZT, resulting
in bands being bent downwards at this contact. This injecting contact would then cause
a rapid increase in forward current and, in addition, could be the reason for the observed
sign reversal of the space charge as shown in Fig. I.4.13.

4.4 Summary

General theory for processing of TCT and CCE measurements on planar radiation de-
tectors, involving single-carrier collection of either electrons or holes regardless of the
polarization of the detector and the bias polarity, was reported. A thorough analysis
of various methods used for the evaluation of the mobility–lifetime product was given.
The results obtained by utilizing the well-know Hecht equation, the Matz approach with
an effective space-charge density, and two newly developed methods—the self-consistent
procedure and the direct-minimization procedure which combine the CCE and TCT mea-
surements in one complex calculation—were mutually compared. It was shown both on
the simulated data and real CdTe and CZT detectors that when the polarization of a de-
tector is not negligible, the standard simple methods (Hecht, Matz) can yield incorrect
values of µτ , although the fits may describe the measured bias dependence of CCE well.
In these situations the information about the actual profiles of the electric field in the
detector, obtained either from the TCT or Pockels effect measurements, must be included
into calculations. This task was successfully completed by utilizing the reported pro-
cedures. Developed methods were demonstrated with success on the study of effect of
different contact metals on the internal electric field within detectors.
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Part II

High-temperature measurements
of the absorption edge
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1. Introduction

The bandgap energy, Eg, is one of the most important parameters characterizing a semi-
conductor and predestinating its possible applications. General requirements for Eg of
a material that should operate as a room temperature radiation detector were summa-
rized in points (ii) and (iii) in Preface. In addition, at high temperatures Eg critically
affects the intrinsic carrier density and native defect structure and it is therefore im-
portant for reliable modeling of the defect structure [62]. Detailed acquirement of the
high-temperature bandgap energy edge is also necessary for in-situ monitoring of CdTe
vapour-phase growth using optical methods [63]. The temperature dependence of Eg was
widely studied at low temperatures 4–300K [3, 58, 64, 65, 66, 67, 68, 69]. The absorption
coefficient of 22000 cm−1 at Eg was determined at 4K from measurements on a few mic-
rometers thick samples [70]. The list of earlier experiments may be found in [8]. Optical
properties of CdTe thin films were investigated also in [71, 72, 73] in the temperature
range 90–500K, where the dependence of the bandgap energy of CdTe thin films on the
thickness of the film was reported as well.

Temperature dependence of the absorption edge of CdTe was studied as early as in
1959 by de Nobel [3], where the spectral transmission of a 0.2 mm thick bulk CdTe
wafer was measured at 77K and in the temperature range 300–983K in vacuum. The
upper temperature limit could not be exceeded due to the decomposition of CdTe. The
bandgap energy was approximated by the energy corresponding to a zero transmission
deduced from the spectral transmission curve. High-temperature absorption edge of CdTe
in temperature interval of 827–1104K was measured by Mullins et al. [63] from the
incandescent spectra of a CdTe wafer under Ar overpressure and by Su [74] who measured
transmission spectra of a sublimated 1.5 mm thick CdTe sample under the congruent
sublimation condition. The bandgap energy was established from the derivative of the
absorption coefficient with respect to energy between 304K and 1067K. High-temperature
energy bandgap was evaluated also from the high-temperature Hall effect measurement in
the temperature interval of 700–1100K [62]. These methods have yielded different results,
the comparison of which is to be found in Chapter 4. At temperatures above 800K the
difference in Eg(T ) could be as high as 0.2 eV! The question then naturally arises of which
values of Eg(T ) should be taken for calculations considering samples studied at IoP CU.
To remove this uncertainty the experimental setup for high-temperature measurements
of the absorption edge has been built in the laboratory of IoP CU.

Analytical models suitable for the fitting of Eg(T ) are mostly based on the Varshni
equation [75]:

Eg(T ) = Eg(0)−
γT 2

T + β
, (II.1.1)

where Eg(0) represents the bandgap energy at 0K and β is approximated by the Debye
temperature, which is assumed to be 160K for CdTe [74] for the purpose of later analyses.
Another approach originating from the model of Pässler [76] uses the formula

Eg(T ) = Eg(0)−
κθp
2

[

p

√

1 +

(

2T

θp

)p

− 1

]

, (II.1.2)

where θp approximately equals to the average phonon temperature and p corresponds to
the material-specific degree of phonon dispersion. The parameter κ = S(∞) represents
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the T → ∞ limiting magnitude of the slope S(T ) = dEg/dT , supposing that S(T )
is the entropy related to the temperature dependence of the bandgap Eg(T ) [77, 78].
Temperature dependence of Eg is the result of a cumulative effect of electron–phonon
interaction and thermal lattice expansion. The absorption edge is spread with increasing
temperature because of phonon population increase, charging of impurities and defects,
and population of electron and hole states in the conduction and valence bands. In spite
of multiple effects affecting bandgap renormalization, it was shown in [79] that a linear
dependence of the bandgap

Eg(T ) = Eg(0)− γT (II.1.3)

may be expected well above the Debye temperature. The latter equation then represents
the high-temperature limit of the Varshni formula, easily derivable from Eq. (II.1.1) for
T ≫ β. A linear dependence from Eq. (II.1.3) may be alternatively expressed in the form

Eg(T ) = Eg(T0)− γ′(T − T0) (II.1.4)

with a reference temperature T0. In order to easily deduct the room temperature bandgap
energy from the latter equation, T0 is preferably set to 300K.

In this part of the thesis the measurements of the infrared transmission of CdTe
samples under nearly saturated Cd overpressure in the temperature interval 295–1223K
are reported. The optical absorption coefficient is calculated from the transmittance
spectra and the high temperature bandgap energy is evaluated by the extrapolation of
the Urbach absorption tail from a spectrum of the absorption coefficient. It is for the
first time when the high-temperature absorption edge of CdTe is measured under defined
Cd overpressure, so allowing to reach pretty high temperatures without principal sample
sublimation and serious surface degradation.
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2. Processing of experimental data

2.1 Calculation of transmittance spectra

Spectral dependence of the transmittance T (λ) on the wavelength λ of a studied thin
sample can be calculated from simple equations describing the reflection and refraction of
light propagating through homogeneous, isotropic, non-magnetic media. Such a medium
is described by its complex refractive index

n̂(λ) = n(λ) + iκ(λ), (II.2.1)

where n(λ) and κ(λ) are, respectively, the real and imaginary component of the index
of refraction, n̂. The imaginary part, κ(λ), can be directly related to the absorption
coefficient, α(λ), via the equation

α(λ) =
4π

λ
κ(λ). (II.2.2)

At normal incidence the reflectance R(λ) of a single boundary between two media is given
by

R(λ) =

∣

∣

∣

∣

n̂1(λ)− n̂2(λ)

n̂1(λ) + n̂2(λ)

∣

∣

∣

∣

2

, (II.2.3)

where n̂1(λ) and n̂2(λ) are complex refractive indices of the media. Specially, for one of
the media being the air (vacuum), by setting n̂1(λ) ≡ 1 and substituting Eq. (II.2.1) for
n̂2(λ), Eq. (II.2.3) can be evolved into the form

R(λ) =

(

n(λ)− 1
)2

+ κ2(λ)
(

n(λ) + 1
)2

+ κ2(λ)
, (II.2.4)

if n(λ) and κ(λ) are components of the complex refractive index of the non-trivial medium.
Assuming that the studied sample is surrounded by air from both sides, the equation for
total transmittance of the sample, T (λ), is calculated by taking into account multiple
internal reflections on air–sample boundary and neglecting the interference effects, yielding

T (λ) =

(

1−R(λ)
)2T (λ)

1−R2(λ)T 2(λ)
. (II.2.5)

In latter equation T (λ) marks that fraction of light which is absorbed during one pass
through the sample. This quantity is calculated using the Lambert-Beer’s law

T (λ) = e−α(λ)L = e−4πκ(λ)L/λ, (II.2.6)

where α(λ) was substituted from Eq. (II.2.2) and L is the thickness of the sample. The
assumption of multiple internal reflections is justifiable since, e.g., for the sub-bandgap
irradiation (α(λ) ≈ 0) a single surface of a CdTe sample with the refractive index n(λ)

.
=

2.8 reflects around 23% of incident light, which therefore cannot be neglected.
As discussed in [63], for a relatively thick sample (measurements discussed later in

Chapter 4 were performed on samples having L∼0.5 mm), achievable values of absorption
coefficient α(λ) are not much above 100 cm−1. From Eq. (II.2.2) the corresponding values
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of κ(λ) are less than 0.02. For this reason κ(λ) can be neglected in Eq. (II.2.4), from
which one obtains the well-known equation for the reflectance of a boundary between
a non-absorbing medium and air:

R(λ) =

(

n(λ)− 1

n(λ) + 1

)2

. (II.2.7)

Finally, by substituting Eq. (II.2.6) into Eq. (II.2.5) the relation between T (λ) and
α(λ) can be written in the form

T (λ) =

(

1− R(λ)
)2
e−α(λ)L

1− R2(λ)e−2α(λ)L
. (II.2.8)

2.2 Calculation of absorption spectra

The latter equation can be solved for α(λ) to explicitly write the absorption coefficient
as a function of the transmittance:

α = − 1

L
ln







√

1

4T 2

(

1− R

R

)4

+
1

R2
− 1

2T

(

1− R

R

)2







. (II.2.9)

Wavelength dependence of α(λ), T (λ), and R(λ) is omitted to simplify the result. To
evaluate the spectral dependence of the absorption coefficient α(λ) using Eq. (II.2.9), the
dispersion curve n(λ) for the calculation of the single-boundary reflectance R(λ) and the
transmittance spectrum T (λ) must be known either from literature or experiment.

2.2.1 Dispersion relation of CdTe

For the dispersion relation n(λ) of CdTe, two models are adopted in this thesis:

(i) Expression (II.2.10) of Pikhtin and Yas’kov [80].

(ii) Expression (II.2.11) of Hĺıdek et al. [81].

Pikhtin and Yas’kov approximated the dispersion curve of a semiconductor with
a sphalerite structure by the formula

n2(~ω)− 1 =
A

π
ln

(

E2
1 − (~ω)2

E2
0 − (~ω)2

)

+
G1

E2
1 − (~ω)2

+
G2

E2
2 − (~ω)2

+
GTO

E2
TO − (~ω)2

, (II.2.10)

where the energies Ei have a clear physical meaning: E0, E1, E2, and ETO are, respec-
tively, the fundamental bandgap energy, the energy gaps at the L and X points of the
Brillouin zone, and the energy of the transverse optical phonon; G1, G2 are the dispersion
parameters related to the effective masses and oscillator strengths at those critical points,
and GTO is the dispersion parameter of the transverse optical phonon [80]. Numerical
values of above constants at room temperature for the case of CdTe are summarized in
Table II.2.1.

Hĺıdek et al. approximated their measurements of refractive index of CdTe in the
temperature range from 10K to 295K by the four-oscillator model

n2(~ω, T )− 1 = a+
4
∑

i=1

gi(T )

E2
i (T )− (~ω)2

, (II.2.11)
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Table II.2.1: Numerical values of parameters in oscillator model given by Eq. (II.2.10)
according to Pikhtin and Yas’kov [80] at T = 293K.

A
E0 E1 G1 E2 G2 ETO GTO

(eV) (eV) (eV2) (eV) (eV2) (eV) (eV2)

0.572 1.50 3.2 28.5519 5.5 94.3804 17.40 9.02×10−4

Table II.2.2: Numerical values of parameters in four-oscillator model given by Eq. (II.2.11)
according to Hĺıdek et al. [81].

Parameter
Value at

T = 293K

a = 3.153 3.153

E1(T ) = 1.5976− 6.09×10−4T 2

T+255
(eV) 1.5022

g1(T ) =
(

0.0369− 9.26×10−5T 2

T+22.4

)

×
(

1− 0.0946
1+e20−555/T

)

(eV2) 0.0117

E2(T ) = 1.7102− 5.04×10−4T 2

T+208
(eV) 1.6238

g2(T ) = 0.3454 eV2 0.3454

E3(T ) = 3.2668− 2.794×10−4T 2

T+112.5
(eV) 3.2076

g3(T ) = 39.966 eV2 39.966

E4(T ) = 0.018 eV 0.018

g4(T ) = 9.02× 10−4 eV2 9.02× 10−4

which was fitted to the experimental data. In the latter equation the term i = 1 denotes
the contribution of optical transitions near the bandgap, terms with i = 2 and i = 3
approximate the effect of all higher transitions, and term i = 4 represents lattice vibrations
[81]. In contrast to Pikhtin and Yas’kov, the refractive index as well as the most of
model parameters are considered to be temperature-dependent. Evaluated temperature
dependencies of these parameters together with their values at room temperature are
shown in Table II.2.2.

In Fig. II.2.1 the comparison of the dispersion models of Pikhtin and Yas’kov and
Hĺıdek et al. at room temperature is to be found. Calculations approved that the diffe-
rence between the refractive indices of both dispersion models is negligible in the spectral
region interesting for reported measurements. As a result the spectra of the absorption
coefficient are almost unaffected by the choice of the dispersion model. The model of
Pikhtin and Yas’kov is used for further analysis.

2.2.2 Experimental transmittance

In order to evaluate the sample transmittance T (λ) at an arbitrary temperature from the
range 300–1300K, two measurements are performed:
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Figure II.2.1: Dispersion models of CdTe
at room temperature according to Pikhtin
and Yas’kov [80] and Hĺıdek et al. [81].

Figure II.2.2: Typical spectrum of the ab-
sorption coefficient. Extrapolation to a gi-
ven value of α0 gives an estimate of the
absorption edge.

(i) Intensity of light passing through the studied sample, Is(λ), is measured in the
range from 800 nm to 1400 nm, which covers the region where the absorption edge
of CdTe is expected in the above temperature range.

(ii) Intensity of light in the same experimental arrangement but with the sample re-
moved (a reference spectrum), Ir(λ), is measured in the same spectral region.

Then, the transmittance T (λ) is calculated as a ratio of these two quantities:

T (λ) =
Is(λ)

Ir(λ)
. (II.2.12)

This calculation is repeated for different temperatures to obtain experimental data for
analysis of temperature dependence.

Having both n(λ) and T (λ) available, one can use Eq. (II.2.9) to calculate the spectrum
of absorption coefficient α(λ), a typical shape of which is shown in Fig. II.2.2. The
absorption coefficient of CdTe as well as of other semiconductors is below the bandgap
energy expected to exhibit an exponential absorption tail described by the Urbach rule
[82, 83]

α(~ω) = α0e
~ω−Eα0

EU , (II.2.13)

where Eα0
is the energy at a chosen value α0 of the absorption coefficient and EU de-

scribes the spreading of the band tail below the fundamental bandgap due to disorder.
Consequently, the exponential tail makes it impossible to observe the interband absorp-
tion α(~ω) ∼

√

~ω − Eg directly. By extrapolating the linear part of a semi-logarithmic
plot of the energy spectrum of the absorption coefficient, Eα0

can be addressed by fix-
ing the value of α0 as schematically depicted in Fig. II.2.2. In this thesis the results of
different choices of α0 are discussed later in Chapter 4.

Two important notes are worth mentioning. Firstly, by assuming that the fitted value
of Eα0

is so close to the fundamental bandgap that it can be identified with a particular
parameter in dispersion relation discussed above (e.g., with E0 in the dispersion curve
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Figure II.2.3: Flow chart of the procedure for the calculation of absorption spectra and
the evaluation of the energy of absorption edge.

according to Eq. (II.2.10), or with E1 in Eq. (II.2.11)), then any change of this parameter
in n(λ) also changes the resulting α(λ) calculated using Eq. (II.2.9), i.e., the spectrum
from which the energy Eα0

was estimated. The consequences are discussed in the following
Subsection 2.2.3. Secondly, the evaluation of absorption coefficient via Eq. (II.2.9) relies
on the correct estimation of transmittance spectrum according to Eq. (II.2.12). If, e.g., an
unintentional difference occurs in experimental setups between measurements with and
without a sample or transmittance T (λ) is evaluated incorrectly, errors are consequently
passed on an estimate of the bandgap energy. This is discussed separately in Section 2.3.

2.2.3 Evaluation of absorption coefficient: a self-consistent treat-

ment

The above note about the mutual relationship between the dispersion curve n(λ) that is
used to calculate the absorption coefficient α(λ), from which, however, the fundamental
bandgap energy entering the expression for n(λ) is obtained, states the requirement for
the calculation being done self-consistently. The procedure proceeds as follows:

(i) From the measured spectra of Is(λ) and Ir(λ), the transmittance spectrum T (λ) is
calculated using Eq. (II.2.12).

(ii) The spectrum of absorption coefficient α(λ) is calculated with the help of Eq. (II.2.9)
using the dispersion model according to Eq. (II.2.10) with the initial set of parame-
ters shown in Table II.2.1.

(iii) The absorption coefficient is plotted in a semi-logarithmic scale as a function of
energy, α(~ω), and a linear part of the spectrum (in a semi-logarithmic scale, i.e.,
the exponential part in a linear scale) in the region of approx. 10–100 cm−1 is fitted
according to the Urbach rule described by Eq. (II.2.13).

(iv) Fitted curve is extrapolated to the chosen value of α0, yielding the corresponding

energy of the absorption edge, E
(1)
α0

, on a horizontal axis.

(v) The dispersion model parameter E0 representing the fundamental bandgap is ad-

justed to the estimated energy of the absorption edge, E
(1)
α0

.

(vi) Procedure repeats starting at step (ii) with a new set of dispersion parameters until

the absorption edge energy estimated at the end of the ith cycle, E
(i)
α0
, differs for less
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than a chosen convergence criterion from its value from the previous step, E
(i−1)
α0

.
The difference |E(i)

α0
− E

(i−1)
α0

| < ∆E = 10−5 eV is used in this thesis.

When the procedure converges, the energy of the absorption edge, Eα0
, corresponding to

the chosen α0 is obtained. The flow chart of this procedure is schematically shown in
Fig. II.2.3.

2.3 Analysis of calculation errors

Eq. (II.2.12) is of fundamental importance as it provides the relation between experimental
data Is(λ) and Ir(λ) and theoretical model presented in Sections 2.1 and 2.2. In this
section it is demonstrated how an experimental error in measured transmittance affects
the overall uncertainty of calculated values of absorption edge and Urbach parameter.

To do so a dimensionless parameter, ξ ∼ 1, is defined to characterize the error in
experimental transmittance. T (λ) is then substituted by ξT (λ) in Eq. (II.2.9) to express
an incorrect value. To make further manipulations easier, the latter equation is rewritten
as follows:

α = − 1

L
ln
(

√

Q2 +R2 −Q
)

, (II.2.14)

where R = 1/R and Q stands for

Q =
(R− 1)2

2T
.

Wavelength dependencies are omitted. The substitution T ↔ ξT leads toQ being replaced
by Q/ξ and Eq. (II.2.14) transforms into

α = − 1

L
ln

(

√

Q2

ξ2
+R2 − Q

ξ

)

= − 1

L
ln

{

1

ξ

(

√

Q2 + ξ2R2 −Q
)

}

. (II.2.15)

In the vicinity of the absorption edge the transmittance T → 0, which implies Q ≫ 1 and
thus Q ≫ ξR. The square root in Eq. (II.2.15) can then be approximately expressed as

√

Q2 + ξ2R2 = Q

√

1 +
ξ2R2

Q2
≈ Q

(

1 +
ξ2R2

2Q2

)

= Q+
ξ2R2

2Q
,

resulting in the equation for the absorption coefficient in the limit of low transmittance:

α(T→0) = − 1

L
ln

(R2

2Q

)

− 1

L
ln ξ. (II.2.16)

If one expresses ξ in the form ξ = 1± ε, the latter equation gives

∆α = − 1

L
ln ξ = − 1

L
ln(1± ε) ≈ ∓ ε

L
(II.2.17)

for the absolute error (regardless of sign) of absorption coefficient calculated from trans-
mittance spectra with the relative uncertainty ε. Eq. (II.2.17) can then be used for the
construction of error bands (see Fig. II.2.4) in a spectrum of absorption coefficient to
estimate the accuracy of the results.
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Figure II.2.4: Uncertainty in measured transmittance spectrum (a, linear scale) is passed
on the calculated spectrum of absorption coefficient (b, logarithmic scale).

To assess the corresponding effect on the calculated values of the fundamental bandgap,
detail analysis of steps (iii) and (iv) of the self-consistent treatment in Subsection 2.2.3
is necessary. Let us assume that two spectra of absorption coefficient, α(1)(~ω) and
α(2)(~ω) = α(1)(~ω) + ∆α, where ∆α = (− ln ξ)/L, are given. One can interpret these
as a calculated spectrum and one of its error bands (depending on the sign of ±/∓
marks in Eq. (II.2.17)). The exponential parts of the spectra are then fitted according
to Eq. (II.2.13). To take benefit from well-known equations for a linear regression, the
logarithm of the Urbach rule is taken:

lnα(~ω) = lnα0 +
~ω

EU

− Eα0

EU

,

and a new notation is introduced:

ln

(

α(~ω)

α0

)

=
~ω

EU
− Eα0

EU
= m~ω + b, (II.2.18)

where

m =
1

EU
, b = −Eα0

EU
= −mEα0

. (II.2.19)

The equations determining the best-fit values of coefficients m and b, neglecting measure-
ment uncertainties, are then [43]:

m =
N
∑

Eiyi − (
∑

Ei) (
∑

yi)

N
∑

E2
i − (

∑

Ei)
2 , (II.2.20)

b =

∑

yi −m
∑

Ei

N
, (II.2.21)

where N is the number of data points, Ei = (~ω)i is the energy of a particular data point,
and

yi = ln

(

α(Ei)

α0

)

(II.2.22)

is the logarithm of the absorption coefficient at energy Ei normalized to α0. Two pairs
of parameters, (m(1), b(1)) and (m(2), b(2)), can then be calculated by inserting α(1)(~ω)
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and α(2)(~ω) into Eqs. (II.2.20) and (II.2.21). If (m(1), b(1)) is the pair corresponding
to α(1)(~ω), one proceeds further by looking for its relation to (m(2), b(2)). At first,
Eq. (II.2.22) is written for the spectrum α(2) in the form:

y(2) = ln

(

α(2)

α0

)

= ln

(

α(1) +∆α

α0

)

= ln

{

α(1)

α0

(

1 +
∆α

α(1)

)}

= ln

(

α(1)

α0

)

+ ln

(

1 +
∆α

α(1)

)

= y(1) +∆y,

(II.2.23)

where

∆y = ln

(

1 +
∆α

α(1)

)

. (II.2.24)

After simple math a linear shift between coefficients m(1), m(2) and b(1), b(2) can be found
from Eqs. (II.2.20) and (II.2.21), yielding m(2) = m(1) +∆m and b(2) = b(1) +∆b, while

∆m =
N
∑

Ei∆yi − (
∑

Ei) (
∑

∆yi)

N
∑

E2
i − (

∑

Ei)
2 , (II.2.25)

∆b =

∑

∆yi −∆m
∑

Ei

N
, (II.2.26)

supposing that ∆yi = ∆y
(

α(1)(Ei)
)

is substituted from Eq. (II.2.24). Finally, the absorp-
tion edge energies corresponding to the chosen α0 and extrapolated from the exponential
parts of particular absorption spectra are obtained from Eq. (II.2.19), yielding

E(1)
α0

= − b(1)

m(1)
,

E(2)
α0

= − b(2)

m(2)
= − b(1) +∆b

m(1) +∆m
= E(1)

α0
+∆Eα0

.

(II.2.27)

For the Urbach parameters the same procedure yields

E
(1)
U =

1

m(1)
,

E
(2)
U =

1

m(2)
=

1

m(1) +∆m
= E

(1)
U +∆EU .

(II.2.28)

It is left without a proof that for ξ = 1∓ ε ≶ 1, both ∆Eα0
≷ 0 and ∆EU ≷ 0 as clearly

observed from Fig. II.2.4.
Having the difference between (m(1), b(1)) and (m(2), b(2)) pairs determined, the uncer-

tainty in input data, i.e., transmittance spectrum T (λ), is reflected on the final calculated
value of fundamental bandgap and Urbach parameter according to the following approach:

(i) Eα0
and EU are evaluated from absorption coefficient spectra according to the pro-

cedure presented in Subsection 2.2.3.

(ii) Relative experimental error, ε, of measured transmittance spectra is estimated,
determining ξ = 1± ε.

(iii) Two new values, E
(±)
α0

and E
(±)
U , one greater and one less than the original quantity,

are obtained for both Eα0
and EU according to the equations above. The ± values

then represent the limiting values (error bands) spread around Eα0
and EU due to

the transmittance uncertainty ε. Corresponding differences ∆E
(±)
α0

and ∆E
(±)
U are

evaluated.
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(iv) Final values of Eα0
and EU are then defined as:

Eα0
≡ Eα0

±∆Eα0
, (II.2.29)

EU ≡ EU ±∆EU , (II.2.30)

where ∆Eα0
and ∆EU are the averages of ∆E

(±)
α0

and ∆E
(±)
U .
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3. Experimental techniques

High-temperature measurements of optical properties of CdTe as described in this part of
the thesis are based on measuring of the transmittance spectra of a sample placed in the
two-zone furnace perpendicularly to an optical beam. To ensure well-defined thermody-
namic conditions at high temperatures, the sample is placed in a sealed quartz ampoule
(see Fig. II.3.1). It is important to prepare a sufficiently thin sample to enable transmit-
tance measurements; however, the sample has to be thick enough to withstand vibrations
and shaking during the preparation of the ampoule. Procedure with a 0.5 mm thick
sample has been successfully examined. In the following text the fabrication process of
samples as well as of the quartz ampoule and the experimental setup are described in
detail.

3.1 Preparation of samples for high-temperature mea-

surements

Starting with an approximately 2 mm thick CdTe wafer cut using a diamond-wire saw
Model 6234 from Well Diamond Wire Saws, Inc. from an as-grown CdTe crystal, the
wafer is checked for the presence of gains and twins at first. If there is a monocrystalline
piece large enough (i.e., with dimensions greater than intended dimensions of the sample
being prepared), the wafer is subsequently cut on a steal-wire saw. Different sample
geometries had been tried before the shape shown in Fig. II.3.1d was adopted. A square-
shaped sample is firstly cut by making two series of parallel cuts. Consequently, corners
are removed by another two series of parallel cuts, resulting in a sample of desired shape.
Though this procedure is more difficult and takes more time than cutting of a rectangular
sample, its advantage is evident: the sample of such a shape, when placed into the sample
holder (Fig. II.3.1c) inside the quartz ampoule, occupies nearly the whole inner area of
the ampoule. The diameter of the optical beam, controlled by an iris diaphragm aperture
size, entering the furnace can thus be larger than that in the case of a rectangular sample,
which results in higher signal yield at the detector. The thickness of the shaped sample is
then mechanically reduced on a grinding machine. Before the desired thickness of 0.5 mm
is reached, sample faces are pre-chemically polished using abrasives and then chemically
polished to provide an optical-grade surface. The plano-parallelity and roughness of the
surface can be tested using Noncontact 3D Surface Profiler from Zygo [84]. Finally, the
sample is chemically etched in 3% bromine–methanol solution and rinsed in methanol and
isopropyl alcohol before inserting it into the sample holder and completing the ampoule.

The quartz ampoule consists of the inner (Fig. II.3.1a) and outer (Fig. II.3.1b) parts.
The inner part is fabricated from a quartz tube with 18.5 mm in outer diameter and
a wall thickness of 1.5 mm supplied by Heraeus Quarzglas. After cutting the tube of
desired length (110 mm), one end is rounded on a grinding plate, while onto the other
one the optical-grade quartz window is fused. The most challenging work is the fusing of
a quartz tube with 4 mm in diameter to the body of the ampoule according to Fig. II.3.1a.
It requires the experience of a skilled glassworker to make a vacuum-tight connection
without infolding of the fused quartz into the ampoule. The 4 mm quartz tube serves
then as the outlet to vacuum system.
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Figure II.3.1: Drawings of particular parts of the quartz ampoule: (a) inner ampoule,
(b) outer ampoule, (c) sample holder, (d) front and side views of the shape of a sample.

Figure II.3.2: Assembled quartz ampoule for high-temperature transmission measure-
ments.

The outer part of the ampoule is fabricated from a quartz tube with 22 mm in outer
diameter and the same wall thickness of 1.5 mm as in the case of the inner part. One end
of an approximately 100 mm long tube is rounded, whereas the quartz window of optical
quality is fused onto the other one. When both parts of the ampoule are put together,
the matching between the outer diameter of the inner part and the inner diameter of
the outer part makes it possible to seal both parts together using an oxygen–hydrogen
torch while evacuating the ampoule at the same time. If the inner ampoule is hard to be
inserted into the outer one, ampoules are etched in hydrofluoric acid for several tens of
minutes to reduce the wall thickness.1

The sample holder (Fig. II.3.1c) is fabricated from a piece of the same tube that is
used for the inner ampoule. Its ends are grinded and using a diamond-blade circular saw
a notch is made in the middle of the tube perpendicularly to its axis. The edges of the
notch are smoothed by an oxygen–hydrogen torch to prevent the sample from scratching
when being inserted. The notch should be planar and thin so as to enable the insertion
of the sample without unnecessary space around it. The sample placed into the sample
holder should not protrude out of the holder and should withstand vibrations during the
manipulation and sealing of the ampoule.

Before completion of the ampoule, all its parts, i.e., the inner and outer ampoule, and
sample holder, are thoroughly cleaned by etching in chromosulfuric acid and then etched

1The matching of both parts of the ampoule should be checked at the whole beginning of the fabrication
process. If it were left after the quartz windows are fused, then hydrofluoric acid etching for more than
15–20 minutes could damage the surface of the windows and could cause vacuum leaks.
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in hydrofluoric acid for 15 minutes. After the etching, all parts are rinsed by deionized
water and placed to the laboratory hot-air dryer. Then, the process proceeds in the
following steps:

(i) Studied sample is placed in the sample holder that is inserted into the outer part
of the ampoule. A droplet of elementary Cd is put into the inner ampoule.

(ii) Inner part of the ampoule is inserted into the outer one in such a way that the
vacuum outlet tube and sample orientations in the ampoule are the same as in
Fig. II.3.2. Sample must not fall out of the sample holder! A Cd droplet should be
on the opposite side of the ampoule than the sample.

(iii) Vacuum outlet is connected to a system of vacuum pumps by Leybold–Heraeus
(rotary pump, turbomolecular pump), which is started.

(iv) Both parts of the ampoule are sealed together using an oxygen–hydrogen torch
by fusing the overlapping walls of the inner and outer ampoules starting from the
vacuum outlet tube and proceeding ahead. Beware of exposing both the sample
and Cd droplet to oxygen–hydrogen flame for more than a moment!

(v) The sealed ampoule is pumped down to pressure of approximately 10−5 mbar, which
is enough for the sample to withstand long-term high-temperature measurements.

(vi) Vacuum outlet tube is sealed in the middle by an oxygen–hydrogen torch to com-
pletely seal the ampoule and to disconnect it from the vacuum-pumping system.

The quartz ampoule fabricated in this way should look like that in Fig. II.3.2. It is now
ready for measurement.

3.2 Experimental setup

Measurements presented in Part II of this thesis were carried out in the experimental ar-
rangement shown in Fig. II.3.3. The 50W tungsten halogen lamp biased to 12 V by Protek
PL-3005S DC Regulated Power Supply is used to generate incandescent light. Right away
from the circular aperture of the lamp cover, the light beam is periodically interrupted by
an optical chopper maintained by the Stanford Research Systems Model SR540 Chopper
Controller at the frequency of about 180 Hz. After the reflection on a spherical mirror,
the light is led on a system of two plano-convex lenses in order to produce a collimated
beam. The amount of light passing around the quartz ampule with a studied sample
through the custom-made Elsklo two-zone tube furnace (30 mm tube diameter × 500 mm
length) is reduced by an iris diaphragm placed into the light path in front of the entrance
of the furnace. The aperture of the diaphragm is set so that only the light incident on the
sample is allowed to propagate through the furnace. The furnace entrance is closed up by
an optical-grade quartz window to prevent unwanted air-flow from disturbing the settling
of desired thermodynamic conditions. The temperature in both zones (one zone is desired
for controlling the Cd temperature, the other one is for controlling the temperature of
a sample) is controlled by the Eurotherm 3504 Process Controller via the type S ther-
mocouples. To precisely monitor temperature, thermocouples are placed directly within
the furnace in the vicinity of the sample and Cd. The temperature of zones’ windings
is monitored simultaneously. Only the long-wave part (λ > 800 nm) of the light beam
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Figure II.3.3: Experimental setup for measurements of high-temperature absorption edge.
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Figure II.3.4: Recorded spectra of (a) sodium-vapour lamp and (b) mercury-vapour lamp
for different widths of the entrance–exit slits of the monochromator. The first number in
peak description is the value measured by presented setup, the value following the slash
was found in literature [85, 86].

leaving the furnace transmits through the longpass filters and is focused by a lens on
the entrance slit of the Princeton Instruments Acton SpectraPro 2300i Monochromator.
With a 1200 g/mm grating blazed at 776 nm, both the entrance and exit slit widths set
to 0.5 mm, and grating rotation speed of 30 nm/min, it is able to record an 800–1400 nm
spectrum in 20 minutes. The output from the monochromator is focused by a lens on
the ThorLabs PDA-10CD-EC InGaAs Amplified Detector with the gain of 40 dB. The
amplified signal is led via the shielded coaxial cable to the Stanford Research Systems
SR830 DSP Lock-In Amplifier, which is directly connected to the PC, controlling and
synchronizing all parts of the setup.

The experimental arrangement described above optimizes the throughput and provides
sufficient signal-to-noise ratio and spectral resolution. Experiments with a sodium- and
mercury-vapour lamps in place of a halogen lamp allowed to perform the wavelength
calibration of the monochromator and to find the optimal settings for the monochromator,
detector, and lock-in amplifier by recording two near sodium emission lines, 1138.15 nm
and 1140.34 nm (Fig. II.3.4a), and two mercury emission lines, 1013.98 nm and 1128.74 nm
(Fig. II.3.4b). Based on these observations the monochromator and detector were set as
described above, and lock-in amplifier as follows: time constant 100 ns and sensitivity
around 10 mV to optimally utilize the measurement range. The comparison of measured
and tabulated spectral lines maxima revealed that the wavelength accuracy in a near-
infrared region is better than 0.4 nm with a resolution around 1 nm.
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Figure II.3.5: (a) Transmittance spectra without the sample measured at one moment
and after 24 hours. The difference is less than 1%. (b) Temporal stability test of the
setup showing the differences of the lock-in signal recorded at a particular wavelength
and halogen-lamp power-supply voltage from their mean values.

Temporal stability of the setup was tested as well since high-temperature measure-
ments usually take many hours to accomplish. Any drift of the calibration as well as
changes in the intensity of a light source (either because of aging of tungsten filament or
power-supply fluctuations), unintended stir of optical elements or other equipment would
deteriorate the measurements before completion. That is why all parts of the setup were
permanently mounted on a robust optical table, paying special attention on fixing the
thermocouples so as not to screen the light passing through the furnace.

Transmittance spectra of the furnace without the sample measured 24 hours one after
another are depicted in Fig. II.3.5a. These spectra, the shape of which results from con-
current effects of the monochromator, detector, and lock-in amplifier on a lamp emission
spectrum after propagating through several optical elements and throughout the furnace,
are characteristic for the setup and will serve as reference spectra for calculation of ex-
perimental transmittance according to Eq. (II.2.12). The difference between the spectra
is less than 1%. A signal at the output from the lock-in amplifier at λ = 1200 nm and
the light source power-supply voltage recorded several times per minute for more than
24 hours are shown in Fig. II.3.5b. It is nicely demonstrated that after the first few hours
needed for all instruments to warm up and a signal to settle down, the fluctuations of
the output signal are approximately ±0.3%. The stability of the power-supply voltage is
much better. Therefore, one can expect that the overall error of spectral measurements
does not exceed 1–2%.
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4. Results and Discussion

In this chapter high-temperature optical measurements of the absorption edge of single-
grain CdTe samples grown and prepared at the Institute of Physics of Charles University
are presented. These are some of the first results; extensive study has not been completed
yet. Basic information about the samples is summarized in Table II.4.1. Applicability of
models discussed in Chapter 2 is demonstrated and deeply analyzed. Obtained results
are compared to existing ones and are to be published soon [87].

4.1 Transmittance spectra

In Fig. II.4.1 “raw” spectra of transmittance of samples as recorded directly on the lock-
in amplifier are depicted. These spectra, representing Is(λ) in Eq. (II.2.12), are later
used together with previously recorded reference spectrum Ir(λ) for the calculation of
experimental transmittance. It became evident from the first experiments that mini-
mizing the stray light and light passing around the samples is important for pushing
the above-bandgap transmittance down to zero to minimize the residual transmittance.

Table II.4.1: Sample properties

Sample S49I1 S49I2

Material CdTe CdTe

Thickness L (mm) 0.45 0.44

In Figs. II.4.1 the amount of the above-
bandgap signal is markedly reduced with
the help of an iris diaphragm placed in
front of the furnace as discussed in Chap-
ter 3. As will be seen later, this enables to
extend the upper limit of measurable ab-
sorption coefficient up to 120 cm−1. High-
er values are not reachable on samples of
such a thickness. Transmittance spectra of

S49I1 and S49I2 undoped CdTe samples, calculated with the help of Eq. (II.2.12) from raw
transmittance spectra already reported, are to be found in Figs. II.4.2a and II.4.2b. The
spectra were measured from the lowest (∼300K) to the highest (∼1200K) temperature
with the step of 50K. Difference between Cd temperature and sample temperature was
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Figure II.4.1: “Raw” transmittance spectra of (a) S49I1 and (b) S49I2 detectors recorded
directly on the lock-in amplifier.
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Figure II.4.2: Transmittance spectra of
(a) S49I1 and (b) S49I2 detectors. Dashed
lines in (b) represents measurements at
the same temperatures during the cool-
ing down back to room temperature.
(c) Three phase equilibrium curve of
CdTe(s) according to [89]. Red points
mark the thermodynamic conditions (a Cd
overpressure) during the measurements
presented in this thesis.

maintained at 50K up to 1073K; above this value the Cd temperature was fixed at 1023K
so as not to exceed the pressure of 1 atm in the ampoule. Thermodynamic conditions
during the experiment are shown in Fig. II.4.2c by red dots. The vicinity of these points
to the three phase equilibrium curve implies that the measurements were performed under
nearly saturated Cd overpressure. Slight variations of the maximum transmittance level in
Fig. II.4.2b that appear above ∼600K correlate with the temperature of Cd approaching
and exceeding its melting point of 594K [86]. Temperature gradient inside the ampoule
could cause Cd condensating on the back optical window, thus affecting the transmitted
signal. Another explanation could stem from modifications of the surface of CdTe sample
resulting in a change of optical constants and overall sample transmissivity as discussed
in the following paragraph.

The spectra of S49I2 were also measured at the same temperatures during the cooling
down back to room temperature. They are presented by dashed lines in Fig. II.4.2b for
chosen temperatures of 723K, 923K, and 1073K. The transmittance spectrum measured
during the cooling phase is slightly lower than the spectrum measured during the heat-
ing. This slight shift, likely caused by the formation of a thin surface layer due to Te
sublimation, has already been observed during the characterization of annealed samples
by means of IR microscopy or IR absorption measurements [17, 63, 88]. To recover the
initial transmittance values, the surface layer would have to be removed after annealing.
This would, however, require the ampoule being opened after the cooling phase of the
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Figure II.4.3: Absorption spectra of (a)
S49I1 and (b) S49I2 detectors. (c) Com-
parison of absorption spectra of S49I2 de-
tector from (b) measured under the same
thermodynamic conditions in the heating
and cooling mode.

experiment, practically limiting the measurement to one up–down cycle. Investigations
of this kind were not performed in the thesis.

4.2 Spectra of absorption coefficient. Absorption edge

The self-consistent procedure from Subsection 2.2.3 has been used to calculate the spectra
of absorption coefficient from the transmittance spectra presented in Fig. II.4.2. Analo-
gously to [63] the results for α0 = 104 cm−1 are to be found in Fig. II.4.3. The ex-
trapolations to α0 of the Urbach tails according to Eq. (II.2.13) are shown by dashed
lines.

The deviation between transmission spectra recorded at the same temperatures during
heating/cooling mode is naturally passed on the calculated absorption spectra and is
observed in the whole temperature range. By comparing the transmittance spectra of
heating and cooling modes in Fig. II.4.2b, it can be found that they are a ξ1-multiple of
one another with ξ1∼0.94 (ε1∼0.06). One can therefore utilize the results of Section 2.3
to expect the corresponding spectra of the absorption coefficient being shifted linearly
from each other. This linear shift along the vertical axis is seen in Fig. II.4.3c; however,
the logarithmic scale enhances the difference at low α(~ω).

As discussed in Section 2.3 the mutual relation (ξ1 < 1) between the transmittance

spectra implies that the absorption coefficient E
(↑)
α0

evaluated in the heating mode is
therefore less than E

(↓)
α0

corresponding to the cooling mode. The difference of these two
values, ∆Eα0

= |E(↑)
α0

−E
(↓)
α0

|, is less than 0.3% and 0.5% for α0 = 103 cm−1 and 104 cm−1,
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respectively. Similarly, E
(↑)
U < E

(↓)
U . The smallest deviation of EU , ∆EU = |E(↑)

U − E
(↓)
U |,

was observed at the highest temperature; the maximum deviation of ∆EU ≈ 2 meV
was identified at lowest temperatures. The latter value corresponds well to the value
calculated directly from Eq. (II.2.28) for ξ1 = 0.94. With the uncertainty of the measured
transmittance spectra (see Section 3.2) estimated to be approx. 1–2%, ε2 < 0.02, the
total uncertainty of ε =

√

ε21 + ε22 ∼ 7% is assumed for input data. The total error
of bandgap calculations estimated with the help of the analysis presented in Section 2.3,
considering transmittance fluctuations and differences between heating and cooling modes
(ε1), uncertainty in experimental data (ε2), and the effects of mathematical processing,
should not exceed 2% at any temperature. The total error of the Urbach parameter is
expected to be less than 1–2 meV at any temperature for all studied samples. Values of
E

(↑)
α0

and E
(↑)
U obtained at the heating mode are later used for the discussion of temperature

dependencies with the above mentioned errors.
Evaluation of the fundamental bandgap energy Eg from absorption measurements in

thick samples is complicated by rather high α resulting from the Urbach band tail below
Eg, which completely surpasses the square-root interband absorption α(~ω)∼

√

~ω −Eg.
The possibility of using samples with the thickness of only a few micrometers that would
enable direct observation of interband absorption [70] is limited to low temperatures only
since heating highly above room temperature induces quick degradation of thin samples.
Relatively thick samples are also necessary to withstand handling during the fabrication
of the ampoule (Section 3.1). High temperature bandgap energy therefore had to be
estimated by indirect techniques. Some of them are summarized as follows:

(i) Evaluation of Eg from the foot of a transmission curve [3].

(ii) Identification of Eg with the energy corresponding to a drop of the derivative of
α(~ω) [74].

(iii) Evaluation of Eg that best fits a presumed linear temperature dependence from the
absorption spectra calculated with a fixed α0 = 104 cm−1 [63].

(iv) Evaluation of Eg from the absorption spectra calculated with a fixed α0 (= 103 cm−1,
104 cm−1) according to the self-consistent method presented in Subsection 2.2.3.

(v) Self-consistent calculation of Eg with a fixed α0 and a requirement for the tempe-
rature dependence of Eg being linear.

(vi) Self-consistent calculation of Eg with a requirement for the temperature dependen-
cies of both Eg and α0 being linear.

Each of the procedures above is a theoretical construction which is not substantiated
by relevant argumentation. The first three methods have already been reported in the
literature and are mentioned for completeness’ sake; the published results achieved by
utilizing these methods are used for comparison. On the contrary, the last three methods
represent new approaches developed at IoP CU in order to improve the calculation of
the absorption edge and to give sustainable reasons for such procedures. Applicability of
the different methods on the experimental data and discussion of obtained results are the
main topics of the following analysis.

In Fig. II.4.4 the temperature dependence of the absorption edge energy of studied
samples (see Table II.4.1) evaluated according to the self-consistent procedure (iv) for
α0 = 103 cm−1 is shown. The results for α0 = 104 cm−1 are not depicted in this figure;
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Figure II.4.4: Temperature dependence of absorption edge energy of studied samples
evaluated according to the self-consistent procedure from Subsection 2.2.3. Only the
results for α0 = 103 cm−1 are shown. Comparison to published results is given as well.

those for S49I2 are to be found later in Fig. II.4.5. It is clearly seen that calculated points
for S49I1 and S49I2 samples follow the same curve in the whole temperature range.

In addition, the results of calculations (i)–(iii) published in the literature are inclu-
ded for comparison. Though it is disputable to extrapolate the above room temperature
measurements down to 0K, the Varshni fit according to Eq. (II.1.1) with the Debye tem-
perature β = 160K [74] of S49I1 and S49I2 data fitted together is figured for illustration
as well. This fit, although extrapolated from its linear part down to low temperatures,
is in good agreement with low temperature data of other authors [3, 68, 69]. The fitting
results are shown in Table II.4.2.

Apart from Varshni fit, it is interesting to interpolate the calculated data by a linear
function according to Eq. (II.1.4) since for high temperatures it holds that T ≫ β = 160K
and Varshni equation becomes linear anyway. These fits with T0 = 300K are also to be
found in Fig. II.4.4. The results of fitting procedures are summarized in Table II.4.3.
Obtained slopes that mostly lie within the interval of −(3.5–4.5)×10−4 eV/K are slightly
higher of what is reported in the literature where the values of −(3.0–3.6)×10−4 eV/K
can be found [63]. The published data [63] were, however, determined from the measure-
ments of incandescence spectra in a narrower temperature range 800–1100K in contrast
to presented 300–1200K transmittance measurements.

Detail analyses of both the self-consistent procedure from Subsection 2.2.3 used for the
processing of measurements performed on S49I2 detector and the Pikhtin–Yas’kov disper-
sion formula (II.2.10) showed that using a self-consistent treatment on present measure-
ments is not necessary as the results of Eg obtained with the iterative procedure involved
and without this procedure (assuming that the refractive index is constant, n = 2.85,
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Table II.4.2: Results of Varshni fits according to Eq. (II.1.1) with β = 160K [74] of S49I1
and S49I2 data fitted together. Reported errors represent statistical uncertainty of the
fits.

α0 (cm−1) Eg(0) (eV) γ (eV/K)

103 1.590± 0.002 (4.49± 0.03)× 10−4

104 1.597± 0.005 (4.04± 0.09)× 10−4

Table II.4.3: Results of linear fits according to Eq. (II.1.4) with T0 = 300K. Reported
errors represent statistical uncertainty of linear fits.

Sample S49I1 S49I2

Eg at 300K
(eV)

α0 = 103 cm−1 1.499±0.002 1.493±0.001

α0 = 104 cm−1 1.531±0.005 1.507±0.004

dEg

dT
at 300K

(10−4 eV/K)

α0 = 103 cm−1 −4.57±0.06 −4.55±0.02

α0 = 104 cm−1 −4.00±0.13 −3.71±0.09

and not varying with temperature and wavelength) differ only about 1 meV, which is
less than the expected error of calculations. The reason for this finding can be explained
with the help of Figs. II.2.1 and II.2.2: the thickness ∼0.5 mm of studied samples limits
the maximum measurable values of the absorption coefficient to ∼100 cm−1 whereas the
absorption edge energy is evaluated at energies corresponding to α0 = 103–104 cm−1 from
extrapolation starting as much as 0.1 eV below Eg, see Fig. II.2.2. As seen from Fig. II.2.1,
the refractive index n of CdTe changes very little 0.1 eV below Eg in a narrow energy
interval used for the exponential extrapolation according to the Urbach rule (approx.
1.41–1.45 eV in Fig. II.2.2) in comparison to the immediate vicinity of Eg (∼1.50 eV in
Fig. II.2.2) and, within the bounds of estimated calculation errors, n can be considered
to be constant up to 100 cm−1. Therefore, one can simply calculate the absorption coef-
ficient of CdTe from Eq. (II.2.9) by supposing n∼2.8–2.9. The self-consistent method is
generally needed for precise calculation of the absorption coefficient on very thin samples
when values greater than 104 cm−1 are directly measurable; since the refractive index
changes rapidly close to Eg.

It is remarkable that results obtained for S49I1 and S49I2 samples are in excellent
agreement with the results of de Nobel [3] measured 50 years ago. The procedure (i) of
de Nobel has been furthermore applied on measured transmittance data from Fig. II.4.2b
to obtain results depicted in Fig. II.4.5 by blue diamonds. It is nicely illustrated that this
method systematically leads to an underestimation of the bandgap energy, for which there
are two reasons easy to understand: (a) because of the Urbach tail the bandgap energy is
hidden somewhere in the absorption tail what (b) makes its identification difficult since
α(Urbach)(~ω = Eg) ≫ α(interband)(~ω = Eg)∼ 0. Thus the agreement in results is rather
accidental.
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To overcome the inaccuracy in the determination of the bandgap energy and to give
sustainable reasons for a chosen theoretical construction for indirect calculation of Eg(T ),
deeper analysis is performed by taking the expected theoretical dependence of Eg(T )
into account. The task (v) is completed by supposing that Eg(T ) is a linear function
of temperature according to Eq. (II.1.4), followed by checking if such an assumption is
realizable through the search for a proper α0 that allows the linearity of Eg(T ) to be
fulfilled. It has been found that, e.g., the temperature dependence of the absorption
edge of S49I2 detector can be excellently described by Eq. (II.1.4) if one sets α0 = αg =
1070 cm−1. Then, the following relation is obtained:

Eαg(T ) = 1.494− 4.50× 10−4
(

T (K)− 300K
)

(eV) if αg = 1070 cm−1. (II.4.1)

The fit according to the latter equation describes experimental data very well, deviating
by less than 2 meV from measured data points in the whole temperature interval. This
is clearly shown in Fig. II.4.6. Although this procedure removes problems with “correct”
estimation of α0 as the most suitable value is found via the fitting algorithm, the question
still remains about the justification of a constant α0. This restrictive assumption is thrown
away in procedure (vi) from the above list by supposing that α0 may be temperature
dependent, α0 = αg(T ). Analogously to Eg(T ), a linear function is assumed. This
treatment resulted in

αg(T ) = 6600− 4.0 T (K) (cm−1) (II.4.2)
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and consequently

Eαg(T ) = 1.508− 4.40× 10−4
(

T (K)− 300K
)

(eV)

for αg from Eq. (II.4.2). (II.4.3)

The presented model with temperature dependent αg(T ) applies well on the experimental
data as the deviations from the experiment plotted in Fig. II.4.6 decreased more than ten
times in comparison to the case with constant αg = 1070 cm−1. It thus can be concluded
that αg(T ) and Eg(T ) expressed, respectively, by Eqs. (II.4.2) and (II.4.3) represent the
best choice for the approximation of real absorption bandgap edge.

The temperature dependence of absorption edge energy determined by different meth-
ods is plotted in Fig. II.4.5. It is apparent that constant α0 less (greater) than αg =
1070 cm−1 results in a concave (convex) shape of temperature dependence of Eαg . This
finding entails that using constant α0 = 104 cm−1 according to [63] would not allow to
use a linear fit of Eg(T ). The same behaviour would be observed for S49I1 sample as
well as the linear fit of experimental data processed with α0 = 104 cm−1 deviates at
high temperatures much more from linear dependence than the same data processed with
α0 = 103 cm−1. This implies that optimal constant αg for this detector is close to 10

3 cm−1

similarly to S49I2, for which this value was estimated to be 1070 cm−1. The treatment
with linear αg(T ) could be reproduced analogously for S49I1 detector, however, it is not
reported in the text. Nevertheless, due to the similarity of absorption coefficients of S49I1
and S49I2 detectors, one can expect that the temperature dependence of the absorption
edge of S49I1 is well described by Eqs. (II.4.2) and (II.4.3).

4.3 Optical and electronic bandgaps

All values of energy band edges evaluated so far represent an “optical” bandgap energy,
Eg, corresponding to rapid increase of α(~ω) induced by direct interband absorption.
However, due to the Coulomb interaction of an electron–hole pair created during the
single-photon absorption, bound exciton states exist with energy lower than the bandgap.
Thus, Eg does not depict the exact “electronic” bandgap energy, Ege, that represents
the minimum energy necessary for creation of free carriers as the carriers are genera-
ted to bound states. Ege can be calculated from the optical bandgap energy under the
assumption that the exciton binding energy, Eex, is known, as it holds

Ege = Eg + Eex. (II.4.4)
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The value of Eex = 10 meV observed at low temperatures [70] can be used to recalculate
the evaluated optical band edges to the electronic ones. The difference between optical
and electronic bandgaps is depicted schematically in Fig. II.4.7. The Urbach exponential
tail is followed by an abrupt increase of absorption coefficient above 103 cm−1 (energy
around Eg in Fig. II.4.7) and reaches fast the values above 104 cm−1 corresponding to
interband absorption (energy greater than Ege in Fig. II.4.7). The optical band edge
involves the electron–hole Coulomb interaction of 10 meV, which must be taken into
account to obtain the electronic bandgap energy. However, due to the estimated error of
calculations as well as the calculation itself being an indirect technique, the distinction
between the gaps resulting in an additional correction of 10 meV is a theoretical concept
rather than a significant correction to calculations.

4.4 Urbach parameter

It is well recognized from Fig. II.4.3 that the absorption coefficient near the absorp-
tion edge can be excellently described by the Urbach-like exponential rule according to
Eq. (II.2.13) characterized by the slope EU . The fitting procedure used for the evalua-
tion of the bandgap energy in the previous sections yielded, in addition to Eg(T ), the
temperature dependence of EU as well, see Fig. II.4.8a. Although the calculated data
deviate not much from the values presented in [63], the overall shape of the dependence
is completely different from what was reported therein. In contrast to the original work
of Urbach [82] where EU ∼ kBT was seen on AgBr, it was found on S49I2 sample that
EU(T ) is significantly less than kBT and the temperature dependence is not linear. The
similar course of EU(T ) was observed also in Cd0.97Zn0.03Te and CdS [90], GaAs [91, 92]
and InP [92]. A comparison with the exponential temperature dependence of the Urbach
parameter proposed in [63] is not much significant since a detail view of the data taken
for the analysis [63] raises a query of an adequacy of this result due to unsuitable data
range with completely missing mid-temperature data, see Fig. II.4.8a.

The shape of the temperature dependence of the Urbach absorption edge in GaAs
was thoroughly studied in [91]. It was argued that the temperature dependencies of
both EU and Eg have the same functional form which consecutively results in a common
temperature-independent intersection of extrapolated Urbach absorption edges—the Ur-
bach focus. It was observed in GaAs in the temperature range 350–950K [91]; in [70]
the Urbach focus was reported in CdTe at low temperatures. The same analysis was
examined on the data obtained from S49I2 detector (300–1200K), however, no common
intersection was found. On the contrary, the intersections of each two adjacent Urbach
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Figure II.4.8: (a) Temperature dependence of the Urbach parameter EU of S49I2 de-
tector (red points) compared to values from [63]. Dashed red line is the interpolation
of experimental data from this thesis; black dotted line represents the data from [63].
(b) Intersections of the extrapolated Urbach parts of the spectra of absorption coefficient
(open circles) and the asymptotic line of intersections.

extrapolations were found to form a particular curve that acts as an asymptotic line for
extrapolated curves, see Fig. II.4.8b. In addition, analytic expressions for the energy
EI(T ) and the absorption coefficient αI(T ) corresponding to the points of intersection,
[EI(T ), αI(T )], can be derived, the details of which can be found in [87]. The absence
of the common intersection of extrapolated α(~ω) in the studied sample at high tempe-
ratures implies that, in contrast to GaAs, there is no apparent connection between the
temperature dependencies of EU and Eg in this temperature range in CdTe.

4.5 Summary

High temperature measurements of the optical absorption edge of bulk CdTe samples
were performed in the temperature interval 295–1223K by measuring transmittance spec-
tra of samples placed in a fused quartz ampoule within a two zone furnace in order
to precisely control the thermodynamic conditions within the ampoule (a Cd overpres-
sure). Several techniques of processing of experimental data were analyzed and compared.
Both the experimental and calculation errors were deeply analyzed. Temperature depen-
dence of the optical bandgap energy that best fits the experimental data was found to
be linear, defined by the room temperature value Eg(300K) = 1.508 eV and the slope
dEg/dT = −4.4 × 10−4 eV/K, the values of which were determined by the extrapolation
of the spectra of absorption coefficient according to the Urbach exponential rule to the
temperature dependent absorption edge at αg(T ) = 6600 − 4.0T (K) (cm−1). The diffe-
rence between the optical and electronic bandgaps was discussed. Advanced analysis was
performed concerning the temperature dependence of the Urbach parameter with respect
to its relation to Eg(T ) through the study of the Urbach focus.
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Conclusion

The submitted thesis was focused on the study of transport and optical properties of
CdTe and CdZnTe samples as a part of the long-standing research being conducted at the
Institute of Physics of Charles University in Prague (IoP CU). To accomplish this chal-
lenging task new experimental techniques were introduced to the laboratories of IoP CU:
the transient-current technique (TCT) and high-temperature measurements of the ab-
sorption edge. The improvements of existing experimental setup (in the case of TCT)
and development of a new unique setup (in the case of high-temperature measurements)
were supplied by the simultaneous development of methods for processing of measured
data. These efforts resulted in publication of four papers [25, 26, 27, 87] and provided
data for this work where the most interesting results are reported and summarized.

TCT technique was the main topic of Part I of the thesis. As demonstrated, this “elec-
trical” alternative to an “optical” Pockels effect measurement is a simple but powerful
technique for investigations of the internal electric field in radiation detectors. General
theory for processing of TCT and charge-collection efficiency (CCE) measurements on pla-
nar detectors involving single-carrier collection of either electrons or holes regardless of the
polarization state of the detector was reported. It should be noted that the conjunction
of TCT and CCE measurements into one complex method, the self-consistent procedure
(SCP) or the direct-minimization procedure (DMP), both firstly reported in [26], signifi-
cantly extends the application potential of such analyses. That is enabled also by the fact
that standard simple methods commonly used for the evaluation of the mobility–lifetime
product represent limiting cases of more general procedures (SCP, DMP). These newly
developed procedures are efficient in any situation when the internal electric field can be
approximated by a linear profile, no matter if the field extends all over the detector bulk
or if there is an inactive region (a dead layer) with zero electric field under the detector
contact. In these situations standard methods either fail or give wrong results, however,
both the SCP and DMP are applicable as thoroughly demonstrated in the text. Although
only several applications of the TCT were demonstrated and studied in this thesis, an-
other ones, including investigations of the electric field at various temperatures or types
of excitation (above bandgap laser illumination), are currently being studied or are about
to be investigated soon at IoP CU.

In Part II of the thesis high-temperature optical measurements of the temperature de-
pendence of absorption edge are presented. It was for the first time when measurements
under a Cd overpressure were performed in order to reduce the sample sublimation or
surface degradation, which were the problems affecting measurements of other authors.
The optical bandgap energy was estimated from the extrapolation of the Urbach expo-
nential tail in a spectrum of the absorption coefficient. Obtained results of temperature
dependencies of both the bandgap energy and the Urbach parameter were compared to
published results and deeply analyzed. The experimental setup developed in the labora-
tory of IoP CU was proven to be efficient for measurements under precise thermodynamic
conditions. It is thus reasonable that it will be used in further research at IoP CU, e.g., for
the study of pressure dependencies at a fixed increased temperature, from which a defect
structure of studied samples can be deduced.
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Determination of energy gap in Cd1−xZnxTe (x = 0—0.06). Semicond. Sci. Technol.,
15:561––564, 2000.
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[70] P. Horodyský and P. Hĺıdek. Free-exciton absorption in bulk CdTe: Temperature
dependence. phys. stat. sol. (b), 243:494–495, 2006.

[71] A. El-Mongy, A. Belal, H. El Shaikh, and A. El Amin. A comparison of the physical
properties of CdTe single crystal and thin film. J. Phys. D: Appl. Phys., 30:161,
1997.

[72] X. Mathew. Band gap of CdTe thin films—–the dependence on temperature. J.
Mater. Sci. Lett., 21:529–531, 2002.
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